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Abstract

Classifier combination is an interest-
ing approach for solving multi-class
classification problems. We study
here the combination of one-against-
all binary classifiers, in the frame-
work of belief functions. Our ap-
proach is first formalized; its perfor-
mances are then compared to that
of two other methods, on various
datasets. We conclude with perspec-
tives on future work.

Keywords: Classifier combination,
belief functions, coarsening.

1 Introduction

A generic pattern recognition task can be for-
malized as follows. Let a training set T be
composed of a set X = {x1, . . . ,xn} of pat-
terns xi ∈ Rp. Each pattern xi is associated
with a label yi, which represents its actual
class ωk ∈ Ω = {ω1, . . . , ωK}.

A classifier can be trained to identify the re-
lationships between the input space Rp and
the label space Ω, on the basis of the training
set; generalizing them to new – and unknown
– data should then enable to predict the la-
bel of a test pattern x. The architecture of
a designed classifier has to fit the complexity
of the problem: the more complex the situa-
tion to deal with, the more complex the clas-
sifier. Its training cost can therefore become
arbitrarily large in terms of required time and
training data.

In this article, we address the problem of de-
signing a complex classifier by combining bi-
nary classifiers (trained to separate two sets of
patterns). We propose to carry on this combi-
nation in the framework of the theory of be-
lief functions. First we recall some material
about classifier combination ; then we present
the Transferable Belief Model, and more par-
ticularly the concept of coarsening. Then we
present and formalize our approach. Results
on synthetic and real datasets are provided
and discussed, before we conclude on perspec-
tives left opened by this work.

2 Binary Classifier Combination

We address here the case of multiclass classi-
fier combination, where a test pattern x has
to be assigned to a single class among K > 2
different ones.

A natural approach is to train a single clas-
sifier to separate the set of classes; however,
the training cost of such a classifier can be
burdensome. Moreover, some classifiers are
naturally designed to handle binary classifi-
cation problems. Thus, a multiclass classifi-
cation task can be handled by decomposing
it into binary subproblems, then solved with
binary classifiers, and combining the results.

2.1 Different decompositions of a

multiclass problem

Various decomposition-combination schemes
can be used. In the One-versus-one (OVO)
decomposition ([5, 6]), each class is opposed
to each other, thus giving C2

K subproblems;



in the One-versus-all (OVA) decomposition,
each class is opposed to all the others, thus
giving K subproblems. Both decomposition
schemes can be seen as instances of Error-
Correcting Output Codes (ECOC) ([3, 1]).

We studied OVO-classifier combination in the
framework of belief functions in [8]. We ad-
dress in this article the combination of OVA
classifiers; ECOC-combination of binary clas-
sifiers is beyond the scope of this paper.

2.2 Combination of OVA classifiers

Let Ek be the classifier trained to separate
class ωk from the others; its output fk(x), pro-
vided when evaluating test pattern x, can be a
posterior probability, a belief function, or sim-
ply a score. In the latter case, the voting rule
is generally applied, and x is assigned to the
class with the greatest score. A method for es-
timating the posterior probabilities Pr(ωk|f)
by combining probabilistic classifiers is pro-
posed in [7] (in the ECOC framework).

In this article, we present a method for com-
bining binary classifiers in the Transferable
Belief Model. The outputs of the classifiers
are interpretated as belief functions: thus,
probabilistic as well as possibilistic or credal
classifiers may be combined by this approach.

3 The Transferable Belief Model

The Transferable Belief Model (TBM) [10] is
an interpretation of the Dempster-Shafer the-
ory of belief functions; in this formalism, be-
lief functions quantify weighted opinions, ir-
respective of any underlying probability dis-
tributions. Thus, it is particularly well-suited
to represent and manipulate partial or subjec-
tive knowledge.

3.1 Basic concepts

The knowledge of the actual class ω0 ∈ Ω of a
pattern x can be quantified by a basic belief
assignment (bba) mΩ : 2Ω → [0; 1], verifying:

∑

A⊆Ω

mΩ(A) = 1.

A subset A ⊆ Ω is a focal element of mΩ if
mΩ(A) > 1. In the TBM, the bbas need not
be normalized: mΩ(∅) can be strictly positive.

Once a decision regarding the actual class of
x has to be taken, pignistic probabilities can
be processed from the bba mΩ: for all ωk ∈ Ω,

BetP (ωk) =
1

1 − m(∅)

∑

A⊆Ω:ωk∈A

m(A)

|A|
.

3.2 Coarsenings, refinements

Let Θ be a partition of Ω; let a mapping ρ :
2Θ → 2Ω verify the following properties:

1. the set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a parti-
tion of Ω ;

2. for each A ⊆ Θ, ρ(A) =
⋃

θ∈A ρ({θ}) ;

then, ρ is called a refining of Θ to Ω; by ex-
tension, Ω is called a refinement of Θ, and Θ
a coarsening of Ω.

A refining is generally not onto: there may
exist subsets B ⊆ Ω that are not images by ρ
of any A ⊆ Θ. Then, B could be associated
with the largest element A1 ⊆ Θ whose image
by ρ is included in B. Formally,

A1 =
⋃

l

θl ∈ Θ : ρ(θl) ⊆ B.

The element A1 is defined as the inner reduc-
tion of B on Θ, written A1 = θ(B). The inner
reduction of B on Ω is B1 = ρ(A1) = ρ(θ(B)).

Alternatively, B could be associated with the
smallest element A2 ⊆ Θ whose image by ρ
includes B. Formally,

A2 =
⋃

l

θl ∈ Θ : ρ(θl) ∩ B 6= ∅.

The element A2 is defined as the outer re-
duction of B, written A2 = θ(B). The outer
reduction of B on Ω is B2 = ρ(A2) = ρ(θ(B)).

Example 1 Let Ω = {ω1, ω2, ω3, ω4, ω5}; let
Θ = {θ1, θ2} be a coarsening of Ω defined by
ρ({θ1}) = {ω1}, ρ({θ2}) = {ω2, ω3, ω4, ω5}.

Tables 1 and 2 show the inner and outer re-
ductions of some A ⊆ Ω, on Θ and on Ω.



Table 1: Inner reductions of some A ⊆ Ω

A ⊆ Ω {ω1} {ω1, ω3} {ω2, ω4}

θ(A) {θ1} {θ1} ∅

ρ(θ(A)) {ω1} {ω1} ∅

A ⊆ Ω ∅ {ω2, . . . , ω5} Ω

θ(A) ∅ {θ2} Θ

ρ(θ(A)) ∅ {ω2, . . . , ω5} Ω

Table 2: Outer reductions of some A ⊆ Ω

A ⊆ Ω {ω1} {ω1, ω3} {ω2, ω4}

θ(A) {θ1} Θ {θ2}

ρ(θ(A)) {ω1} Ω {ω2, . . . , ω5}

A ⊆ Ω ∅ {ω2, . . . , ω5} Ω

θ(A) ∅ {θ2} Θ

ρ(θ(A)) ∅ {ω2, . . . , ω5} Ω

These definitions can easily be extended to
bbas: the inner and outer reductions of a bba
mΩ on Θ, written respectively mΘ and mΘ,
can be defined by:

mΘ(A) =
∑

B⊆Ω,θ(B)=A

mΩ(B), ∀A ⊆ Θ;

mΘ(A) =
∑

B⊆Ω,θ(B)=A

mΩ(B), ∀A ⊆ Θ.

Thus, although a bba mΘ
1 can be exactly ex-

tended on Ω, reducing a bba mΩ
2 on Θ will

generally imply a loss of information. The ex-
tension by ρ of a bba mΘ onto Ω corresponds
to the vacuous extension mΘ↑Ω ([9]): for all
B ⊆ Ω,

mΘ↑Ω(B) =

{
mΘ(A) if B = ρ(A), A ⊆ Θ
0 otherwise.

(1)
For convenience, the vacuous extension ρ(mΘ)
of a bba mΘ onto Ω will be written mΩ.

Example 2 Let Ω and Θ be defined as in Ex-
ample 1. Let mΩ be defined by:

mΩ(∅) = 0.1 mΩ({ω1}) = 0.3
mΩ({ω1, ω3}) = 0.2 mΩ({ω2, ω4}) = 0.1
mΩ({ω2, . . . , ω5}) = 0.2 mΩ(Ω) = 0.1

Table 3 shows the inner and outer reductions
of mΩ on Θ. The inner and outer reductions
of mΩ on Ω are directly obtained by replacing
any A ⊆ Θ by B ⊆ Ω : B = ρ(A).

Table 3: Inner and outer reductions of mΩ

A ⊆ Θ ∅ {θ1} {θ2} Θ

mΘ(A) 0.2 0.5 0.2 0.1

mΘ(A) 0.1 0.3 0.3 0.3

4 OVA classifier combination using

belief functions

4.1 Principle

Let Ek be a classifier trained to separate class
ωk from the set of remaining classes Ωr{ωk}.
The output provided by Ek when evaluating
a test pattern x can be expressed as a bba
mΘk

k . The frame Θk = {θk1, θk2} is obviously
a coarsening of Ω, defined by ρ({θk1}) = {ωk},
ρ({θk2}) = Ω r {ωk}.

Let the knowledge of the actual class of x be
quantified by a bba mΩ. Let an approxima-
tion of mΩ be a bba obtained by reducing mΩ

on a frame Θ and extending the result back
to Ω. Each mΘk

k can be seen as an estimate
of a reduction of mΩ on Θk, and its exten-
sion mΩ

k as an estimate of the corresponding
approximation of mΩ.

We propose to combine the outputs of the Ek

by computing an estimate m̂Ω of mΩ that is
consistent with the mΩ

k .

4.2 Formalization

When computing the inner reduction mΩ:

• the bbm given by mΩ to any A such that
ωk /∈ A and ωk * A, is transfered to ∅:
mΩ(∅) =

∑
A⊂ωk

mΩ(A);

• the bbm given by mΩ to any A such that
ωk ∈ A and ωk * A, is transfered to ωk:
mΩ({ωk}) =

∑
A⊂Ω,{ωk}∈A mΩ(A);

• the bbm given by mΩ to any A such that
ωk /∈ A and ωk ⊆ A, is transfered to ωk:
mΩ({ωk}) = mΩ({ωk});



• the bbm given by mΩ to any A such that
ωk ∈ A and ωk ⊆ A, is transfered to Ω:
mΩ(Ω) = mΩ(Ω).

Similarly, when computing mΩ:

• we transfer to ∅ the bbm given by mΩ to
any A such that ωk /∈ A and ωk ∩ A = ∅:
mΩ(∅) = mΩ(∅);

• we transfer to ωk the bbm given by mΩ to
any A such that ωk ∈ A and ωk ∩ A = ∅:
mΩ({ωk}) = mΩ({ωk});

• we transfer to ωk the bbm given by mΩ to
any A such that ωk /∈ A and ωk ∩ A 6= ∅:
mΩ({ωk}) =

∑
A⊆{ωk}

mΩ(A);

• we transfer to Ω the bbm given by mΩ to
any A such that ωk ∈ A and ωk ∩ A 6= ∅:
mΩ(Ω) =

∑
{ωk}∈A,{ωk}∩A 6=∅ mΩ(A).

Hence, it can be checked that the bbas mΩ,
mΩ and mΩ verify the following inequalities:






mΩ(∅) ≤ mΩ(∅) ≤ mΩ(∅)
mΩ({ωk}) ≤ mΩ({ωk}) ≤ mΩ({ωk})

mΩ({ωk}) ≤ mΩ({ωk}) ≤ mΩ({ωk})
mΩ(Ω) ≤ mΩ(Ω) ≤ mΩ(Ω)

It seems reasonable to require that approxi-
mations of mΩ (and hence the estimates mΩ

k )
also satisfy these constraints.

4.2.1 Minimizing the errors

If the mΩ
k are crude estimates of the corre-

sponding approximations of mΩ, they may vi-
olate these constraints for some k. Slack vari-
ables may be introduced to quantify the errors
(Equation (4)). Then, an estimate m̂Ω of the
bba mΩ, that is as consistent with the mΩ

k

as possible, may be retrieved by minimizing
these errors:

m̂Ω = arg min
mΩ

K∑

k=1

(
4∑

i=1

εk
i + εk

i

)
, (2)

satisfying:

{
mΩ(B) ≥ 0 ,∀B ⊆ Ω,∑

B⊆Ω mΩ(B) = 1 ;
(3)

and, for all k:





mΩ(∅) − εk
1 ≤ mΩ

k (∅),
mΩ

k (∅) − εk
1 ≤ mΩ(∅),

mΩ({ωk}) − εk
2 ≤ mΩ

k ({ωk}),
mΩ

k ({ωk}) − εk
2 ≤ mΩ({ωk}),

mΩ({ωk}) − εk
3 ≤ mΩ

k ({ωk}),

mΩ
k ({ωk}) − εk

3 ≤ mΩ({ωk}),
mΩ(Ω) − εk

4 ≤ mΩ
k (Ω),

mΩ
k (Ω) − εk

4 ≤ mΩ(Ω),
εk

i, εk
i ≥ 0, for all i.

(4)

4.3 Complexity reduction

The number of subsets of Ω grows exponen-
tially with its size K: for example, when solv-
ing a letter recognition problem numbering 26
classes, a bba can have up to 226 = 67 108 864
focal elements. We propose to reduce this
complexity, by restricting the set of possible
focal elements when computing the bba m̂Ω.

The bbas mΘk

k ({ωk}) may be used to identify
the classes to which x likely belongs, and to
aggregate the others into a single class. Thus,
a coarsening Ω′ of Ω is defined; computing the
bba m̂ in Ω′ enables to restrain the set of its
focal elements, by focusing on the most likely
ones.

5 Experiments

5.1 Procedure

Three combination methods were evaluated:
the evidential approach presented in this ar-
ticle (Tbm scheme), the voting rule (Vote

scheme), and the probabilistic method pre-
sented in [7] (Prob scheme). Classification
decision trees, and evidential neural networks
([4]), were used as binary classifiers.

The classification trees were implemented us-
ing the CART algorithm ([2]). The trees were
pruned by computing a sequence of trees of in-
creasing size, for which the error and the error
variance were estimated using 10-fold cross-
validation. Then, the smallest tree which er-
ror did not exceed one standard above the
minimal error was selected as the best one.

The evidential neural networks (ENN) were
trained using 3 prototypes for each class ωk



(positive class) and 3(K − 1) prototypes for
the others (negative class). This revealed to
be unsufficient for the Vowel dataset: then,
3(K − 1) prototypes were used for both pos-
itive and negative classes. When using ENN,
the Vote and Prob schemes were provided
with the pignistic probabilities BetPk com-
puted from the bbas mΘk

k .

We conducted experiments on a syn-
thetic dataset: Synth, and on three real
datasets: Letter, Satimage, and Vowel (UCI
Machine Learning database repository,
http://www.ics.uci.edu/~mlearn/). The
features of these datasets (dimension, number
of classes, number of patterns for training
and test) are summarized in Table 4. In each
class, the training and test patterns were
randomly chosen.

Table 4: Datasets features

dataset dim. #classes #train #test

Letter 16 26 12001 7999

Satimage 36 6 2573 3862

Synth 2 4 1700 340

Vowel 10 11 528 462

For the datasets with more than 6 classes
(here, Letter and Vowel), the complexity was
reduced by selecting the five classes with high-
est mΩ

k ({ωk}) and aggregating the others.

5.2 Quantitative results

Tables 5 and 6 present the results obtained
when combining classification trees and evi-
dential neural networks, respectively.

Table 5: Recognition rates (%), classification
trees

Method Letter Satimage Synth Vowel

Tbm 79.7 84.4 95.0 37.0

Vote 79.8 84.5 95.0 36.1

Prob 79.7 84.5 95.0 36.8

Table 6: Recognition rates (%), evidential
neural networks

Method Satimage Synth Vowel

Tbm 82.7 95.3 65.2

Vote 82.8 95.3 64.7

Prob 82.8 95.3 64.7

5.3 Qualitative results

Here we analyse qualitatively the results ob-
tained by combining the bbas mΩ

k , obtained
using evidential neural networks as binary
classifiers, on the synthetic dataset Synth.

Figures 1, 2 and 3 show the bbms mΩ
3 ({ω3}),

mΩ
3 ({ω3}) and mΩ

3 (Ω), respectively. Fig-
ures 4 and 5 show the bbms mΩ

4 ({ω4}) and
mΩ

4 ({ω4}) respectively.

Here, the bbas mΩ
k are normalized. The

bbms mΩ
k (Ω) are high in the regions free of

any training patterns, but usually low in re-
gions where the positive and negative classes
overlap (in this case, ω3 and {ω3}): there,
mk({ωk}) and mk({ωk}) sum almost to one.
Thus, imprecision is almost not quantified.

Figures 6, 7 and 8 show the bbms m̂Ω({ω3}),
m̂Ω({ω4}) and m̂Ω({ω3, ω4}), respectively.

It can be seen that the boundaries between
the classes are almost identical to those ob-
tained with the binary classifiers. It can be
noticed that some belief (although very few)
was given to the set {ω3, ω4} in the region be-
tween ω3 and ω4. This suggests that combin-
ing classifiers giving a significant belief mΩ

k (Ω)
in the regions where the positive and negative
classes overlap, could allow to retrieve a bba
m̂Ω quantifying the imprecision between some
classes (in this case, ω3 and ω4).

Figures 9 and 10 show the pignistic probabil-
ities BetP (ω3) and BetP (ω4) computed from
the combined bbas m̂Ω, respectively. Fig-
ures 11 and 12 show the probabilities P̂ (ω3)
and P̂ (ω4) estimated using the probabilistic
method described in [7], respectively.

It can be seen that the estimates of the pos-
terior probabilities obtained with both meth-
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Figure 3: Masses mΩ
3 (Ω)

ods are very similar. These results, along with
those presented in Section 5.2, indicate that
the combination schemes studied here may be
equivalent in accuracy. In the case of OVA
decomposition, the information on the bound-
ary of a class ωk is provided by a single classi-
fier. Hence, the binary classifiers are comple-
mentary for solving the multiclass problem,
and their combination is likely to provide sim-
ilar decision boundaries, whatever the scheme
used. Moreover, when the bbas mΩ

k are (close
to) probabilities, their combination is likely to
be itself (close to) a probability.

Combination of more complex classifiers, that
quantify imprecision (between the classes they
separate) and ignorance (in the regions of the
space that correspond to classes they were
not trained to separate), might lead to com-
pute a bba quantifying a richer knowledge of
the membership of x. Alternatively, combi-
nation of classifiers trained to separate two
sets A ⊆ Ω and B ⊆ Ω of classes, might en-
able to increase the robustness of the combi-
nation: the information on the boundary of
a class ωk is then brought by several clas-
sifiers. This alternative corresponds to an
ECOC-combination of binary classifiers.

6 Conclusion

In this article, we presented a method for com-
bining binary classifiers in the case of OVA de-
composition. The combination scheme is for-
malized in the Transferable Belief Model. The
results show that the accuracy of the method
is similar to those of two other combination
schemes. Moreover, probabilistic classifiers as
well as credal classifiers may be combined us-
ing our technique.

Further work concerns the combination of
credal binary classifiers quantifying impre-
cision or ignorance; formalizing the combi-
nation of classifiers in the general ECOC-
decomposition framework should then enable
to combine different types of binary classifiers,
in order to increase the robustness and the ac-
curacy of the solution.
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Figure 5: Masses mΩ
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Figure 6: Combined masses m̂Ω({ω3})
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Figure 7: Combined masses m̂Ω({ω4})
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Figure 8: Combined masses m̂Ω({ω3, ω4})
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Figure 9: Pignistic probabilities BetP (ω3)
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Figure 10: Pignistic probabilities BetP (ω4)
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Figure 11: Probabilities P̂ (ω3)
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Figure 12: Probabilities P̂ (ω4)
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