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Abstract

A new method for constructing belief functions
from elicited expert opinions is proposed. It consists
in representing qualitatively expert opinions in terms
of preference relations. These relations are trans-
formed into constraints of an optimization problem
whose resolution allows the generation of the least
informative belief functions according to some un-
certainty measures. Mono-objective and Multiobjec-
tive optimization techniques are used to optimize, re-
spectively, one or simultaneously different uncertainty
measures.

1. Introduction

When dealing with real-world problems, we can
rarely avoid uncertainty. In general, uncertainty
emerges whenever information pertaining to the sit-
uation is deficient in some respect. It may be in-
complete, imprecise, contradictory, vague, unreliable,
fragmentary, or deficient in some other way [5].

In such situations and especially when data needed
for the considered problem are not all available, a way
to complement missing information is to use opinions
elicitated from experts in the problem domain, i.e.,
individuals who have special skills in a subject area
and are recognized as qualified to address the prob-
lem at hand. Expert opinions are statements, based
on knowledge and experience, that experts provide in
response to a given question [2]. Hence, the elicita-
tion of expert opinions may be defined as the process
of collecting and representing expert’s knowledge re-
garding the uncertainties of a problem.

For representing uncertainty, we should use appro-
priate frameworks such that probability theory, ev-
idence theory or possibility theory. In this paper,
we are interested in representing expert opinions in
the evidence theory framework and precisely in the
context of the Transferable Belief Model (TBM) [11].
In the last twenty years, this theory, also known as
theory of belief functions (BFs) or Dempster-Shafer
(DS) theory [9], has attracted considerable interest
as a rich and flexible framework for representing and
reasoning with imperfect information. The concept
of BFs subsumes those of probability and possibility
measures, making the theory very general. The TBM
is a recent variant of DS theory developed by Smets
which is considered to be a coherent and axiomati-
cally justified interpretation of BF theory.

For collecting expert opinions, we can proceed
quantitatively or qualitatively. In a quantitative
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manner, we may ask the expert to provide his opin-
ions as numbers according to the uncertainty theory
that will be used to represent them. This approach
supposes that the expert should be familiar enough
with the concepts of the theory framework to be able
to correctly quantify his judgments. This is not al-
ways obvious. An alternative way is to elicit expert
opinions qualitatively. This allows experts to express
their opinions in a natural way, while deferring the
use of numbers.

Recently, several authors have addressed the prob-
lem of eliciting qualitatively expert opinions and gen-
erating associated quantitative BFs [14], [3], [8].

In this paper, we propose a new method for con-
structing BFs from elicited expert opinions. Our
method consists in representing qualitatively expert
opinions in terms of preference relations that will be
transformed into constraints of an optimization prob-
lem. The resolution of this problem allows the gener-
ation of the least informative BF's according to some
uncertainty measures. Mono-objective and Multiob-
jective optimization techniques are used and different
optimization models are proposed and discussed.

The rest of this paper is structured as follows. Sec-
tion 2 summarizes the basic concepts of the TBM.
Several uncertainty measures are then recalled in Sec-
tion 3. In Section 4, we present some methods ad-
dressing the same problem considered in this paper.
The new method we propose for constructing BFs
from preference relations is presented in Section 5.
Section 6 illustrates our method by an example and
Section 7 concludes the paper.

2. The Transferable Belief Model

The Transferable Belief Model [11] is a subjective
and non probabilistic interpretation of BF theory.
The main concepts of the TBM are summarized here.
More details can be found in Ref. [11]. The TBM is
based on a two-level model: a credal level where be-
liefs are entertained, combined and updated, and a
pignistic level where beliefs are converted into prob-
abilities to make decisions.

2.1. Credal Level

Let Q) denote a finite set called the frame of dis-
cernment. A basic belief assignment (bba) or mass
function is a function m : 22 — [0, 1], verifying:

> m(4)=1. (1)
ACQ
m(A) measures the amount of belief that is exactly
committed to A. A bba m such that m(f) = 0 is said



to be normal. Notice that this condition is relaxed
in the TBM: the allocation of a positive mass to the
empty set (m(f)) > 0) is interpreted as a consequence
of the open-world assumption and can be viewed as
the amount of belief allocated to none of the propo-
sitions of Q. A bba verifying this condition is said to
be subnormal, or unnormalized. The subsets A of Q2
such that m(A) > 0 are called focal elements. Let
F(m) C 2% denote the set of focal elements of a mass
function m.

The belief function induced by m is a function bel:
2 — [0, 1], defined as:

bel(A) = > m(B), (2)

§£BCA

for all A C Q. bel(A) represents the amount of sup-
port given to A.

The plausibility function associated with a bba m
is a function pl: 2 — [0, 1], defined as:

pl(4) = > m(B). 3)

0#£BNA

pl(A) represents the total amount of potential specific
support that could be given to A.

The commonality function associated with a bba
m is a function q: 2% — [0, 1], defined as:

a(4) = > m(B), (4)
BDA

where A, B C Q.

Given two bba’s m; and ms defined over the same
frame of discernment 2 and induced by two distinct
pieces of information, we can combine them using the
conjunctive combination rule given by:

> mi(B)ma(C), (5

BNC=A

(m1 @mg) (A) =

for all A C Q.
If g1,q2 and ¢ ®qo are the commonality functions
associated, respectively, to mi, mo and m;®ms, we

have (0160:)(4) = q1(A).g5(4), (6)
for all A C Q.

2.2. Pignistic Level

When a decision must be made, the beliefs held at
the credal level induce a probability measure at the
pignistic level. Hence, a transformation from belief
functions to probability functions must be done. This
transformation is called the pignistic transformation.
Let m be a bba defined on 2, the probability function
induced by m at the pignistic level, denoted by BetP
and also defined on €2 is given by:

BetP(w) = > "lbﬁ), (7)
A:weA
for all w € 2 and where | 4| is the number of elements
of 2 in A. This probability function can be used in
order to make decisions using expected utility theory.
Its justification is based on rationality requirements
detailed in [11].

3. Uncertainty Measures

In the last twenty years, the question of measuring
uncertainty within the theories of reasoning under un-
certainty has been investigated [5]. Several measures
were proposed to quantify the information content or
the degree of uncertainty of a piece of information. In
this section we will focus on some of these measures
proposed within the theory of evidence.

Klir [5] noticed that in BFs theory two types of un-
certainty are expressed, which are nonspecificity or
imprecision, and discord or strife. Nonspecificity is
connected with sizes (cardinalities) of relevant sets of
alternatives while discord expresses conflicts among
the various sets of alternatives. Several nonospeci-
ficity and conflict measures were proposed. Some of
them are presented hereafter. For more details see
Ref. [5], [6], [7]-

3.1. Nonspecificity measures

Dubois and Prade [5] proposed to measure the non-
specificity of a normal bba by a function N defined

S m(A)log, [4]. (8)

A€F(m)

N(m) =

The bba m is all the most imprecise (least informa-
tive) that N(m) is large. The minimum (N(m) = 0)
is obtained when m is a Bayesian BF (focal elements
are singletons) and the maximum (N (m) = log, |2])
is reached when m is vacuous (m(Q2) = 1). The func-
tion N is a generalization of the Hartley function
(H(A) =log, |A| where A is a finite set).

Yager [5] also proposed a measure of nonspecificity

defined as:
J(im)=1- Z
AeF(m)

m(A)
ST )

3.2. Conflict measures

Conflict measures are considered as the gen-
eralized counterparts of the Shannon’s entropy
(= > weq P(w)logy p(w) where p is a probability mea-
sure). Yager, Hohle, and Klir and Ramer [5], [6], [7]
defined different conflict measures that may be ex-
pressed as follows:

Conflict(m) = — Y m(A)log, f(A), (10)

AeF(m)

where f is, respectively, pl, bel or BetP. These con-
flict measures are called, respectively, Dissonance (E),
Confusion (C) and Discord (D).

Smets [6] proposed a different conflict measure, de-
fined as:
I(m) = = ) logy q(A). (11)
ACQ
Notice that this measure is not a generalization of the

Shannon’s entropy and it exists only if m(2) > 0. An
interesting property of I(m) is that it is additive:

I(m1®m2) :I(m1)+1(m2), (12)

which is a consequence of equation (6).



3.3. Composite measures

Different global measures have been, respectively,
proposed by Lamata and Moral, Klir and Ramer, Pal,
Bezdek and Hemasinha, and Smets [5], [6], [7]. These
measures are defined, respectively, as:

G1(m) = E(m) + N(m), (13)
T(m) = D(m) + N(m), (14)
|A]
H(m) = m(A)logy | —= | » (15)
A;m) ° <m<A>)
EP(m) = - BetP(w)log, BetP(w).  (16)
weN

The interesting feature of H(m) is that it has a unique
maximum.

4. Previous Works

Several authors [14], [8], [3] have been interested in
eliciting qualitatively expert opinions and generating
associated quantitative BFs. In the sequel, some of
these works are summarized.

4.1. Wong and Lingras’ method

Wong and Lingras [14] proposed a method for
generating BFs from qualitative preference relations.
The idea behind this method is that given a pair of
propositions, an expert can usually express which of
the propositions is more likely to be true, or may
judge the two propositions equally likely to be true.
Hence, two binary relations - > and ~ called, re-
spectively, preference relation and indifference rela-
tion were defined on 2?. Given these binary rela-
tions, the objective of Wong and Lingras’ method is
to represent them by a BF, such that:

A-> B & bel(A) > bel(B), (17)

A~ B & bel(A) = bel(B), (18)
where A, B € 2.

Notice that this method does not require that the
expert supply the preference relations between all
pairs of propositions in 2% x 22, In fact, it allows
the generation of BF's using incomplete qualitative
preference relations. The issue is whether this BF
exists. It has been shown [13] that this depends on
the structure of the preference relation - >. In fact,
such BF exist when - > satisfies the following axioms:
1) Asymmetry: A-> B = —=(B - > A).
2) Negative Transitivity: —(A- > B)
C)=-(4->0).

3) Dominance: For all AAB€2? ADB= A > B
or A~ B.

4) Partial monotonicity: For all A, B,C € 2 if A D
Band ANC #0,then A - > B = (AUC) - > (BUC).
5) Nontriviality: Q - > ().

Since the preference relation - > is asymmetric and
negatively transitive, - > is a weak order [12], [13]. Tt
should be noted that Axioms 1 and 2 imply that - > is
transitive (if A- > B and B- > C = A- > (). Given
a preference relation - > satisfying axioms 1 and 2, It
has also been shown [13] that the binary relation ~
defined by A ~ B < (—=(4- > B),—~(B- > A)) is an
equivalence relation on 2% i.e., it is reflexive (A ~ A),

and -(B- >

symmetric (if A ~ B = B ~ A) and transitive (if
A~Band B~C=A~C).

Let S = - > U ~, defined on 2. Notice that since
- > is a weak order and ~ is an equivalence relation,
S is a complete preorder [12].

To generate a BF from such preference relations,
Wong and Lingras proceeded in two steps: Determine
the focal elements, and Compute the bba. The first
step consists in considering that all the propositions
that appear in the preference relations are potential
focal sets. Then, some of them are eliminated accord-
ing to the condition: if A ~ B for some B C A, then
A is not a focal element. The second step enables
the generation of a bba from the preference relations
through the resolution of the system of equalities and
inequalities defined by equations (17) and (18) using a
perceptron algorithm. It should be noted that several
BF's may satisfy this equality and inequality system.
However, the perceptron algorithm selects arbitrary
only one of them.

Moreover, Wong and Lingras suggest that the ex-
pert may provide different levels of preference rela-
tions, depending on how much more likely a propo-
sition is compared to another proposition. Their
method allows also the use of additional numeric con-
straints.

It has been noted [3] that this method does not ad-
dress the issue of inconsistency in the pairwise com-
parisons. In fact, the expert may provide inconsistent
preference relations (A- > B, B- > C, and C- > A).

4.2.Bryson et al.” method

Bryson, et al. [3] proposed a method called “Qual-
itative discrimination process” (QDP) for generat-
ing belief functions from qualitative preferences. The
QDP was originally developed for multicriteria qual-
itative scoring and assigning relevant numeric esti-
mates in decision making. Then, it was extended to
the problem of generating belief functions for eviden-
tial reasoning in expert and intelligent decision sup-
port systems.

The QDP is a multi-step process. First, it involves
a qualitative scoring step in which the expert assign
propositions first into a Broad category bucket, then
to a corresponding Intermediate bucket, and finally
to a corresponding Narrow category bucket. The
qualitative scoring is done using a table where each
Broad category is a linguistic quantifier in the sense
of Parsons [3], [8]. Hence, it allows to the expert to
progressively refine the qualitative distinctions in the
strength of his beliefs in the propositions. In the sec-
ond step, the qualitative scoring table from step 1 is
used to identify and remove non-focal propositions by
determining if the expert is indifferent in his strength
of belief of any propositions and their subsets in the
same or lower Narrow category bucket. It should be
noted that this step is consistent with Wong and Lin-
gras’ approach presented in the previous section. Step
3 is called “imprecise pairwise comparisons” because
the expert is required to provide numeric intervals to
express his beliefs on the relative truthfulness of the
propositions. In step 4, the consistency of the belief



information provided by the expert is checked. Then,
the belief function is generated in step 5 by providing
a bba interval for each focal element. Finally, in step
6, the expert examines the generated BF and stops
the QDP if it is acceptable, otherwise the process is
repeated.

It should be noted that the QDP, in spite of be-
ing proposed as a qualitative approach for generating
BFs from qualitative information, involves numeric
intervals to provide them.

5. Constructing Belief Functions from
Qualitative Preferences

In this section we propose a new method for con-
structing BF's from elicited expert opinions expressed
in terms of qualitative preference relations. Our
method allows the generation of optimized BFs in the
sense of one or several uncertainty measures.

Expressing expert opinions in terms of qualitative
relations as proposed by Wong and Lingras [14] seems
to be very attractive. In fact, it is natural and quite
easy to make pairwise comparisons between propo-
sitions of a frame of discernment modeling a certain
problem. Convinced of this motivation, we also pro-
pose, in our method, to use the preference and the
indifference relations (- >,~) defined by Wong and
Lingras to express expert judgments. We assume also
that - > satisfies axioms (1)-(5) introduced in Section
4.1. Given such binary relations, we propose to con-
vert them into constraints of an optimization problem
whose resolution allows the generation of optimized
BFs.

A crucial step for generating BFs before solving
such optimization problem is to determine BF focal
elements. We propose to consider that all the propo-
sitions existing in the preference and the indifference
relations expressed by the expert are potential focal
elements. Furthermore, we assume that 2 should al-
ways be considered as a potential focal element, which
seems to us to be more coherent with BF theory.

5.1. Mono-objective optimization model

Conventionally, a constrained mono-objective opti-
mization problem has the following form:
minimize / maximize criterion
subject to
constraints
The criterion is also called the objective function.
In our method, we propose to maximize an uncer-
tainty measure (UM) (or entropy measure) of the BF
to be generated. Hence, we generate the least infor-
mative or the most uncertain BF's as it is commanded
by the Least Commitment Principle [10], also referred
to as the principle of Maximum Uncertainty [5], which
play a role similar to the Maximum Entropy principle
in Bayesian theory.
The constraints are derived from the expert pref-
erences, as defined in equations (17) and (18). They
have the following form:

A-> B & bel(A) —bel(B) > ¢ (19)
A~ B —e <bel(A) —bel(B) <e (20)

where € > 0 is considered to be the smallest gap that
the expert may discern between the degrees of be-
lief in two propositions A and B. Note that € is a
constant specified by the expert before beginning the
optimization process. Consequently, our constrained
optimization problem will be formulated as follows:
Model 1

Max,, UM (m)

s.t.

bel(A) —bel(B) > ¢ VA >B
bel(A) —bel(B) < e VA~DB

bel(A) —bel(B) > —e VA~DB

> acrm M(A) =1;m(4) >0 VACQ; m(@? =0

where the first, second and third constraints of
Model 1 are derived from equations (19) and (20),
which represent the quantitative constraints corre-
sponding to the qualitative preference relations. The
fourth constraint ensures that the total amount of
masses allocated to the focal elements of the bba is
equal to one, the fifth constraint specifies that masses
are nonnegative and the last constraint imposes that
the bba to be generated must be normalized.

Therefore, considering the problem of generating
quantitative BFs from qualitative preference relations
as an optimization problem, allows us to integrate the
issue of quality of the constructed BFs in our method.
It should be noted that none of the methods pre-
sented in Section 4 address this issue. Furthermore,
our method addresses the inconsistency of the pref-
erence relations provided by the expert. In fact, if
these relations are consistent, then the above con-
strained optimization problem is feasible. Otherwise
no solutions will be found. Thus, the expert may be
guided to reformulate his preferences.

In some situations, we can fail to attain a global
maximum or also they may be several maxima. In
other words, there are several BF's that maximize the
optimized UM. Although this model allows the con-
struction of BF's from qualitative preference relations,
we consider that having only these preferences con-
stitute too weak information to generate BFs.

5.2. Multiobjective optimization mod-
els

As an alternative formulation of the BF generation
problem, we propose to use multiobjective optimiza-
tion techniques [4]. One of the well-known multi-
objective methods is goal programming. This model
allows to take into account simultaneously several ob-
jectives in a problem for choosing the most satisfac-
tory solution within a set of feasible solutions [1].

The idea behind the use of goal programming to
formulate our problem is to be able to integrate ad-
ditional information about the BFs to be generated.
We may do this by asking the expert to give besides
the preference relations, his certainty degree for the
considered problem. Hence, we consider the certainty
degree of the expert as a goal to be reached and for-
mulate the problem by the following goal program-
ming model:

Model 2
Minm,(;ﬂ(;f ((5+ + (S_)



s.t.

UM(m)—0T+6" =G

bel(A) —bel(B) >e VA > B

bel(A) —bel(B)<e YVA~B

bel(A) —bel(B) > —e VA~ B

> acrm MA) =1, m(A) >0 VA C QO m(0) =0
where 1t and 6~ indicate, respectively, positive

and negative deviations of the achievement level from

aspirated level [1]. This model allows us to restrict

the search space to the proximity of the goal G (level

of aspiration) associated with the objective (UM).

Notice that the expert may provide his certainty de-

gree quantitatively in terms of numbers or qualita-

tively by selecting in a linguistic scale. It should be

noted that the goal G may be attained in several

points which means that there are several BFs are

solutions of Model 2.

To overcome the problem encountered with the two
previous models, we propose to integrate in the objec-
tive function of Model 2, the nonspecificity measure.
Hence, we optimize simultaneously the two UMs ac-
cording to the following model:

Model 3

Minm,é*ﬁ* (5+ + 6_) - N(m)

s.t.

UM(m)—6t+6 =G

bel(A) —bel(B) >e VA > B

bel(A) —bel(B)<e VA~ B

bel(A) — bel(B )Z—E VA~B

2 aerm M(A) =1;m(A) >0 VAC Q& m(0) =0
6T, >0

Solving this model allows us to generate a trade-
off solution. The BF constructed is the least specific
and the least informative BF in the neighborhood of
G. Notice that this model may be transformed, de-
pending on the problem at hand, to optimize simulta-
neously more than two UMs by including additional
constraints for these UM and their associated goals.

We may also propose a different goal programming
model allowing us to construct BFs while tolerat-
ing inconsistency of some preference relations if it is
needed. This is done by relaxing, in the formulated
problem, the constraints derived from these relations.
So, we introduce slack variables in the constraints to
be relaxed so that we accept, in some situations, to
violate them. Hence, the problem is formulated as
follows:

Model 4
Mtin 116 +67) +naB +oas + Vg
S.t.

51_ +51_ = G1

UM (m) —

UM(m )—6]++(5*—G
bel(A) — bel(B) +nap >¢ VA >B
bel(A) — bel(B) <e+@ap YA~B
bel(A) — bel(B) + ¢lyp > YA~ B
Yacrmm MA) =1 m(A) >0 VACY;
m(0) = 0; 51 07 AR AR Pap > 0;
ie{l,-
Notice that this model allows the optimization of
several UMs. N(m) may also be considered in the
objective function as it was in Model 3.

6. Example

Let us consider the example proposed by Bryson
et al. [3]. The example involves a medical prob-
lem in which the observed symptoms from a patient
suggest the possibility of five different subsets of the
following five diseases: gastric cancer (gc), peptic ul-
cer (pu), functional disorder (fd), and gallstones (gs).
Let Q = {gc, pu, fd, gs}. The propositions of interest
are: P, = {gc}, P» = {gc,pu}, Ps = {gc,pu, fd},
Py = {gs, fd} and P5 = {gc,pu, gs}.

According to the qualitative scoring done by the
medical analyst presented in [3], we can derive the
following preference relations:

Ps->P P3>P P->P

P->P, Ps~DP; P; ~ Py
Given these preference relations, we use the new
method we proposed in the previous section to gener-
ate associated BFs. First, we should identify the po-
tential focal elements of the BF. As suggested above,
we have F(m) = {Py, P2, P3, Py, P5,Q2}. Then, we
formulate the optimization problem according to one
of the optimization models proposed. Notice that the
choice of the optimization model to be used depends
on the problem at hand and the expert objectives.

Let us formulate the problem according to Model 1.
Assume that ¢ = 0.01. Suppose that we are maximiz-
ing, respectively, the measure of total uncertainty H
(eq. 15), the nonspecificity measure N (eq. 8)and the
pignistic entropy EP (eq. 16). The resolution of the
formulated problems produces, respectively, the bbas

1 (UM =H), mg (UM = N) and mg (UM = EP)

(see Table 1).
Table 1.Generated BFs

| | A [ B [ B P B[ Q]
my 0.160 | 0.220 | 0.010 | 0.151 | 0.020 | 0.439
bel; | 0.160 | 0.380 | 0.390 | 0.151 | 0.400 | 1.000
mo | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 | 0.980
bel, | 0.010 | 0.020 | 0.020 | 0.000 | 0.020 | 1.000
ms3 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 | 0.980
bels | 0.010 | 0.020 | 0.020 | 0.000 | 0.020 | 1.000
my | 0.160 | 0.219 | 0.010 | 0.150 | 0.020 | 0.441
bely | 0.160 | 0.379 | 0.389 | 0.150 | 0.399 | 1.000
ms | 0.247 | 0.242 | 0.010 | 0.237 | 0.020 | 0.244
bels | 0.247 | 0.489 | 0.499 | 0.237 | 0.509 | 1.000
me 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | 0.990
belg | 0.000 | 0.010 | 0.001 | 0.000 | 0.010 | 1.000
mw | 0.500 | 0.250 | 0.000 | 0.250 | 0.000 | 0.000
bely | 0.500 | 0.750 | 0.750 | 0.250 | 0.750 | 1.000
mp | 0.400 | 0.171 | 0.000 | 0.286 | 0.143 | 0.000
belg | 0.400 | 0.571 | 0.571 | 0.286 | 0.714 | 1.000

Notice that, in the three cases, P; and Ps; have very
small (close to €) or null masses. So may conclude
that they are non-focal elements or elements that do
not have a considerable effect for the considered prob-
lem. This proves that superfluous propositions do
not pose a problem to our method while construct-
ing BFs from preference relations (Wong and Lin-
gras have also done the same remark for their method
[13]). This could be considered as a good feature for
our method as we do not need to determine the focal



elements of the BFs before proceeding to their com-
putation as it was proposed in the two methods pre-
sented in Section 4. Consequently, we may say that
the quantitative BF's constructed represent “exactly”
the qualitative preference relations provided by the
expert.

If we use Wong and Lingras’ method to generate
BF's for this example, Pj is eliminated from the list
of potential focal elements in the first step since we
have P; ~ P, and P, C P3. In the second step, Ps is
also eliminated when simplifying the inequality ma-
trix using the Gaussian elimination technique. This
can be explained as a consequence of the transitiv-
ity of the indifference relation: Ps ~ P3 and P3 ~ Ps
= P5 ~ Py, and as P, C P5. Let my (see Table 1) be
the BF generated using Wong and Lingras’ method.

Let mp (see Table 1) be the BF generated by
Bryson et al.’” [3]. It should be noted that the re-
lation P; ~ P3 ~ P, exists in the qualitative scoring
table they proposed for this example. This relation
has been used to conclude that P5; is not a focal el-
ement. However, they do not eliminate P; and con-
sider it as a focal element. This seems to us am-
biguous because they do not take into account the
transitivity of the relation ~. Consequently, positive
interval masses was affected to Ps. This shows that
this method do not discover superfluous propositions
while generating BFs which may be considered as a
major drawback.

Let us reformulate this problem, according to the
multiobjective models, Model 2 and Model 3, pro-
posed above. Suppose that the certainty degree of the
expert is equal to 3.5 (G = 3.5). Suppose that UM
optimized is H. Assume that ¢ = 0.01. The resolu-
tion of the formulated models produces, respectively,
the bbas my4 with 6= = 0.187 and ms with 6= = 0.325
(see Table 1). Notice that, in the two problems, the
goal is underachieved as 6~ > 0.

Finally, let us formulate the problem according to
Model 4. Assume that ¢ = 0.01.Suppose that the UM
optimized is H with G1 = 2 and that we accept to
relax the first constraint, i.e., bel(P;)-bel(Py)—d5 +
d, = G2. Let mg be the generated BF (see Table 1)
such that 67 = 0.707 and &5 = 0.510.

7. Conclusion

A new method for constructing BFs from elicited
expert opinions expressed in terms of qualitative pref-
erence relations has been defined. Our method con-
sists in transforming the preference relations provided
by the expert into constraints of an optimization
problem involving one or several uncertainty mea-
sures. Mono-objective and Multiobjective optimiza-
tion techniques were used to optimize, respectively,
one or simultanously different uncertainty measures.
Our method allows the construction of the least infor-
mative BFs according to some uncertainty measures.
Different constrained optimization models were pro-
posed and discussed. Our method had also been il-
lustrated by an example. The BFs constructed was
compared with those generated by previous methods
adressing the same problem considerd in this paper.

Further work is under way to extend our method for
combining multi-expert qualitative opinions.
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