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F-60205 Compìegne Cedex France

astride.aregui@hds.utc.fr

Thierry Denoeux
Universit́e de Technologie de Compiègne
UMR CNRS 6599 Heudiasyc, BP 20529
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Abstract

The problem of testing whether an ob-
servation may be deemed to corre-
spond to a given model is a difficult
issue. Variants of the problem have
been widely studied in Statistics and
Pattern Recognition. We build a solu-
tion in the belief function framework
and demonstrate its advantages over
other approaches in situations where
the available information is particularly
scarce.

Keywords: Belief functions, novelty
detection, outliers detection, one-class
classification, hypothesis test.

1 Introduction

In industrial process plants, recent regulation has
led to the record of numerous variables at many
time points with the purpose of providing infor-
mation for thea posteriori analysis of possible
failures. Such data constitute a very rich source
of information that may also be exploited on-line
to detect or prevent faults in the system. Unfor-
tunately, it is often the case that the normal state
of the system is well represented by the available
data while the other states are not. As a conse-
quence, it is seldom possible to study all possi-
ble states of the system. However, it is most of
the time sufficient to refer to a particular state (a
model representative of “normality” for instance)
and to check continuously whether the data are
departing from it.

This problem consists in assessing to what extent
an observation may be deemed to correspond to a
given model. The issue is cross-disciplinary: vari-
ants of it have been studied under different names,
such as novelty detection, one-class classification,
outliers detection [5], pure significance tests [1],
[12], single hypothesis tests [4] ...

Let T be a statistic varying overT , represen-
tative of the state of a system at a given time.
Let Ω = {ω0, ω1} be the set of possible states
of the system. The problem under consideration
is the assessment of the hypothesis that a system
is in classω0 when the only available informa-
tion about the system concerns the distribution of
statisticT conditioned onω0.

In this paper, our objective is to sketch the out-
lines of a solution to this problem, in the belief
function framework.

The reader will first be reminded of the theory of
belief functions, both in the discrete and continu-
ous cases. In a second part, the Generalized Bayes
Theorem will be introduced, and the associated
solution will be described. In Part III, we will
show how to alter the reasoning process in order
to take additional information into account. Part
IV provides examples both for the discrete and
continuous cases and Part V concludes the paper.

2 The Transferable Belief Model

The approach to belief functions used throughout
this paper is Smets’s Transferable Belief Model
(TBM) [11, 8].



2.1 Discrete Case

2.1.1 The Foundations

Given some evidential corpus EC, the knowledge
held by a given agent at a given time over the ac-
tual value of variableT can be modeled by a so
called belief structure. The basic belief assign-
ment(bba)mT [EC] is a function that associates,
to each subsetS of T , the part of the agent’s be-
lief allocated to the hypothesis thatT takes some
value inS [3, 11, 8]. BbamT [EC], denotedm
where there is no ambiguity, is a mapping from
2T to [0,1] and the following property necessar-
ily holds:

∑

S⊆T

mT [EC](S) = 1. (1)

Equivalent representations ofm include:

• thebelief function, representing the amount
of belief in S that is entirely justified by the
evidential corpus EC:

bel(S) =
∑

∅,A⊆S

m(A), ∀S ⊆ T (2)

• and theplausibility function, corresponding
to the amount of belief that is not in contra-
diction withS given EC:

pl =
∑

A∩S,∅

m(A), ∀S ⊆ T (3)

The absence of knowledge is easily represented
in the TBM framework by the so calledvacuous
belief functiondefined by :m(T ) = 1, and equiv-
alently pl(S) = 1,∀S ⊆ T , S , ∅.

2.1.2 Combination of Information

Two distinct [10] pieces of evidencem1 andm2

given by two different sources may be combined
according to the conjunctive combination rule :

m12(S) =
(

m1 ∩©m2

)

(S)

=

∑

A∩B=S

m1(A)m2(B),∀S ⊆ T . (4)

Note that a necessary condition for using this rule
is the distinctness of the two pieces of evidence
m1 andm2 [7, 10].

2.1.3 Marginalization and Vacuous
Extension

From now on, we will work on the product space
T × Ω. T is a random variable varying overT ,
representative of the state of a system at a given
time. Ω = {ω0, . . . , ωK} is a finite set describ-
ing all possible states of the system. Theωi are
termedclasses, and they are mutually exclusive.

Let mT×Ω denote a bba defined on the Cartesian
productT ×Ω of the two variablesT andω. The
marginal bba mT×Ω↓T onT is defined, for allS ⊆
T as:

mT×Ω↓T (S) =
∑

{A⊆(T×Ω)|Proj(A↓T )=S }

mT×Ω(A),

(5)
where Proj(A ↓ T ) denotes the projection ofA
ontoT :

Proj(A ↓ T ) = {t ∈ T |∃ω ∈ Ω, (t, ω) ∈ A) } .
(6)

The inverse operation is thevacuous extension
[6]. Let mΩ be a bba onΩ. Its vacuous exten-
sion onT ×Ω is defined as:

mΩ↑T×Ω(A) =



















mΩ(B)
i f A = B× T for someB ⊆ Ω
0 otherwise.

(7)

2.1.4 Conditioning

When a given hypothesish ⊆ Ω is ascertained,
the beliefs are altered to reflect the new state of
knowledge. The conditioning operation consists
in combining masses conjunctively with a cate-
gorical1 bba supporting hypothesish. Hence, the
mass of belief allocated toS ⊆ T knowing that
hypothesish ⊆ Ω holds, i.e.mΩh (h) = 1, is:

mT [h] =
(

mT×Ω ∩©mΩ↑T×Ωh

)↓T
(8)

Now let mT [h] be the bba onT conditioned with
respect toh ⊆ Ω. Assume we now learnh finally
does not necessarily hold and all previous states
of knowledge have been lost. Masses associated
with any non-empty setS of T are then trans-
ferred onto (S×h)∪ (T × (Ω \h)). Thebalooning

1A categorical bba mis a bba that gives total support to
a single hypothesish i.e. m(h) = 1.



extensionprocess [7], opposite of the condition-
ing operation, thus yields to:

mT [h]⇑(T×Ω)(A) =


















mT [h](S)
i f A = (S × h) ∪ (T × (Ω \ h)),
0 otherwise.

(9)

2.2 Continuous Case

The extension of the above described tools to the
continuous case is fairly straightforward [9].

Let us consider a non empty interval inR denoted
[a,b], a < b, and let I[a,b] be the set of closed
intervals in [a,b]. A convenient representation of
I[a,b] is the triangle shown in Figure 1a. In effect,
each point of coordinates (t, t) in this triangle cor-
responds to a unique subintervalt = [t; t] ∈ I[a,b]

and vice versa.

Any functionmI[a,b] : I[a,b] → [0,∞[ verifying:

∫ b

a

∫ b

x
mI[a,b] (x, y)dydx≤ 1, (10)

is abasic belief density (bbd)on I[a,b] . The term
bbd is used instead of bba (or mass) in order to ac-
count for the fact thatm is now continuous. As a
convention, the one’s complement of integral (10)
is allocated to the empty set.

The corresponding belief functionbel is the sum
of all masses assigned to intervals included in [t, t]
(Figure 1a).

belI[a,b] ([t; t]) =
∫ t

t

∫ t

x
mI[a,b] (x, y)dydx (11)

Similarly, the associated plausibility functionpl is
the sum of all masses allocated to intervals whose
intersection with [t; t] is non-empty (Figure 1b).
Hence,

plI[a,b] ([t; t]) =
∫ t

a

∫ b

t∨x
mI[a,b] (x, y)dydx (12)

It can be shown that the restriction to closed inter-
vals may be relaxed, the whole real lineR being
used instead.

(a) (b)

Figure 1: The belief and plausibility functions
are defined as integrals of the bbd defined on the
shaded area of triangle (a) and (b) respectively.

3 The Generalized Bayes Theorem

The Generalized Bayes’ Theorem (GBT) was in-
troduced by Smets [7]. It generalizes Bayes’s the-
orem in that, whenever the belief functions are
Bayesian, and we also have a Bayesian a priori on
the classes, the two theorems are exactly equiva-
lent. However, the power of the GBT lies in the
fact that it does not require any prior knowledge
onΩ (for instance, no prior class probabilities).

3.1 Definition of the GBT

Let us suppose we know all the conditional bbas
mT [ωk], k = 0, . . . ,n, we have no prior knowl-
edge onΩ, and we observet∗ ⊆ T . From that,
we would like to derive our belief in the fact that
the system is in a particular stateωi , knowing
the value of statisticT. In other words, we seek
mΩ[t∗]. The GBT allows us to find the answer in
three steps.

We shall first calculate the ballooning extension
of each of the functionsmT [ωk], that is to say,
“de-condition” them in order to obtain a belief on
T × Ω. The obtained bbasmT [ωk]⇑T×Ω are dis-
tinct, as the originalmT [ωk] were distinct. Hence,
the mT [ωk]⇑T×Ω can be combined by applying
the conjunctive combination rule: this will be
the second step. We now have a global and un-
conditioned belief function onT ×Ω. Condition-
ing with respect tot∗ returns the belief function
we need, namelymΩ[t∗]. The GBT may then be



defined as follows:

mΩ[t∗] =
(

∩©K
k=0mT [ωk]

⇑T×Ω
)

[t∗]. (13)

The equivalent formulation in terms of plausibil-
ity functions is sometimes easier to manipulate:

plΩ[t∗](A) = 1−
∏

ωk∈A

(1− plT [ωk](t∗)),

∀A ⊆ Ω (14)

3.2 The problem (P0) at hand

Now let us consider the case (P0) whereΩ =
{ω0, ω1} and we only know the behaviour ofT
whenω0 holds. In the sequel,plT0 will stand for
pl[ω0]T and plT1 for pl[ω1]T ; mT0 and mT1 will
(respectively) be the associated bbas.

Contruction of mT0 : This belief function onT
under hypothesisω0 may have been elicited from
an expert, or it may have been built from a set of
data collected when we took for certain thatω0

was true. This belief function may or may not be
a probability function.

If the information at hand is a belief function, no
further processing is required before applying the
GBT. If the available information takes the form
of a data set, it is possible to buildthe least com-
mitted belief function(LCBF) fulfilling the con-
straints provided by the available information [2].

Solution: We will derive the solution of prob-
lem (P0) without focusing on how themTk were
obtained.

As we know nothing on the behaviour ofT when
ω1 holds, the information we have at our disposal
in this respect can be modeled with the vacuous
belief function:

plT1 (t∗) = plΩ[t∗] ({ω1}) = 1 (15)

On the other hand, we do knowmT0 . The
plausibility-related form of the GBT [11] thus
yields to:

plΩ[t∗] ({ω0}) = mΩ[t∗] ({ω0}) +mΩ[t∗](Ω) = plT0 (t∗)
plΩ[t∗] ({ω1}) = mΩ[t∗] ({ω1}) +mΩ[t∗](Ω) = 1
mΩ[t∗] ({ω0}) +mΩ[t∗] ({ω1}) +mΩ[t∗] (Ω) = 1.

(16)

Hence, from (15) and (16),

mΩ[t∗]({ω0}) = 0 (17a)

mΩ[t∗]({ω1}) = 1− plT0 (t∗) (17b)

mΩ[t∗](Ω) = plT0 (t∗). (17c)

Interpretation: If the value ofT is completely
plausible assumingω0 to be true (plT0 (t∗) = 1), it
is not possible to say whether the system is in state
ω0 or in any other state that yields similar values
of T. Thus, no value ofT ever supportsω0 only,
leading to (17a). Moreover, the nearer the values
of T to that obtained underω0, the more plausible
is Ω, hence (17c). Finally, the more the value of
T differs from that obtained whenω0 holds, the
greater the belief we have inω1: from that we get
(17b).

3.3 Continuous Case

The same reasoning holds for the continuous case,
and equations (17) remain valid. A drawback of
this method is that, in the specific case whereplT0
is continuous and Bayesian, andt∗ is a singleton,
then pl(t∗) equals zero. Equation (17b) thus be-
comes:

mΩ[t∗]({ω1}) = 1− plT0 (t∗) = 1, (18)

and the conclusion is that we always assign full
belief toω1, without taking the value oft∗ into ac-
count. There is a paradox there, but we argue that
the problem is not in formula (17). In effect, when
the belief aboutT is represented by a probability
density function, it does not really make sense to
assume thatpl(t) = 0 for all t ⊆ T . As an alter-
native, it seems more reasonable to use the plau-
sibility function whose pignistic transform equals
p [9].

4 Introduction of a Priori Information

We considered up to now the case were the only
available information is related toω0. Neverthe-
less, some sort of a priori information is quite
often available aboutω1, though it may be very
weak. As any piece of knowledge can be turned
into a belief function, no matter how incomplete
or scarce it might be, there is no reason not to use
it when it is available. LetT be an ordered set:



T = {t(i), i∈{1,...,n} : t(1) ≤ t(2) ≤ . . . ≤ t(n)}. Let us
suppose we know how large variableT will be un-
der hypothesisω1 in comparison with how large it
is under hypothesisω0; e.g. we think thatT tends
to be larger whenω1 holds than whenω0 is true.
This statement may be turned into the following
constraint:

pl1(T ≤ t) ≤ pl0(T ≤ t), ∀i ∈ 1, ...n. (19)

Note that (19) generalizes the stochastic inequal-
ity in that, when bothpl0 and pl1 are probabili-
ties, it turns into stochastic inequality. Property
(19) will thus be termedcognitive inequality.

4.1 Discrete Case

The idea is to calculate the least committed belief
functionmT1 that satisfies requirement (19) and to
combine it withmT0 for the purpose of calculating
mΩ[t∗].

4.1.1 Construction ofmT1

The least committed bba satisfying (19) corre-
sponds to a maximization of plausibilities subject
to constraints (19), and can easily be built from
mT0 (t). For all i ∈ {1, . . . ,n}, plT1 (t(1), . . . t(i)) =
plT0 (t(1), . . . , t(i)) implies:

mT1 (t(i), . . . , t(n)) =

plT0 (t(1), . . . , t(i)) − plT0 (t(1), . . . , t(i−1)). (20)

The idea is to try and get an equality for relation
(19), and to deduce bbam1 from this. Deriving
equation (19) for eachi successively leads to the
above result.

Note thatm1 is a consonant bba. Additionnally, if
pl0 is Bayesian,pl1 is its cumulated distribution
function.

It is possible to calculatemT1 directly frommT0 :

mT1 (T ) = plT0 (t(1)) =
∑

t(1)∈S

mT0 (S),

∀i > 1,
mT1 (t(i), . . . , t(n)) = plT0 (t(1), . . . , t(i)) − plT0 (t(1), . . . , t(i−1))

=

∑

∃t( j)≤t(i)
t( j)∈S

mT0 (S) −
∑

∃t( j)≤t(i−1)
t( j)∈S

mT0 (S)

=

∑

t(i)∈S
∀ j<i, t( j)+S

mT0 (S)

=

∑

S⊆{t(i+1),...,t(n)}

mT0 ({t(i)} ∪ S)

and
mT1 (t(n)) = mT0 (tn).

(21)
Thus,mT1 may be obtained frommT0 by transfer-
ring each massmT0 (S) onto{min(S), . . . , t(n)}.

4.1.2 Combination with mT
0

If we follow the reasoning of Section 3, we should
now apply the GBT tomT0 andmT1 in order to ob-
tain mΩ[t]. However, remember that a necessary
condition for the application of the GBT is the in-
dependence ofmT0 andmT1 . It happens that, as we
built mT1 frommT0 , they are not independent. Con-
sequently, the conjunctive combination rule can-
not be applied here. We need to buildmT×Ω such
that:

mT×Ω[{ω0} × T ]↓T = mT0 (22)

andmT×Ω[{ω1} × T ]↓T = mT1 (23)

Let F1 to FK be the focal elements ofmT0 . To
eachFk is associatedF′k, focal element ofmT1 ,
such that:F′k = [minti∈Fkti , . . . , t(n)]. Thus,

mT×Ω
(

Fk × {ω0} ∪ F′k × {ω1}
)

= mT0 (Fk). (24)

4.1.3 Conditioning with respect tot∗ ⊆ T

Note that|t∗| may be greater than 1 and thatt∗ is
not necessarily an interval. The following rela-
tions hold:

plΩ[t∗](ω0) = plT0 (t∗)
plΩ[t∗](ω1) = plT0 (t(1), . . . ,max(t∗))
plΩ[t∗](∅) = 1− plT0 (t(1), . . . ,max(t∗))

(25)



Hence,

mΩ[t∗](ω0) = 0
mΩ[t∗](ω1) = plT0 (t(1), . . . ,max(t∗)) − plT0 (t∗)
mΩ[t∗](Ω) = plT0 (t∗)
mΩ[t∗](∅) = 1− plT0 (t(1), . . . ,max(t∗))

(26)
This end result may be easily interpreted:

• When the values ofT are similar to those ob-
tained under hypothesisω0, nothing can be
said about them being from one class or the
other, and the belief is thus spread ontoΩ.

• When the values ofT are smaller than those
we get whenω0 holds, there is an inconsis-
tency with our original information accord-
ing to which, when data are departing from
ω0, they should tend to be bigger than when
ω0 is true. The corresponding amount of be-
lief is thus allocated to the empty set, reflect-
ing this conflict.

• WhenT gets bigger than its usual values un-
derω0, then our belief turns toω1, in agree-
ment with the above piece of information.

• Finally, no value ofT ever supportsω0 only.

4.2 Continuous Case

The solution exposed in the previous paragraph
easily extends to the continuous case:Ω remains
discrete and still equals{ω0, ω1}, T = R, andmT0
is a continuous bbd onR.

Our information according to which the values
of T tend to be bigger under hypothesisω1 than
whenω0 holds imposes that :

plT1 ((−∞; t]) ≤ plT0 ((−∞; t]), ∀t ∈ R. (27)

From this, we deduce the general expression of
mT1 . The equalityplT1 ((−∞; t]) = plT0 ((−∞; t]) is
actually required for allt in R, with analogy to
(21), leading to:

mT1 ([t;+∞)) =

+∞
∫

t
mT0 ([t; v])dv, (28)

Subsequently, massesmT1 are all allocated to in-
tervals of the form [u;+∞), with u ∈ (−∞; t]. As

a result, it may be shown that requirement (27) is
met:

plT1 ((−∞; t]) =
∫ t

−∞

mT1 ([u;+∞))du

=

∫ t

−∞

∫ ∞

t
mT0 ([u; v])dudv

= plT0 ((−∞; t]).
(29)

Note that it can also easily be shown that
plT1 ([a; b]) = plT0 ((−∞; b]). In the probabilis-
tic case,pl([a; b]) is the cumulated distribution
function of plT0 ((−∞; b]), as was already demon-
strated in the discrete case.

The construction of the final solution, via the form
of combination described in§5.1 and condition-
ing with respect to a subsett∗ yields the same re-
sult as in the discrete case, with similar interpre-
tation:

mΩ[t∗](ω0) = 0
mΩ[t∗](ω1) = plT0 (−∞, sup(t∗)) − plT0 (t∗)
mΩ[t∗](Ω) = plT0 (t∗)
mΩ[t∗](∅) = 1− plT0 (−∞, sup(t∗))

(30)
whereplT0 (−∞, . . . , sup(t∗)) = pl1(t∗).

Note that, if pl0 is Bayesian we may end up al-
ways deciding in favour ofω1, but the remark of
§3.3 still holds. If our information with respect to
ω0 is a probability, then we should use the belief
function whose pignistic transform is this prob-
ability, and not the belief function whose bba is
this probability.

5 Example

Let us consider a plant for which the set of possi-
ble states isΩ = {ω0, ω1}. Hypothesisω0 repre-
sents the fact that the plant is working in secure
conditions (also termed safe or nominal mode)
andω1 represents the fact that it is not, all types of
failure taken together. An observed variableT is
assumed to carry information regarding the state
of the plant. We know the distribution ofT when
ω0 is true, but we know nothing about the distri-
bution of T underω1. We observe a value ofT
equal tot∗ at instanti. Now, knowingt∗, what is
our belief that the plant is in a safe mode ? We
will derive the solutions of this problem, with and
without a priori knowledge onω1, for an example
wheremT0 is continuous.



5.1 Construction ofmT0

Let us suppose we dispose of a great number
number of data, allowing us to estimate the mean
and variance of the distribution with sufficient
precision, or we have elicited these first two mo-
ments from an expert’s opinion. On a normality
test, we decide to use a Gaussian model for the
distribution. The result of the estimation permits
to conclude that the expert’s bet onT under hy-
pothesisω0 would follow a normal distribution
of meanµ = 4 and varianceσ2

= 4. As men-
tioned in§3.3 and 4.2, the associated belief func-
tion is the belief function whose pignistic trans-
form equalsN(µ;σ2). The details of the con-
struction of this belief function are given in [9].

5.2 Solution without additional information

Without any prior knowledge onω1, the belief
function onΩ obtained using the GBT (17) is
shown, as a function oft, in Figure 2.
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mΩ[t](Ω)

mΩ[t](ω
1
)

Figure 2: GBT solution in the continuous case,
with BetF0 ∼ N(4; 4)

The interpretation is similar to that given in§3.2:

If t is likely to be a nominal value ofT given p0,
i.e. if plT0 (t) is fairly high, we can say nothing
about the plant being safe or not. In effect, the
plant might be working in safe mode, but it might
also very well be working in a mode leading to
values ofT similar to those obtained in nominal
mode. Thus, the nearer the observed value ofT
to the likeliest nominal values, the more belief we

assign toΩ. This is why the curves representing
pl[t](Ω) (continuous line) andBetF0 (bold con-
tinuous line) have the same shape and mode.

Similarly, whatever the value ofT may be, it will
never strengthen the hypothesis that the plant can
only be in safe mode as there may be many modes
leading to similar values ofT. Hence, function
pl[t](ω0) is always null (it is not represented in
the figure).

On the other hand, if the value ofT is nowhere
near the values corresponding to the safe mode (it
is either greater or smaller), we will tend to think
that some failure is occurring. In other words, the
moret differs from the nominal values, the greater
belief we have in the fact that the plant is malfunc-
tioning (dash-dotted line).

5.3 Solution with a priori knowledge onω1

Let us now introduce some more information.
The a priori according to which values ofT get
larger underω1 leads to the curves of Figure 3,
obtained via equation (30).
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Figure 3: Solution with introduction of a priori
information onm1 in the continuous case, with
BetF0 ∼ N(4; 4).

The first two aforementioned points still hold: no
belief is ever allocated toω0 alone and if the value
of t is likely to be a safe mode value, the most
important part of our belief is again, assigned to
Ω (continuous line).

The main difference with the case where we do



not dispose of any additional information lies in
the fact that we now assume thatT takes greater
values under failure than in safe mode. As a con-
sequence, our belief in failure increases ast be-
comes significantly larger than safe mode values
of T (dash-dotted line), but it does not increase
when it becomes smaller.

Conversely, whenevert is smaller than safe values
of T tend to be, we face an inconsistency with the
information according to which, when the plant is
malfunctioning, values ofT are larger than they
are liable to be in nominal mode. Thus, some be-
lief is assigned to the empty set (dashed crossed
line), representing conflict, or contradiction.

Suppose we need to stop the plant whenever our
belief in a possible state of failure reaches a cer-
tain level. From the above short example, it can be
seen that, with as little information asm0, it is al-
ready possible to weight the different costs of the
decisions to stop the plant or not for a given value
of T. It is also possible to measure the influence
of an additional, qualitative piece of information
(for instance, the fact thatt gets bigger under fail-
ure) provided by an expert.

6 Conclusion

We built a solution to the problem of testing an
hypothesis versus its exact opposite under the be-
lief function framework. Our solution takes ad-
vantage of the facilities offered by this theory to
work with partial knowledge without addition of
any assumption. It thus allows us to make a de-
cision when very little information is available.
However, as mentioned in sections 3.3 and 4.2,
this solution sometimes leads to a surprising deci-
sion when probabilities are involved. The resolu-
tion of this problem is presently under study. An-
other perspective of this work is the description of
the whole process that leads from raw data to the
decision stage through the TBM framework.
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