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Abstract

Artificial Neural Network (ANN) techniques are applied to
the control of coagulant dosing in a drinking water
treatment plant. Coagulant dosing rate is non-linearly
correlated to raw water parameters such as turbidity,
conductivity, pH, temperature, etc. An important
requirement of the application is robustness of the system
against erroneous sensor measurements or unusual water
characteristics. The hybrid system developed includes raw
data validation and reconstruction based on a Kohonen
self-organizing feature map, and prediction of coagulant
dosage using multilayer perceptrons. A key feature of the
system is its ability to take into account various sources of
uncertainty, such as atypical input data, measurement
errors and limited information content of the training set.
Experimental results with real data are presented.

Introduction

The water industry is striving to produce higher quality
water at a lower cost due to increased regulatory
standards. Improved process control through the
introduction of new technologies has increased the
operational efficiency of chemical process plants.
Coagulation process is one of the most important stages in
surface water treatment, allowing the removal of colloidal
particles. The main difficulty is to determine the optimum
chemical coagulant dosage related to the influent of raw
water. Good coagulation control is essential for
maintenance of satisfactory treated water quality and
economic plant operation. Poor control leads to wastage of
expensive chemicals, failure to meet the water quality

targets, and less efficient operation of sedimentation and
filtration processes. Good control can reduce manpower
and chemical costs and improve compliance with treated
water quality targets. Traditional methods of controlling
coagulant dose rely heavily upon manual intervention.
These include manual methods such as jar-tests and
automatic control ensured mainly by streaming current
detector (SCD) [1-2]. Jar testing involves taking a raw
water sample and applying different quantities of
coagulant to each sample. After a short period of time
each sample is assessed for water quality and the dosage
that produces the optimal result is used as a set point.
Operators change the dose and make a new jar test if the
quality of treated water changes. Disadvantages associated
with jar testing are the necessity to perform manual
intervention, and the limitation to feedback control. In
opposition, SCD systems measure the net residual charge
surrounding turbidity and colloidal particles in water [3-
4]. These instruments require a set point to be entered
which represents an optimum water-quality standard.
Streaming-current values  above the set point indicate an
excess of coagulant, while values below the set point
indicate insufficient coagulant for full flocculation to
occur. A jar test must then be carried out to determine the
set point. Disadvantages associated with the SCD are its
operation cost and its lack of adaptation to all types of raw
water quality.

This paper addresses the problem of automatic
coagulation control based on the raw water characteristics
such as turbidity, conductivity, pH, temperature, etc. Some
previous studies [5-6] have shown the potential
effectiveness of such an approach based on ANN's. The
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Figure 1 - Simplified synopsis of the water treatment plant.

innovative aspect of this work resides in the integration of
various techniques in a global system including data
validation and reconstruction, automatic control of
coagulation, and analysis of uncertainties.

Given the high variability of the inputs and the low
reliability of available sensors, an important requirement
of the application is robustness of the system, running
without human supervision, against erroneous sensor
measurements or unusual water characteristics, due to
accidental pollution for instance. Special attention also
has to be paid to the automatic design and training of such
a system from learning data (including the phases of data
validation, input selection and model choice), which
should allow the portability of the system at low cost from
one site to another.

A brief description of  the water treatment process is first
provided in Section II. The methodology used to build the
hybrid system for the automatic control of coagulation is
then described in Section III. Finally, experimental results
are presented and discussed in Section IV.

Water treatment operation

Water treatment involves physical, chemical and
biological processes that transform raw water into
drinking water. However, contrary to most industrial
processes, for which the quality of the input raw material
is under control, the quality of the given raw water source
may fluctuate due to natural perturbation or occasional
pollution. The Viry-Chatillon water treatment plant,

which was used as an application site for this study,
provides water to more than 300,000 inhabitants and has a
nominal capacity to process 120,000 m3 of water per day.
Figure 1 presents a schematic overview of the various
operations necessary to treat the water, the available
measurements, and the coagulant dosing point. Raw water
is abstracted from the river Seine and pumped to the
treatment works. Water treatment plants invariably
include two main process units, clarification and filtration.
Other units may be required depending of the quality of
the water source. The coagulation process is brought about
by adding a highly ionic salt (aluminum sulfate) to the
water. A bulky precipitate is formed which
electrochemically attracts solids and colloidal particles.
The solid precipitate is removed by allowing it to settle to
the bottom of the tank and then periodically removing it
as sludge. The coagulation process accounts for the
removal of most of the undesirable substances from the
raw water and hence tight monitoring and control of this
process is essential. The next stage is filtration, where the
particles passing trough the previous stages are removed.
Filtered water is also treated by ozonation to eliminate the
last micro-pollutant. The final stages in the process are
chlorination and pH adjustment. The water is then stored
in a tank and ready to be transported through the water
supply network.

Methodology

The system developed for optimization of the coagulant
process was divided into three modules: single-parameter
data validation, multi-parameter data validation and



reconstruction, and determination of coagulant dosage.
Figure 2 illustrates the structure of the system.
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Figure 2 - Structure of the system for prediction of
coagulant dosage.

Single-parameter  data validation

As the system has to operate on-line with unreliable input
data coming from a real process, the data validation step
is fundamental. The objective of this first step, referred to
as single-parameter sensor data validation, is to associate
a confidence level to each raw data item. Confidence is
measured by a real number belonging to [0,1]. A zero
confidence means "no confidence, the data is invalid"
while a confidence equal to one means "the data is
perfectly valid". At this stage, the validation procedure is
quite simple and is based on a comparison of each signal
and its derivative to a range of values typically obtained in
the absence of erroneous measurements. Raw data whose
confidence level is less than a given threshold are declared
as invalid data. Although this simple approaches proves to
be sufficient in most cases, the detection of inconsistencies
in the data involving more than one parameter requires
the use of more sophisticated techniques such as Kohonen
maps.

Multi-parameter data validation and reconstruction

We propose an approach based on the use of a Self-
Organizing Map (SOM) [7] for multi-parameter data
validation and reconstruction of input data. The process in
which the SOM is formed is an unsupervised learning
process. The SOM defines a mapping from the input data
space ℜn (raw water quality parameters) onto a regular
two-dimensional array of nodes. A reference vector, or
prototype, mi ∈ ℜn is associated to each node i. Each input

vector x ∈ ℜn is compared with the mi, and the best match
defines the winning prototype. The input is then mapped
onto the corresponding  location on the grid.

With this technique, the evolution of raw water quality
can be visualized in two dimensions, and atypical data or
outliers can be detected by measuring the distance between
each input vector and its closest reference vector. More
precisely, the activation of unit i for input x was defined
using a Gaussian kernel:
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region of unit i. If the activation of the winning prototype
is smaller than a specified threshold, the current sample is
considered as invalid. The contributions of each of the
components of vector x to the distance ||x - mi|| are then
examined to determine more precisely which sensors
should be declared as faulty. These sensor measurements
are then disconnected to compute a new winning
prototype with only valid parameters. For reconstruction,
each missing value of a given input variable is estimated
by the value of the corresponding component in the
winning prototype. In order to improve the reconstruction
accuracy we use a combination of the k nearest nodes.
Each missing or invalid  value j is estimated by a
combination of the corresponding component in the k
nearest prototypes:
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where mi(j) denotes component j of prototype i.

At this stage, the pre-processing phase is terminated and
the data is ready to be processed by the coagulant dosage
model.

Modeling of coagulant dosage

For the modeling of coagulant dosage, a multilayer
perceptron (MLP) with sigmoidal activation functions was
trained using the Optimal Brain Damage (OBD) [8]
learning and pruning algorithm. This approach is based
on the following general procedure.

First, a relatively large network (Figure 3) is trained using
the back-propagation algorithm. The network is then
examined to assess the relative importance of the weights,
and the least important are deleted.
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Figure 3 - Initial network.

The implementation of this technique consists of the
following steps (Figure 4):

1. Choose a relatively large initial network architecture.
2. Train the network using a back-propagation

algorithm applied to a sum of squares error function.
3. Compute the second derivatives Hii for each of

weights and evaluate the saliencies.
4. Sort the weights by saliency and delete some of the

low-saliency weights.
5.   Go to step 2 and repeat until some overall stopping
criterion is reached.
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Figure 4 - Learning and pruning algorithm.

For practical use, a software system to predict the optimal
coagulant dosing rate should not only provide point
estimates but also confidence intervals. Bootstrap
sampling [9] was used to generate confidence intervals for
the system outputs [10]. As shown in Figure 5, 50
bootstrap sets of training data were created from the
original data training data by resampling with
replacement. These bootstrap training sets were used to
train 50 bootstrap MLP models using the same
architecture and training procedure described previously.
Lower and upper limit confidence bounds for any input
were obtained by sorting these outputs and selecting the
10% and 90% cumulative levels. The confidence interval
provides upper and lower limits on the prediction.
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Figure 5 - Bootstrap sampling to generate confidence
interval.

Results

The water treatment plant of Viry-Chatillon has been well
instrumented for several years. Various process variables
(see Figure 1) such as conductivity, turbidity, pH,
temperature, dissolved oxygen, UV absorption of raw
water and coagulant dosage are available. The raw
database is made of 100,000 measurements of each
variable during a period of 12 month (November 97 –
November 98) sampled every 5 minutes.  Many sensor
faults were detected and only 1600 measurements of each
parameters were available for training.

We used 70% of the data set to develop the model, find
the best structure of the ANN and estimate the prediction
accuracy by bootstrap. The other part of the data set was
used to validate the resulting model. The prediction
accuracy and confidence interval of the ANN are shown in
Figure 6 on the validation set.
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Figure 6 - Actual (thick line) versus predicted (thin
line) coagulant dosage with ANN model on test data

and confidence interval (shaded region).

In order to assess the robustness of the system, an off-line
simulation study was performed on the original raw water
parameters, with faults introduced at certain time steps. In
the simulation process we used two weeks of real data



sampled every 5 minutes from 24th June 1998 to 9th July
1998. The dissolved oxygen was simulated to be degraded
with a rising ramp of 0.005 mg/l per samples (every 5
minutes). The faults occurs on the 1st July at 8:00 at
sample 2017 as shown in figure 7.
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Figure 7 - Degraded dissolved oxygen sensor.
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Figure 8 - Activation of the winning prototype.

Using the Kohonen net, the fault was detected 72 samples
(6 hours) later at 1st July 14:00 (Figure 8), and  the
dissolved oxygen variable was correctly identified as being
the faulty parameter. Figure 9 shows the reconstruction of
dissolved oxygen using the Kohonen net approach.
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Figure 9 - Reconstruction of dissolved oxygen.

After this pre-processing phase the data is ready to be
processed by the coagulant dosage model. The prediction
accuracy and confidence interval of the ANN are shown in
Figure 10 for the pre-processed data. This is to be
compared with the prediction results without pre-
processing as shown in Figure 11. These results clearly
demonstrate the robustness induced by the preprocessing
module in our system.
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Figure 10 - Actual (thick line) versus predicted (doted
line) coagulant dosage with ANN model and confidence

interval (thin line)
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Figure 11 - Actual (thick line) versus predicted (doted
line) coagulant dosage with ANN model without pre-

processing.

Conclusions

An integrated coagulant dosing system based on
unsupervised and supervised neural network models, as
well as various statistical techniques, has been described.
Experimental results using real data have demonstrated
the efficiency and soundness of this approach. Field
testing is currently underway to fully validate the system
before its widespread dissemination to other sites. The
main observed benefits have been treated water of a more
consistent high quality, together with improved security of
service, as the system will respond reliably and effectively
over long periods. Significant savings in coagulant usage
can be obtained in certain cases.

The performance of the network is obviously dependent on
the quality and completeness of data provided for system
training. Consequently, continuous updating of training
data during operational use is expected to improve the
performance of the system. This model, however, is only
based on the previous behavior of operators and jar-test
results. Further work is needed to develop a model taking
into account the dynamics of the process, and to predict
treated water parameters (mainly turbidity) at the output
of the clarification process.
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