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Abstract— The goal of map matching methods is to compute and probability theory. The main advantage of this approach
an accurate position of a vehicle from an initial estimated s that it requires a significantly smaller set of particleart
position using a digital road network data. In this paper, a rew e normal PF algorithm, thereby reducing the computationa

map matching method based on Dempster-Shafer theory and .
interval analysis is presented. The core idea of this methoid the cost. Unfortunately, GPS and the integrated GPS/DR system

use of Dempster-Shafer theory for modeling partial informaion  fail to provide the actual location of a vehicle on a givendoa
on model and measurement uncertainties and for managing segment. This is due to the various error sources that affect

multiple hypothesis situations. This technique proves to & such systems. The availability of higher accuracy digital
relevant to treat junction roads situations or parallel roads. The spatial road network data should make it possible to account

results on simulated data show the usefulness of the propate . o
method. for these errors and allow the actual vehicle position on a

Keywords: Map matching, Dempster-Shafer theory, data 9iven road to be determined. This technique is often called
fusion, state estimation, interval analysis, multiple hypthesis map matching (MM). A formal definition of MM can be

technique. found in [5] [14]. A number of different algorithms have
been proposed for map matching in different applications.
The multiple hypothesis technique (MHT) keeps track of
Vehicle navigation has become a major focus of mangeveral positions of the vehicle simultaneously and select
applications. In the vehicle navigation system, a device isventually which candidate is the best. Recently, some svork
generally used to determine the geometric position of thesed the multi-hypothesis technique in MM algorithms in
vehicle. The most common geometric positioning devicegrder to manage some situations of Map Matching problems
used for land vehicle navigation are deduced reckonirgke junction situations and parallel roads [10][8]. In [&
(DR) motion sensors, global navigation satellite systemiselief map matching method, noted BMM, is presented. The
such as the global positioning system (GPS), and integratethin idea of this method is the use of a bound error method
navigation systems such as the integrated of GPS/DR systefor. combining sensors data and belief function theory for
The integrated GPS/DR system combines GPS data withanaging some situations of Map matching problems like
DR data using a data fusion method to compute a mojenction situations. In this paper, we propose a new MM
accurate estimation of the vehicle position. The commomethod based on interval analysis and Dempster-Shafer (DS)
data fusion method used in such system is the Extend#tkeory. It uses a new data fusion strategy, taking advantage
Kalman Filter (EKF). Often, classical data fusion methodef DS theory by using mass functions which assign a
using stochastic filters like EKF are strongly affected byelief masses to dinite number of focal sets, chosen to
measurement errors like bias and drift, or even by corbe axis-aligned boxes. Such mass functions can be seen as
flicts between the sources of information. Moreover, thes@eneralized boxes” composed of a collection of boxes with
approaches require the specification of accurate statee spassociated weights. Focal sets are propagated in the system
and measurement error models, which may be difficult in realquations using tools from interval arithmetics and castr
applications. Sometimes, it may be more convenient to usatisfaction techniques [6]. This is associated with amgive
a bounded error approacfBEE) based on interval compu- map data, under the DS framework, in order to select a set of
tation and only assume the model and measurement erraendidate roads. The best candidate road is eventuallgnhos
to be bounded [6][7]. The major implementation problenusing a decision rule of DS theory [3].
of the BEE method is to determine correctly the bounds This paper is organized as follows. In Sections Il and IlI
of the noises. Indeed, if these bounds are underestimat&ds present the background on interval analysis and DS
the contractor may lead to no solution. On the contrary, itheory, respectively. The proposed map matching method, is
the bounds are overestimated, the estimated boxes caniboduced in Section IV. In Section V, we show the results
very large (the estimates are then very pessimistic)[7]. laf the application of the proposed method to dynamic vehicle
[1], a new particle filter method for state estimation wherédocalization. Finally, in Section VI, we conclude and dissu
particles are no longer precise data, but interval vectotbe main contributions of the paper.
also referred to akoxesis presented. In this method box I

. X oo . INTERVAL ANALYSIS
particles are propagated and combined using interval tools ) ) . ) .
In this section we briefly introduce some notions of
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I. INTRODUCTION



as a closed and connected subsetRof[z] = [2,T] = [ ors | [ semsordam ]
{r € R/z < » < T}, wherez and 7 are the lower ¥ v

i i
and upper bound ofz]. Set-theoretic operations such as | BSE method |_> m &
intersection or union can be applied to intervals. The four 3
classical arithmetic operations can be extended to inerva | Overall state estimation = g

For any such binary operatere {+, —, ,\}, the interval
[z] o [y] is defined for any intervalge] and[y] as[z] ¢ [y] =
[{zoyeRlz € [z],y € [y]}].

A box [x] of R"= is defined as a Cartesian product of
ng intervals: [x] = [z1] X [x2] -+ X [xn,] = X1 [z:]. The c
set of n-dimensional interval real vectors will be denoted
IR™. The notions recalled_ above may be easily extended 4 C Q,miz(A) = my Nma(A) = Z m1(B)ma(C).
to boxes. In general, the image of a b € R™ by a BAO—A
function f is not a box. An inclusion functioiif] defined 1)
as:V[x] € R", f([x]) C [f]([x]), computes a box containing The conjunctive combination followed by a normalization
f([x]). This function should be calculated such that the bogtep is known aPempster’s ruleof combination [13]. It is
enclosingf([x]) is optimal. Different algorithms exist in denoted by®.
order to reduce the size of boxes enclosfi{gk]). In this Let m be a mass function o2 after combining all
paper we use th&Valtz algorithm[6] which is based on available items of evidence. Assume that we have to select
the propagation of primitive constraidtsThis method is an element of. In the DS theory, different rules of decision
independent of the non linearity of the constraints and givieave been proposed. We could select the element with
accurate results when the system present a great redundam@ximum belief, highest plausibility or highegignistic

Fig. 1. The basic steps of the BSMM algorithm.

ombined by theconjunctive rule[13] defined as:

of data and equations [7] [8] [6]. probability [13]. For a mass functiom, the pignistic prob-
ability function, notedbetp, is given by
I1l. DEMPSTERSHAFER THEORY
In this section, we introduce the main concepts of DS petp(w) = Z LA)’ VweQ, (2
theory. Let2 denote a finite set of mutually exclusive and cacareay L= m(0)14]

exhaustive hypotheses, called the frame of discernment. A
belief structurg(BS) is a mass functiom from 2 to [0,1], where|A| is the cardinality ofA. The pignistic probability
verifying: >, m(A) = 1. Every subsetd of Q such that function is thus obtained fromm by distributing equally each
m(A) > 0is called afocal elemenbf m. We noteF(m) the normalized massn(A)/(1 —m(0)) among the elements of
set of all focal elements ofi. A BS m such thatn()) =0  A.
is said to be normal. A categorical mass function is a mass Let us now consider the case where we have two variables
function that satisfiesin(A4) = 1 for someA C 2, A # Q X etY defined on frames of discernmeitand©. Assume
andm(B) =0, VB C Q, and B # A. The belief function thatX andY are linked by a multi-valued mapping: 2 —
onQ which havem(£2) = 1 is the vacuous belief function. In 2, such that ifX = w, then we know thal” € p(w). This
the following, all BSs will be assumed to be normal, unlessnapping can be extended 2& as follows:
otherwise specified. In most presentations of DS theorig,
assumed to be finite. However, the theory remains basically B {UweA pw), ifACQ A#D,
et (A) = : ©)

unchanged ifQ? is infinite (even uncountable), as long as 0 if A=0.
the number of focal sets remains finite. ff = R, the
focal sets are usually assumed to be intervals [9]. In thiget us further assume that we have a mass functioh
multidimensional case whefe = R", this approach can be on Q representing our state of knowledge abdiit A mass
extended by assuming focal sets torbdimensional boxes. function m® on © can be built by transferring each mass

Assume that a source of information provides a mass‘(A) to p(A) [4]. Formally,m® is then defined as follows:
function m, and we have a degree of confideheey € [0, 1]

in the reliability of that source. Themp can be discounted m®(B) = Z m?(A), VB CO.
by a factora, resulting in the following discounted mass {ACQ|p(A)=B}
function [12]: )
This may also be noted
Un(A) = am(A) if AcCQ, o o
1—a(l—m(Q) if A=Q. m%(B) = > M,(B,Am™(4), VBCO, (4
ACQ

Two different, and independent mass functions and )

ms defined on the same frame of discernméntcan be With
1 if B=p(A),

2A primitive constraint is a constraint involving a singleevptor (such MP(B’ A) = {0 otherwise

as+,—,* or \) or a single function (such ass, sin or sinh). !
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Fig. 2. Rectangular roat] constructed using map data, geometrical errors

and the road width. The roadlis represented by two node poir{td1, A2). Fig. 3. Definition of the frames

IV. BELIEF STATE MAP MATCHING METHOD
A. Introduction

The goal of MM method is to compute an accurate b :
estimation of the vehicle position using a digital map data. | 1 5 &
This is done by selecting first the road on which the vehicle is
moved then by computing an accurate position of the vehicle
on the selected road. In this paper we introduce a new MI\/II:_ o L )
method callecBelief State Map MatchingBSMM), taking ig. 4. Example of state mass function** with two CRs»* andr=.
advantage of interval analysis and DS theory. Figure 1, show
the main steps of the BSMM_method. As shown in this figurec' Dynamic State Space Model
GPS data and dead reckoning sensor data are integrated via ) ) ) ) )

a belief state estimation strategy (BSE), where all vagigbl ~Consider a car-like vehicle with front-wheel drive. The
are represented by general mass functions with interval foc/ehicle position is represented by the Cartesian cooreinat
elements. Such mass functions can be seegearalized (¥kyx) Of the point M attached to the center of the rear
boxescomposed of a collection of boxes with associate@X/® @ shown in Figure 3. The-axis is aligned with the
masses. In the BSE, interval focal elements are propagat9@gitudinal axis of the car. The heading angle is denoted
via the state space model using interval tools and a regultifs- The statex;, = (zx, yx, Q{C)T is calculated at each time
mass function on the state is deduced. From the resultif{fP# using the following discrete representation:

state mass function, a set of candidate roads (CRs) will be
computed from an existing two dimensional geographical in-
formation system (GIS-2D). By handling interval knowledge
of the state mass function and rectangular representatifons
the roads, a new "on-road” mass function can be computedhereds  is the elementary linear displacement afd.
Finally, using a decision rule of DS theory, an estimation ofs the measure of the elementary rotation given by an ABS
the vehicle position can be computed. We will first describesensor and a gyrometer, respectively. The observationeof th
in section IV-B, the geometry of the available rectangulaposition at time stepk, z; = (zaps.k, Yaps,k). IS given
road map. The state model of the vehicle used in this paperlly a Global Position System (GPS). Thgitude, latitude
presented in section IV-C. In section IV-D, the construatio estimated point of the GPS is converted to a Cartesian local
of mass functions will be presented. The scenarios of tHeame and the error boundary of the position characteriged b
BSMM method will be shown in section IV-E. o, andoy, is obtained thanks to the weaveST NMEA[1].

Tpel = Tg + 6S,k COS(@}C + %Tk)
Yk+1 = Yk + 05k sin(fx + JQT’C) (5)
9k+1 = 9k + 50,ka

B. Road map representation

- . D, Mass Function Construction
There are several ways to represent digital spatial road

network data. In this paper, we use the planar model in 1) Road map mass function&iven a state mass function
which a roadr is represented by a finite sequence of pointg?™*** and a rectangular road map, a #&t;, of CRs can be
(A9 AL, ... A"4), where {A1}74 € R2. The pointsA° selected such that any recta_ngula_lr rggddn Ry, verifies:
and A" are referred to nodes whilgd!, A2, ..., AnA-1)  Ji/[x; ] N [r] # 0, where[x; ] is a box focal elements
are referred to vertices or shape points. As done in [gPf m™*+'. Thus, the associated mass function at time step
rectangular roads will be constructed from GIS data as shoviii-1, notedm#+1, can be computed by exploring conjointly
in Figure 2. By considering the positional error, we assum&™***, topology criterion and similarity criterion. Hereafter
that the node points of roadcan be anywhere within a circle We Will explain different computation that may be involved
of radiusl. The shape error of is thus represented hy3. in the calculation ofin/t+:.

As a result, the road can be considered anywhere within « Topology criterion: using the topology of the map and
a rectangleR as shown in Figure 2. The rectangular road  a mass functionn*, a new mass function ofey 1,
representatior] of roadr can be constructed by adjusting notedmf’““ can be computed. Let be a road ofR.
the width of R using the predefined road widih. Suppose that the vehicle leaves roaat time stepc+1



and letS? be the set of roads directly linked 6 and Example 2 Consider again the case of Figure 4.
which have an intersection with the focal elements of As it can be seen in Figure 4 the associated

m*k+1, Let p be a multi valued function defined from multi-valued functionp, is given by: ps([xllﬁ_l]) =
Ry to 27+ by: ) . {r*,r%} and ps([x3,,]) = {r*}. Thereby, m I

p(r') =8 (6) is_given by: mi((r2)) = m(x2,,]) and
where p(r") denotes the possible roads at tirher 1, m T ({r?,r3}) = e (g ).

given that the vehicle was on road at time stepk.

, R .
Using o and equation (4)m?k+1 can be computed. The final mass functiom can be computed using the

conjunctive rule of combinations:

Example 1 Consider the case of Figure 4. At time step miter1 = m?’““@m?’““@mf"“. (10)
k, the state mass functiom*+ is represented by two
focal elements$x;] and [x2]. This gives rise ton*++1,
at time stepk + 1, with two focal elementsx; ]
and [x} ). From mX#+1, twg C3Rs,r2 and r®, can be
selected and thu®y, = {r,r°}. From the fact that i (5] Y

road r! is linked tor? andr3, a mass functiomnfik+1 N P (beial) = e ‘ _(11)
can be computed from/* using the following multi- where[x; ] is the minimal box englobingx; ;] N [r*]. It
valued functiory defined fromR,, to 27+ such that is considered as th¢" focal element ofm.**'. Thereby,
p(r') = {r2,13}. The mass functiom|*** is then according to (4)yn;**" ([x}],]) = m**+1([x]_,]).

given by:mf"“({rQ,?ﬁ}) =mbir{rt}) =1.

2) State mass functiondzor each CRy? € Ry, a state
mass functionn **' can be computed using*+! and a
multi valued functionp’: IR? — IR?

) ) Example 3 Consider the case of Figure 4. As shown in
A more detailed example on the construction of a masgjg figure, Rpy1 = {r2,23}, thereby, two state mass
function on Rj, using the topology of the map, can fynctionsm}*** andm}*** should be computed using (11)
be foundin [8]. o and (@) (e ) = mee () met () =
Similarity criterion: Using a measure of similarity be- m*i+1 (X2, ,]) andm?"“_([Xiil]) = 1, where[x’ ] is the
tween the rectangular roads iRi.; and the state _ . . g i

_ R minimal box englobingx; ;] N [r*].
mass function, a mass function, on Ry41 can
be calculated. This similarity is characterized by thes, Sketch of the BMM method
area of the intersection between the state boxes and
the rectangular roads. For each GR a geometrical
likelihood L? of the road given a state mass functio

. ©J
can be computedZi = maz; kil
: I[xk+1” L

is the j*" focal elements ofn**+ and [x;7],] is the
minimal box englobingx;_ ,] N [r’]. Using L, a mass
function m; can be computed as follows [2]:

1) Initialization: At time stepk = 0, a mass function
mX° on the state can be constructed witfocal elements. A

‘ rlpossible solution is to use a triangular possibility dizition

, Where [Xiﬂ] around the GPS measurement thanks to standard deviations
o, ando, estimated in real time by the GPS receiver. The
a—cuts of this distribution are interval focal elements of
mX*°, Fromm>° and the rectangular road map, a $&t of

CRs is selected. Lety, be the cardinal oR,. As there is no

mi({r'}) = 0 prior information on the vehicle position at time step= 0,
m;({r'}) = a;(1 - LY (7)  m?t* should be initialized as a vacuous mass functiorign
mi(Rg+1) = 1—ai(1—LY) The mass functiom is calculated using (7) and (8t

_ o can be calculated using (11) and (4). The final mass function
where {r'} is the complement ofr'} in Ry+1 and R0 s thus the result of the combination of , m%° and

?;} is a disc;ount_ing ?%Sfﬁi-der?t assogiated Wit? rl(:nad mf according to (10). For each CR € Ry, a state mass
e mass functioms, ™" Is the combination of alin;  fynction m>* is calculated as explained in IV-D.2.

using: s 2) Prediction : Mass functionsn$ andmf, on d; ; and
my = @;m;. (8) d9.x, €an be constructed using a triangular possibility distri-
Exploringm*«+1: using the state mass function, a mas?uuon’ built around ABS sensor and gyrometer respectively

Note thato, and oy are estimated thanks to specific static
tests. According to system (5), the mass functioffs, m$

be a multi valued function defined frofiR? to 27+ . . o :
P andmg can be combined in order to give rise to a predicted
mass functionn. **'/* with general focal elemernik}” ,  ].

by
. o . . i _ _ , kt1/k
ps([Xj1]) = {r’ /("7 € Ry and[r?] N [x}, 1] #0)}  Note here that, as inclusion functions are used, we may

(9) obtain non-optimized predicted focal elements.
Using ps, m**+1 and equation (4),mf’““ can be 3) GPS correction:Based on triangular possibility distri-
computedmfk+1 quantifies the part of belief oR;;  bution, a mass functiom} , may be constructed at time
given by the state, independently of the topology andtepk + 1 on the GPS measurement vectql, ;. m*++! and
similarity criteria. *k+1/% are then combined conjunctively and give rise to

K2

function onRy. 1, notedmf’““, can be computed. Let



m., **'. The Waltz algorithmmay be used here in order to
contract the non-optimized focal elements. Note that the be
lief mass assigned fx; , ;] will be the product of the masses

assigned tdx;’], [0s1’], [60.x’] and[z],] [15]. Thereby,
my (D) = mit(xg]) - mi ([sC]) - mi ([e,7]) -
mz+1([z7]c+1])-

Algorithm 1 Belief State Map Matching algorithm

1. k « 0 and from the GPS measurement create a state mass fumaffénwith
p focal elements.

2: Construct rectangular r»oacﬂsi]v
3. ComputeRy = {r'/[r']N[x;] # 0} forj=1---p
4. mf”“ « vacuous mass function oR,
5. Constructm* using (7) and (8)
6: Computem **1 using (9) and (4)
7: mBe+1 — ml'k+1@m2k+1@mfk+1
8: Compute{m}* }::Rl’“ using (11) and (4)
9: loop
10:  Build m$, mQ andm®k+1 with p focal elements from sensors data
11: fori=1to ng, do
12: for j = 1topdo ) )
13: CavIchJIate[x;il’/k] using [f;JS,k]’ (6% 1] and (5)
14: bl = byl NlEgd
15: [xied 1] Waltz(xi,7), [xicd ], 67,0, 167, (5)) ,
16: m T (D) = miR (7)) - mE (Bs”]) - mE (80,07 ]) -
miﬁ»l([zgﬁq])- .
17: if the distance between the center[gf’’] and a node or a shape point
of the roadr” is less thenyg ;, then ) o
18: Ryy1 — Ry U {’I‘L/(’I‘L”nked tor®, [T‘l] n [x;cil] # @)}
19: Computem?””rl using (4) and (6)
20: end if .
21: Computem, **1 using (11) and (4)
22: endfor
23: Computem., **1 using (7) and (8)
24: Computemn, **1 using (9) and (4)
25:  end for R r n
260 mfr+1 — my k+1@m2 L @m P
27:  Chose the best road fromm%+1 using a decision rule of DS theory
28:  The estimate position on the best road is computed using (12)
29 k+—k+1
30: end loop

4) GIS correction: Regarding junctions situations, two
cases should be considered. ldétbe the distance from the

center of(x}’] to a node or shape point of andds ; be the

elementary movement given by the rear wheels ABS sensors,

then :

« If d'is less theris x, then it is possible that the vehicle B

leaves road (see figure 4). For this reason, the $at

of CRs must be changed to a $&t,; = R;US) where

S, is the set of all roads directly linked t6 and which

have an intersection with the focal elementsngf**":

Sk = {r!/(r! is linked tor and [r'] N [x}],] # 0)}.

The associated mass functiom’nf’“+1 computed from
the topology of the map is then calculated.

o If d* is higher tharis x, then Ry 1 = Ry.

The mass functiormf’“+1 resulting from the similarity
criterion is computed using (7) and (8)22**' can be
calculated using (11) and (4). The final mass functiof+
is thus computed using (10). For each €Rc Ry1, a state
mass functionm)**" is calculated as explained in IV-D.2.

5) Overall estimation:First the best road ok, 1 should

T

Fig. 5. Simulated road map.

Fig. 6. Result of BSMM method.

probability. Then, an estimation of the vehicle position on
the selected road should be calculated. This is done using
the state mass function associated to the selected road. Let
' be the best road of?; 1 andm;**' be the associated
state mass function. The estimation vehicle position-ois

given by

Xk1 = Z m; " ([XZ.]H]) "Gy (12)
J

wherec; is the center ofx}?,]. The BSMM algorithm is
presented in Algorithm 1.

V. APPLICATION

In this Section, we present the results of applying the
SMM algorithm on simulated Data. The vehicle position,
the heading, the elementary movement and the elementary
rotation were generated using the Matlab simulink toolbox.
The GPS measurement noise was supposed to be white with
o, =7 m ando, = 9 m. The noise in the input data (el-
ementary movement and elementary rotation) was supposed
to be white witho, = 1/4 m andoy = 0.002 degrees. In

this application, we assumed that the road parameters are
[ =1mandw = 6 m. The number of focal elements of
m*+, mSk, m®* andm?* is fixed top = 3.

The simulated map is showed in Figure 5. The vehicle tra-
jectory is plotted by bold lines and the roads are represente
by solid black lines. Figure 6 shows the result of the BSMM
method near the first junction of the simulated map. The GPS
positions are plotted bi#-) points and the estimated position

be selected usingn++1 and a decision rule of DS theory of the BSMM method are represented(®) points. The real
as the maximum plausibility or the maximum pignistictrajectory of the vehicle is plotted by dashed lines. Table |



k=82

Fig. 7. Results in the neighborhood of roads junction.
| GPS | BSE | BMM | BSMM | Quddus|
MSE onx (m) || 0.174] 0.130] 0.125] 0.090 0.127
MSE ony (m) || 0.227] 0.161| 0.164 | 0.140 0.163
TABLE |

MEAN SQUARE ERROR OFGPS, BMM, BSE, BSMMAND QUDDUS METHOD

shows a comparison between the results of BMM [8], BSlﬁ] E. Abdallah, A. Gning

position on the best road. As can be seen, at time/ste[3,
only one CR is kept and the other are eliminated by the
similarity criterion. As a conclusion, the BSMM method is
able to save all possible positions for eventual correctio
choose the most likely one by using a decision rule of DS
theory. In this application we select the road with the hiihe
pignistic probability.

VI. CONCLUSION

In this paper, a new method for map matching and state
estimate has been presented. This method used a belief
state estimation method in which model and measurement
uncertainties are represented by belief structures coatpos
of a finite number of axis-aligned boxes with associated
masses. The output of the belief state estimation method
are used under the Dempster-Shafer framework with a rect-
angular road map in order to select a set of candidate
roads and compute an accurate estimation of the vehicle
position. This method seems to be adequate to deal with
some crucial situations of the map matching problems like
multi hypothesis scenarios on junctions. Also, it uses be-
lief structures composed of a finite number of axis-aligned
boxes with associated masses for representing measurement
uncertainties which can model partial information on model
and measurement uncertainties, more accurately than the
bounded error approach alone. The implementation of this
method is quite simple using geometrical properties of Boxe
and rectangular roads map. Results on simulated data have
demonstrated the effectiveness of the proposed method.
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