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Abstract— The goal of map matching methods is to compute
an accurate position of a vehicle from an initial estimated
position using a digital road network data. In this paper, a new
map matching method based on Dempster-Shafer theory and
interval analysis is presented. The core idea of this methodis the
use of Dempster-Shafer theory for modeling partial information
on model and measurement uncertainties and for managing
multiple hypothesis situations. This technique proves to be
relevant to treat junction roads situations or parallel roads. The
results on simulated data show the usefulness of the proposed
method.

Keywords: Map matching, Dempster-Shafer theory, data
fusion, state estimation, interval analysis, multiple hypothesis
technique.

I. I NTRODUCTION

Vehicle navigation has become a major focus of many
applications. In the vehicle navigation system, a device is
generally used to determine the geometric position of the
vehicle. The most common geometric positioning devices
used for land vehicle navigation are deduced reckoning
(DR) motion sensors, global navigation satellite systems
such as the global positioning system (GPS), and integrated
navigation systems such as the integrated of GPS/DR system.
The integrated GPS/DR system combines GPS data with
DR data using a data fusion method to compute a more
accurate estimation of the vehicle position. The common
data fusion method used in such system is the Extended
Kalman Filter (EKF). Often, classical data fusion methods
using stochastic filters like EKF are strongly affected by
measurement errors like bias and drift, or even by con-
flicts between the sources of information. Moreover, these
approaches require the specification of accurate state space
and measurement error models, which may be difficult in real
applications. Sometimes, it may be more convenient to use
a bounded error approach(BEE) based on interval compu-
tation and only assume the model and measurement errors
to be bounded [6][7]. The major implementation problem
of the BEE method is to determine correctly the bounds
of the noises. Indeed, if these bounds are underestimated,
the contractor may lead to no solution. On the contrary, if
the bounds are overestimated, the estimated boxes can be
very large (the estimates are then very pessimistic)[7]. In
[1], a new particle filter method for state estimation where
particles are no longer precise data, but interval vectors
also referred to asboxesis presented. In this method box
particles are propagated and combined using interval tools
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and probability theory. The main advantage of this approach
is that it requires a significantly smaller set of particles than
the normal PF algorithm, thereby reducing the computational
cost. Unfortunately, GPS and the integrated GPS/DR system
fail to provide the actual location of a vehicle on a given road
segment. This is due to the various error sources that affect
such systems. The availability of higher accuracy digital
spatial road network data should make it possible to account
for these errors and allow the actual vehicle position on a
given road to be determined. This technique is often called
map matching (MM). A formal definition of MM can be
found in [5] [14]. A number of different algorithms have
been proposed for map matching in different applications.
The multiple hypothesis technique (MHT) keeps track of
several positions of the vehicle simultaneously and selects
eventually which candidate is the best. Recently, some works
used the multi-hypothesis technique in MM algorithms in
order to manage some situations of Map Matching problems
like junction situations and parallel roads [10][8]. In [8], a
belief map matching method, noted BMM, is presented. The
main idea of this method is the use of a bound error method
for combining sensors data and belief function theory for
managing some situations of Map matching problems like
junction situations. In this paper, we propose a new MM
method based on interval analysis and Dempster-Shafer (DS)
theory. It uses a new data fusion strategy, taking advantage
of DS theory by using mass functions which assign a
belief masses to afinite number of focal sets, chosen to
be axis-aligned boxes. Such mass functions can be seen as
“generalized boxes” composed of a collection of boxes with
associated weights. Focal sets are propagated in the system
equations using tools from interval arithmetics and constraint
satisfaction techniques [6]. This is associated with a given
map data, under the DS framework, in order to select a set of
candidate roads. The best candidate road is eventually chosen
using a decision rule of DS theory [3].

This paper is organized as follows. In Sections II and III
we present the background on interval analysis and DS
theory, respectively. The proposed map matching method, is
introduced in Section IV. In Section V, we show the results
of the application of the proposed method to dynamic vehicle
localization. Finally, in Section VI, we conclude and discuss
the main contributions of the paper.

II. I NTERVAL ANALYSIS

In this section we briefly introduce some notions of
interval analysis [6]1. A real interval, denoted[x], is defined

1A more detailed background on some interval analysis tools used in this
paper can be found on http://www.hds.utc.fr/∼fabdalla



as a closed and connected subset ofR: [x] = [x, x] =
{x ∈ R/x ≤ x ≤ x}, where x and x are the lower
and upper bound of[x]. Set-theoretic operations such as
intersection or union can be applied to intervals. The four
classical arithmetic operations can be extended to intervals.
For any such binary operator⋄ ∈ {+,−, ∗, \}, the interval
[x] ⋄ [y] is defined for any intervals[x] and [y] as [x] ⋄ [y] =
[{x ⋄ y ∈ R|x ∈ [x], y ∈ [y]}].

A box [x] of R
nx is defined as a Cartesian product of

nx intervals: [x] = [x1] × [x2] · · · × [xnx ] = ×nx

i=1[xi]. The
set of n-dimensional interval real vectors will be denoted
IR

n. The notions recalled above may be easily extended
to boxes. In general, the image of a box[x] ∈ R

n by a
function f is not a box. An inclusion function[f ] defined
as:∀[x] ∈ R

n, f([x]) ⊂ [f ]([x]), computes a box containing
f([x]). This function should be calculated such that the box
enclosing f([x]) is optimal. Different algorithms exist in
order to reduce the size of boxes enclosingf([x]). In this
paper we use theWaltz algorithm[6] which is based on
the propagation of primitive constraints2. This method is
independent of the non linearity of the constraints and give
accurate results when the system present a great redundancy
of data and equations [7] [8] [6].

III. D EMPSTER-SHAFER THEORY

In this section, we introduce the main concepts of DS
theory. LetΩ denote a finite set of mutually exclusive and
exhaustive hypotheses, called the frame of discernment. A
belief structure(BS) is a mass functionm from 2Ω to [0, 1],
verifying:

∑
A⊆Ω m(A) = 1. Every subsetA of Ω such that

m(A) > 0 is called afocal elementof m. We noteF(m) the
set of all focal elements ofm. A BS m such thatm(∅) = 0
is said to be normal. A categorical mass function is a mass
function that satisfies:m(A) = 1 for someA ⊂ Ω, A 6= Ω
andm(B) = 0, ∀B ⊆ Ω, andB 6= A. The belief function
onΩ which havem(Ω) = 1 is the vacuous belief function. In
the following, all BSs will be assumed to be normal, unless
otherwise specified. In most presentations of DS theory,Ω is
assumed to be finite. However, the theory remains basically
unchanged ifΩ is infinite (even uncountable), as long as
the number of focal sets remains finite. IfΩ = R, the
focal sets are usually assumed to be intervals [9]. In the
multidimensional case whereΩ = R

n, this approach can be
extended by assuming focal sets to ben-dimensional boxes.

Assume that a source of information provides a mass
function m, and we have a degree of confidence1−α ∈ [0, 1]
in the reliability of that source. Then,m can be discounted
by a factorα, resulting in the following discounted mass
function [12]:

αm(A) =

{
α m(A) if A ⊂ Ω,

1 − α(1 − m(Ω)) if A = Ω.

Two different, and independent mass functionsm1 and
m2 defined on the same frame of discernmentΩ can be

2A primitive constraint is a constraint involving a single operator (such
as+,−, ∗ or \) or a single function (such ascos, sin or sinh).
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Fig. 1. The basic steps of the BSMM algorithm.

combined by theconjunctive rule[13] defined as:

∀A ⊆ Ω, m12(A) = m1 ∩ m2(A) =
∑

B∩C=A

m1(B)m2(C).

(1)
The conjunctive combination followed by a normalization
step is known asDempster’s ruleof combination [13]. It is
denoted by⊕.

Let m be a mass function onΩ after combining all
available items of evidence. Assume that we have to select
an element ofΩ. In the DS theory, different rules of decision
have been proposed. We could select the element with
maximum belief, highest plausibility or highestpignistic
probability [13]. For a mass functionm, the pignistic prob-
ability function, notedbetp, is given by

betp(ω) =
∑

{A⊆Ω|ω∈A}

m(A)

(1 − m(∅))|A|
, ∀ω ∈ Ω, (2)

where|A| is the cardinality ofA. The pignistic probability
function is thus obtained fromm by distributing equally each
normalized massm(A)/(1 − m(∅)) among the elements of
A.

Let us now consider the case where we have two variables
X et Y defined on frames of discernmentΩ andΘ. Assume
thatX andY are linked by a multi-valued mappingρ : Ω →
2Θ, such that ifX = ω, then we know thatY ∈ ρ(ω). This
mapping can be extended to2Ω as follows:

ρ(A) =

{⋃
ω∈A ρ(ω), if A ⊆ Ω, A 6= ∅,

0 if A = ∅.
(3)

Let us further assume that we have a mass functionmΩ

on Ω representing our state of knowledge aboutX . A mass
function mΘ on Θ can be built by transferring each mass
mΩ(A) to ρ(A) [4]. Formally,mΘ is then defined as follows:

mΘ(B) =
∑

{A⊆Ω|ρ(A)=B}

mΩ(A), ∀B ⊆ Θ.

This may also be noted

mΘ(B) =
∑

A⊆Ω

Mρ(B, A)mΩ(A), ∀B ⊆ Θ, (4)

with

Mρ(B, A) =

{
1 if B = ρ(A),

0 otherwise.
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Fig. 2. Rectangular road[r] constructed using map data, geometrical errors
and the road width. The roadr is represented by two node points(A1, A2).

IV. B ELIEF STATE MAP MATCHING METHOD

A. Introduction

The goal of MM method is to compute an accurate
estimation of the vehicle position using a digital map data.
This is done by selecting first the road on which the vehicle is
moved then by computing an accurate position of the vehicle
on the selected road. In this paper we introduce a new MM
method calledBelief State Map Matching(BSMM), taking
advantage of interval analysis and DS theory. Figure 1, shows
the main steps of the BSMM method. As shown in this figure,
GPS data and dead reckoning sensor data are integrated via
a belief state estimation strategy (BSE), where all variables
are represented by general mass functions with interval focal
elements. Such mass functions can be seen asgeneralized
boxescomposed of a collection of boxes with associated
masses. In the BSE, interval focal elements are propagated
via the state space model using interval tools and a resulting
mass function on the state is deduced. From the resulting
state mass function, a set of candidate roads (CRs) will be
computed from an existing two dimensional geographical in-
formation system (GIS-2D). By handling interval knowledge
of the state mass function and rectangular representationsof
the roads, a new ”on-road” mass function can be computed.
Finally, using a decision rule of DS theory, an estimation of
the vehicle position can be computed. We will first describe,
in section IV-B, the geometry of the available rectangular
road map. The state model of the vehicle used in this paper is
presented in section IV-C. In section IV-D, the construction
of mass functions will be presented. The scenarios of the
BSMM method will be shown in section IV-E.

B. Road map representation

There are several ways to represent digital spatial road
network data. In this paper, we use the planar model in
which a roadr is represented by a finite sequence of points
(A0, A1, · · · , AnA), where{Ai}nA

i=1 ∈ R
2. The pointsA0

andAnA are referred to nodes while(A1, A2, · · · , AnA−1)
are referred to vertices or shape points. As done in [8],
rectangular roads will be constructed from GIS data as shown
in Figure 2. By considering the positional error, we assume
that the node points of roadr can be anywhere within a circle
of radiusl. The shape error ofr is thus represented by∆β.
As a result, the roadr can be considered anywhere within
a rectangleR as shown in Figure 2. The rectangular road
representation[r] of roadr can be constructed by adjusting
the width ofR using the predefined road widthw.
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Fig. 3. Definition of the frames.
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Fig. 4. Example of state mass functionmxk with two CRsr1 andr2.

C. Dynamic State Space Model

Consider a car-like vehicle with front-wheel drive. The
vehicle position is represented by the Cartesian coordinates
(xk, yk) of the point M attached to the center of the rear
axle as shown in Figure 3. Thex−axis is aligned with the
longitudinal axis of the car. The heading angle is denoted
θk. The statexk = (xk, yk, θk)T is calculated at each time
stepk using the following discrete representation:






xk+1 = xk + δS,k cos(θk +
δθ,k

2 )

yk+1 = yk + δS,k sin(θk +
δθ,k

2 )
θk+1 = θk + δθ,k,

(5)

where δS,k is the elementary linear displacement andδθ,k

is the measure of the elementary rotation given by an ABS
sensor and a gyrometer, respectively. The observation of the
position at time stepk, zk = (xGPS,k, yGPS,k), is given
by a Global Position System (GPS). Thelongitude, latitude
estimated point of the GPS is converted to a Cartesian local
frame and the error boundary of the position characterized by
σx andσy, is obtained thanks to the weavesGST NMEA[1].

D. Mass Function Construction

1) Road map mass functions:Given a state mass function
mxk+1 and a rectangular road map, a setRk+1 of CRs can be
selected such that any rectangular road[r] in Rk+1 verifies:
∃i/[xi

k+1] ∩ [r] 6= ∅, where[xi
k+1] is a box focal elements

of mxk+1. Thus, the associated mass function at time step
k+1, notedmRk+1 , can be computed by exploring conjointly
mxk+1 , topology criterion and similarity criterion. Hereafter
we will explain different computation that may be involved
in the calculation ofmRk+1 .

• Topology criterion: using the topology of the map and
a mass functionmRk , a new mass function onRk+1,
notedm

Rk+1

1 can be computed. Letri be a road ofRk.
Suppose that the vehicle leaves roadri at time stepk+1



and letSi be the set of roads directly linked tori and
which have an intersection with the focal elements of
mxk+1 . Let ρ be a multi valued function defined from
Rk to 2Rk+1 by:

ρ(ri) = Si (6)

whereρ(ri) denotes the possible roads at timek + 1,
given that the vehicle was on roadri at time stepk.
Using ρ and equation (4),mRk+1

1 can be computed.

Example 1 Consider the case of Figure 4. At time step
k, the state mass functionmxk is represented by two
focal elements[x1

k] and [x2
k]. This gives rise tomxk+1 ,

at time stepk + 1, with two focal elements[x1
k+1]

and [x2
k+1]. From mxk+1 , two CRs,r2 and r3, can be

selected and thusRk+1 = {r2, r3}. From the fact that
road r1 is linked tor2 and r3, a mass functionmRk+1

1

can be computed frommRk using the following multi-
valued functionρ defined fromRk to 2Rk+1 such that
ρ(r1) = {r2, r3}. The mass functionmRk+1

1 is then
given by:mRk+1

1 ({r2, r3}) = mRk({r1}) = 1.

A more detailed example on the construction of a mass
function onRk+1 using the topology of the map, can
be found in [8].

• Similarity criterion: Using a measure of similarity be-
tween the rectangular roads inRk+1 and the state
mass function, a mass functionmRk+1

2 on Rk+1 can
be calculated. This similarity is characterized by the
area of the intersection between the state boxes and
the rectangular roads. For each CRri, a geometrical
likelihood Li of the road given a state mass function

can be computed:Li = maxj
|[xi,j

k+1]|

|[xj
k+1]|

, where [xj
k+1]

is the jth focal elements ofmxk+1 and [xi,j
k+1] is the

minimal box englobing[xj
k+1]∩ [ri]. UsingLi, a mass

function mi can be computed as follows [2]:





mi({ri}) = 0

mi({ri}) = αi(1 − Li)
mi(Rk+1) = 1 − αi(1 − Li)

(7)

where {ri} is the complement of{ri} in Rk+1 and
αi is a discounting coefficient associated with roadri.
The mass functionmRk+1

2 is the combination of allmi

using:
m

Rk+1

2 = ∩©imi. (8)

• Exploringmxk+1 : using the state mass function, a mass
function onRk+1, notedm

Rk+1
s , can be computed. Let

ρs be a multi valued function defined fromIR2 to 2Rk+1

by

ρs([x
i
k+1]) = {rj/(rj ∈ Rk+1 and [rj ] ∩ [xi

k+1] 6= ∅)}
(9)

Using ρs, mxk+1 and equation (4),mRk+1
s can be

computed.mRk+1
s quantifies the part of belief onRk+1

given by the state, independently of the topology and
similarity criteria.

Example 2 Consider again the case of Figure 4.
As it can be seen in Figure 4 the associated
multi-valued functionρs is given by: ρs([x

1
k+1]) =

{r2, r3} and ρs([x
2
k+1]) = {r2}. Thereby, mRk+1

s

is given by: m
Rk+1
s ({r2}) = mxk+1([x2

k+1]) and
m

Rk+1
s ({r2, r3}) = mxk+1([x1

k+1]).

The final mass functionmRk+1 can be computed using the
conjunctive rule of combinations:

mRk+1 = m
Rk+1

1 ∩©m
Rk+1

2 ∩©mRk+1
s . (10)

2) State mass functions:For each CR,ri ∈ Rk+1 a state
mass functionmxk+1

i can be computed usingmxk+1 and a
multi valued functionρi: IR

2 → IR
2

ρi([xj
k+1]) = [xi,j

k+1] (11)

where[xi,j
k+1] is the minimal box englobing[xj

k+1] ∩ [ri]. It
is considered as thejth focal element ofmxk+1

i . Thereby,
according to (4)mxk+1

i ([xi,j
k+1]) = mxk+1([xj

k+1]).

Example 3 Consider the case of Figure 4. As shown in
this figure, Rk+1 = {r2, 23}, thereby, two state mass
functionsmxk+1

2 andm
xk+1

3 should be computed using (11)
and (4):mxk+1

2 ([x2,1
k+1]) = mxk+1([x1

k+1]), m
xk+1

2 ([x2,2
k+1] =

mxk+1([x2
k+1]) andm

xk+1

3 ([x3,1
k+1]) = 1, where[xi,j

k+1] is the
minimal box englobing[xj

k+1] ∩ [ri].

E. Sketch of the BMM method

1) Initialization: At time stepk = 0, a mass function
mx0 on the state can be constructed withp focal elements. A
possible solution is to use a triangular possibility distribution
around the GPS measurement thanks to standard deviations
σx andσy estimated in real time by the GPS receiver. The
α−cuts of this distribution are interval focal elements of
mx0 . From mx0 and the rectangular road map, a setR0 of
CRs is selected. LetnR0 be the cardinal ofR0. As there is no
prior information on the vehicle position at time stepk = 0,
mR0

1 should be initialized as a vacuous mass function onR0.
The mass functionmR0

2 is calculated using (7) and (8).mR0
s

can be calculated using (11) and (4). The final mass function
mR0 is thus the result of the combination ofmR0

1 , mR0
2 and

mR0
s according to (10). For each CRri ∈ R0, a state mass

functionmx0

i is calculated as explained in IV-D.2.
2) Prediction : Mass functionsmS

k andmΘ
k , on δs,k and

δθ,k, can be constructed using a triangular possibility distri-
bution, built around ABS sensor and gyrometer respectively.
Note thatσs and σθ are estimated thanks to specific static
tests. According to system (5), the mass functionsmxk

i , mS

k

andmΘ
k can be combined in order to give rise to a predicted

mass functionm
xk+1/k

i with general focal element[xi,j
k+1/k].

Note here that, as inclusion functions are used, we may
obtain non-optimized predicted focal elements.

3) GPS correction:Based on triangular possibility distri-
bution, a mass functionmz

k+1 may be constructed at time
stepk+1 on the GPS measurement vectorzk+1. mzk+1 and
m

xk+1/k

i are then combined conjunctively and give rise to



m
xk+1

i . The Waltz algorithmmay be used here in order to
contract the non-optimized focal elements. Note that the be-
lief mass assigned to[xi

k+1] will be the product of the masses
assigned to[xi,j

k ], [δs,k
j ], [δθ,k

j ] and [zj
k+1] [15]. Thereby,

m
xk+1

i ([xi,j
k+1]) = mxk

i ([xi,j
k ]) · mS

k ([δs,k
j ]) · mΘ

k ([δθ,k
j ]) ·

mz

k+1([z
j
k+1]).

Algorithm 1 Belief State Map Matching algorithm
1: k← 0 and from the GPS measurement create a state mass functionmx0 with

p focal elements.
2: Construct rectangular roads[ri]
3: ComputeRk = {ri/[ri] ∩ [xj

k
] 6= ∅} for j = 1 · · · p

4: m
Rk
1 ← vacuous mass function onRk

5: Constructm
Rk
2 using (7) and (8)

6: Computem
Rk+1
s using (9) and (4)

7: mRk+1 ← m
Rk+1
1 ∩©m

Rk+1
2 ∩©m

Rk+1
s

8: Compute{m
xk
i }

nRk
i=1 using (11) and (4)

9: loop
10: Build mS

k , mΘ
k andmzk+1 with p focal elements from sensors data

11: for i = 1 to nRk
do

12: for j = 1 to p do
13: Calculate[xi,j

k+1/k
] using [δj

S,k], [δj
θ,k] and (5)

14: [xi,j
k+1]← [xi,j

k+1/k
] ∩ [zj

k+1]

15: [xi,j
k+1]← Waltz([xi,j

k ], [xi,j
k+1], [δ

j
s,k], [δj

θ,k], (5))

16: m
xk+1
i ([xi,j

k+1]) ← m
xk
i ([xi,j

k ]) · mS

k([δs,k
j ]) · mΘ

k ([δθ,k
j ]) ·

mz

k+1([z
j
k+1]).

17: if the distance between the center of[xi,j
k

] and a node or a shape point
of the roadri is less thenδS,k then

18: Rk+1 ← Rk+1 ∪ {r
l/(rl linked to ri, [rl] ∩ [xi,j

k+1] 6= ∅)}

19: Computem
Rk+1
1 using (4) and (6)

20: end if
21: Computem

xk+1
i using (11) and (4)

22: end for
23: Computem

Rk+1
2 using (7) and (8)

24: Computem
Rk+1
s using (9) and (4)

25: end for
26: mRk+1 ← m

Rk+1
1 ∩©m

Rk+1
2 ∩©m

Rk+1
s

27: Chose the best road frommRk+1 using a decision rule of DS theory
28: The estimate position on the best road is computed using (12)
29: k← k + 1
30: end loop

4) GIS correction: Regarding junctions situations, two
cases should be considered. Letdi be the distance from the
center of[xi,j

k ] to a node or shape point ofri andδS,k be the
elementary movement given by the rear wheels ABS sensors,
then :
• If di is less thenδS,k, then it is possible that the vehicle

leaves roadri (see figure 4). For this reason, the setRk

of CRs must be changed to a setRk+1 = Rk∪Sk where
Sk is the set of all roads directly linked tori and which
have an intersection with the focal elements ofm

xk+1

i :
Sk = {rl/(rl is linked tori and [rl] ∩ [xi,j

k+1] 6= ∅)}.

The associated mass function,m
Rk+1

1 computed from
the topology of the map is then calculated.

• If di is higher thanδS,k, thenRk+1 = Rk.

The mass functionmRk+1

2 resulting from the similarity
criterion is computed using (7) and (8).mRk+1

s can be
calculated using (11) and (4). The final mass functionmRk+1

is thus computed using (10). For each CRri ∈ Rk+1, a state
mass functionmxk+1

i is calculated as explained in IV-D.2.
5) Overall estimation:First the best road ofRk+1 should

be selected usingmRk+1 and a decision rule of DS theory
as the maximum plausibility or the maximum pignistic

x

y

Fig. 5. Simulated road map.
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Fig. 6. Result of BSMM method.

probability. Then, an estimation of the vehicle position on
the selected road should be calculated. This is done using
the state mass function associated to the selected road. Let
ri be the best road ofRk+1 and m

xk+1

i be the associated
state mass function. The estimation vehicle position onri is
given by

x̂k+1 =
∑

j

m
xk+1

i ([xi,j
k+1]) · cj (12)

wherecj is the center of[xi,j
k+1]. The BSMM algorithm is

presented in Algorithm 1.

V. A PPLICATION

In this Section, we present the results of applying the
BSMM algorithm on simulated Data. The vehicle position,
the heading, the elementary movement and the elementary
rotation were generated using the Matlab simulink toolbox.
The GPS measurement noise was supposed to be white with
σx = 7 m andσy = 9 m. The noise in the input data (el-
ementary movement and elementary rotation) was supposed
to be white withσs = 1/4 m andσθ = 0.002 degrees. In
this application, we assumed that the road parameters are
l = 1 m andw = 6 m. The number of focal elements of
mxk , mSk , mΘk andmzk is fixed top = 3.

The simulated map is showed in Figure 5. The vehicle tra-
jectory is plotted by bold lines and the roads are represented
by solid black lines. Figure 6 shows the result of the BSMM
method near the first junction of the simulated map. The GPS
positions are plotted by(+) points and the estimated position
of the BSMM method are represented by(∇) points. The real
trajectory of the vehicle is plotted by dashed lines. Table I
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Fig. 7. Results in the neighborhood of roads junction.

GPS BSE BMM BSMM Quddus
MSE onx (m) 0.174 0.130 0.125 0.090 0.127
MSE ony (m) 0.227 0.161 0.164 0.140 0.163

TABLE I

MEAN SQUARE ERROR OFGPS, BMM, BSE, BSMMAND QUDDUS METHOD

shows a comparison between the results of BMM [8], BSE
method, BSMM methods and the Quddus method developed
in [11] where probabilistic approach is used for integrating
sensors data and for selecting the most likely road on which
vehicle is moved. As illustrated in this table the result
of BSMM method are more accurate. Indeed, The BSMM
method combine the result of the BSE method with the map
data using DS theory in order to compute a more accurate
estimation of the vehicle position. The main advantage of
the BSMM method compared to BMM is the use of BSE
method in order to combine all sensors data. The BSE
method uses belief structures composed of a finite number of
axis-aligned boxes with associated masses for representing
measurement uncertainties. Such belief structures can model
partial information on model and measurement uncertainties,
more accurately than the bounded error approach alone,
which is used in the BMM method form combining sensors
data.

Figure 7 shows how the BSMM method may manage the
several hypotheses caused by a junction roads situation. As
shown in the figure, at time stepk = 80, the vehicle is moved
on roadr1 and Rk = {r1}. At time stepk = 81, there
is three possible CRs andRk = {r1, r2, r3}. The dashed
rectangles represented the GPS mass function. The estimated
positions corresponding to all CRs are represented by(+)
points. The overall estimated position is chosen between the
previous estimated positions and is circled on the figures. The
state mass function associated to CRs are represented by bold
solid rectangles. Although the BSMM method can provide
an state estimate on each CR, and gives an overall estimation

position on the best road. As can be seen, at time stepk = 83,
only one CR is kept and the other are eliminated by the
similarity criterion. As a conclusion, the BSMM method is
able to save all possible positions for eventual correctionand
choose the most likely one by using a decision rule of DS
theory. In this application we select the road with the highest
pignistic probability.

VI. CONCLUSION

In this paper, a new method for map matching and state
estimate has been presented. This method used a belief
state estimation method in which model and measurement
uncertainties are represented by belief structures composed
of a finite number of axis-aligned boxes with associated
masses. The output of the belief state estimation method
are used under the Dempster-Shafer framework with a rect-
angular road map in order to select a set of candidate
roads and compute an accurate estimation of the vehicle
position. This method seems to be adequate to deal with
some crucial situations of the map matching problems like
multi hypothesis scenarios on junctions. Also, it uses be-
lief structures composed of a finite number of axis-aligned
boxes with associated masses for representing measurement
uncertainties which can model partial information on model
and measurement uncertainties, more accurately than the
bounded error approach alone. The implementation of this
method is quite simple using geometrical properties of boxes
and rectangular roads map. Results on simulated data have
demonstrated the effectiveness of the proposed method.
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