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eAbstra
tA new tree-stru
tured 
lassi�er based on theDempster-Shafer theory of eviden
e is presented. Theentropy measure 
lassi
ally used to assess the impurityof nodes in de
ision trees is repla
ed by an eviden
e-theoreti
 un
ertainty measure taking into a

ount notonly the 
lass proportions, but also the number of ob-je
ts in ea
h node. The resulting algorithm allows thepro
essing of training data whose 
lass membership isonly partially spe
i�ed in the form of a belief fun
tion.Experimental results with EEG data are presented.1 Introdu
tionMost of the work in pattern re
ognition and ma
hinelearning has fo
used on the indu
tion of de
ision rulesfrom learning examples with known 
lassi�
ation. In
ertain real-world problems, however, su
h \perfe
t"information is not always available. Instead, one mayhave an \un
ertain" training set of obje
ts with par-tially known 
lassi�
ation. For instan
e, an expertor a group of experts may have expressed 
on
i
tingopinions regarding the 
lass of obje
ts 
ontained in adata base. In Ref. [3, 4℄, the Dempster-Shafer theoryof belief fun
tions was shown to provide a 
onvenientframework for dealing with su
h learning problems. Adistan
e-based approa
h was proposed, whereby a be-lief fun
tion for a pattern is 
onstru
ted by 
ombiningthe eviden
e of neighboring prototypes in a data set.This method was shown to behave equally well in thepresen
e of data with pre
ise or impre
ise 
lass labels.In this paper, the problem of learning from partially
lassi�ed data is addressed from a di�erent perspe
tiveusing a new approa
h to de
ision tree (DT) indu
tionbased on the theory of belief fun
tions [1℄. Like mosttree-based 
lassi�
ation te
hniques [2, 7℄, our method�Pro
. of SMC'2000, Nashville, O
t. 2000, IEEE.

re
ursively partitions the feature spa
e into subregions
orresponding to the leaves of the tree. The spe
i�
ityof the proposed algorithm lies in the splitting rule ap-plied at ea
h step, and in the pruning strategy, whi
huse 
on
epts from Eviden
e theory. At ea
h node tof the tree, we 
onstru
t a belief fun
tion quantifyingone's belief 
on
erning the 
lass of an example rea
h-ing t, using results by Smets 
on
erning parametri
inferen
e for the Bernouilli distribution in an Eviden-tial framework [10℄. The impurity of ea
h node is thenassessed using an eviden
e-theoreti
 un
ertainty mea-sure, whi
h happens to depend not only on the 
lassproportions in the node, but also on its size, thus al-lowing to 
ontrol the 
omplexity of the tree. An in-teresting feature of this method is its ability to dealwith training data, the 
lass membership of whi
h isun
ertain or impre
ise, and is des
ribed by a belieffun
tion.The paper is organized as follows. The ne
essary ba
k-ground on belief fun
tions and their use for statisti
alinferen
e is re
alled in Se
tion 2. Our method is thenexplained in Se
tion 3 and experimental results arepresented in Se
tion 4. Se
tion 5 
on
ludes the pa-per. Note that some familiarity of the reader withde
ision trees will be assumed throughout the paper.Two standard referen
es on this topi
 are the booksby Breiman et al. [2℄ and Quinlan [7℄.2 Ba
kground2.1 Belief fun
tionsA belief fun
tion on a �nite set 
 is a subadditivemeasure of the formbel(A) = X;6=B�
m(B) 8A � 
; (1)where m is a basi
 belief assignment, also 
alled abelief stru
ture (BS), i.e., a fun
tion from 2
 to [0; 1℄



verifying PA�
m(A) = 1: It 
an be shown that abelief fun
tion is indu
ed by a unique belief stru
ture,so that m and bel 
an be 
onsidered as di�erent formsof a single mathemati
al obje
t1.The idea of using belief fun
tions for modeling par-tial belief and reasoning under un
ertainty was intro-du
ed by Shafer [9℄. In the last 25 years, Shafer'swork gave rise to an important literature about the so-
alled Dempster-Shafer (D-S) theory, in whi
h belieffun
tions re
eived di�erent interpretations (e.g. in arandom set or an impre
ise probability setting), whi
hsometimes obs
ured the debate about their usefulnessand their relationship to Probability Theory [11℄. Inthis paper, we shall adopt the point of view of Smets'Transferable Belief Model (TBM), a non probabilisti
and subje
tivist interpretation of D-S theory in whi
hthe state of belief of a rational agent, with respe
tto a 
ertain question, is assumed to be representedby a belief fun
tion, de�ned independently from anyprobabilisti
 notion [11℄. This model postulates theexisten
e of two levels: a 
redal level at whi
h beliefsare entertained and updated in view of in
oming ev-iden
e, and a pignisti
 level in whi
h belief fun
tionsare 
onverted into probability fun
tions for de
isionmaking purposes.The basi
 me
hanism for 
ombining two belief fun
-tions indu
ed by distin
t information sour
es is Demp-ster's rule of 
ombination [9℄. This rule 
an be 
onve-niently expressed by means of 
ommonality fun
tions.The 
ommonality fun
tion q indu
ed by a BS m isde�ned as q(A) = XB�Am(B) 8A � 
: (2)If q1, q2 and q are the 
ommonality fun
tions indu
ed,respe
tively, by m1, m2 and m = m1 \m2 (the 
om-bination of m1 and m2), we have q(A) = q1(A)q2(A)for all A � 
, and m or bel may be re
overed from qusing simple formula [9, p. 41℄.At the pignisti
 level, a BS m is 
onverted into a so-
alled pignisti
 probability fun
tion BetP de�ned asBetP(!) = XfA�
;!2Ag m�(A)jAj ; (3)where m� is the normalized BS indu
ed by m (de�nedby m�(A) = m(A)=(1�m(;)) for A 6= ; and m�(;) =0), and jAj denotes the 
ardinality of A.The D-S framework 
an be ni
ely extended to the 
asewhere 
 = R by assigning basi
 probability masses to1The normality 
ondition m(;) = 0 originally imposed byShafer is not generally assumed in the TBM.


losed intervals [x; y℄ by means of a basi
 belief density(BBD) fun
tion m([x; y℄) (see, e.g., [10℄). Belief and
ommonality densities are then de�ned, respe
tively,as bel([a; b℄) = Z ba Z bx m([x; y℄)dxdy (4)q([a; b℄) = Z a0 Z 1b m([x; y℄)dxdy (5)and we havem([a; b℄) = ��2bel([a; b℄)�a�b = ��2q([a; b℄)�a�b : (6)Further essential material on belief fun
tions may befound in Refs. [9, 11℄.2.2 Beliefs indu
ed by Bernouilli trialsLet us assume that we have a random experiment (aBernouilli trial) with two out
omes (su

ess or fail-ure, denoted by S and F ), su
h as drawing a ballfrom an urn 
ontaining white and bla
k balls. Asso-
iated with this experimental setting is an obje
tiveprobability fun
tion P on 
 = fS; Fg. If it is knownthat P (S) = p, then one's belief that the out
ome willbe a su

ess 
an reasonably be assumed to be equalto p (this is 
alled the Ha
king Frequen
y prin
ipleby Smets [10℄). In most 
ases of interest, however,P is unknown, and all the available information re-sides in observed out
omes from n independent ex-periments (su
h as the 
olors of n balls drawn fromthe urn with repla
ement). Given su
h partial infor-mation, how 
an we 
ompute a belief fun
tion on 
quantifying one's belief that the next out
ome will bea su

ess ? An answer to this question was providedby Smets in the TBM framework [10℄. The argumentis te
hni
ally involved and only the main �ndings willbe summarized here. The reader is invited to refer toSmets' paper for a detailed presentation.Let P
 denote the set of probability fun
tions on 
,and W = P
 � 
. Sin
e 
 only has 2 elements,ea
h probability fun
tion P 2 P
 
an be indexedby P (S) 2 [0; 1℄, so that P
 
an be identi�ed withthe interval [0; 1℄. The basi
 idea is to dedu
e from�rst prin
iples (su
h as the Ha
king prin
iple) a BSmW on W quantifying one's beliefs in the absen
e ofany information. The impa
t of additional eviden
e(su
h as the observation of past out
omes) is then re-
e
ted by the updating of mW using Dempster's ruleof 
ombination, and a belief fun
tion m
 is dedu
ed
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ture of the domain of mW and oneexample of a fo
al element A(a) 
entered on a.by marginalization over 
. As shown by Smets, it fol-lows from simple requirements (in
luding the Ha
kingprin
iple) that the fo
al element ofmW are of the formA(a) = ([0; a)�fFg)[ ([a; 1℄�fSg); as illustrated inFigure 1. To simplify the notation, we shall denote bymW ([a; 1℄) the mass given to A(a). It may be shownthat mW ([a; 1℄) = 1 for all a 2 [0; 1℄. The followingfa
ts then result from the de�nition of mW .(1) Suppose we learn that the \true" probability fun
-tion P is su
h that a � P (S) � b. The impa
tof this eviden
e on mW is obtained by 
onditioning2mW on the 
ylindri
al extension of [a; b℄, de�ned by
yl([a; b℄) = [a; b℄ � 
; the BBD m(A) for A � Wis thus transferred to A \ 
yl([a; b℄). Let us denoteby bel
(Sj[a; b℄) the belief that the out
ome will be asu

ess, given that p 2 [a; b℄. This degree of belief isequal to the integral of all the BBD that tou
h only Safter 
onditioning on 
yl([a; b℄), whi
h leads tobel
(Sj[a; b℄) = Z a0 mW ([x; 1℄)dx = a: (7)(2) Suppose now that all you know is that an exper-iment has been 
arried out and a su

ess has beenobserved. The impa
t of this eviden
e is re
e
ted by
onditioning mW on S, whi
h has the e�e
t of trans-ferring the non-null BBD to the intervals [a; 1℄. The
ommonality fun
tion indu
ed on P
 is thenqP
([a; b℄jS) = a: (8)Similarly, if a single failure has observed, 
onditioningmW on F leads toqP
([a; b℄jF ) = 1� b: (9)(3) If n independent experiments have been per-formed, and r su

esses and s failures have been ob-served, the resulting 
ommonality fun
tion may be ob-tained, as a 
onsequen
e of Dempster's rule, by mul-tiplying the n 
orresponding 
ommonality fun
tions,2See [11℄ for a detailed presentation of the 
onditioning me
h-anism in the TBM.

leading to qP
([a; b℄jr; s) = ar(1� b)s: (10)By derivating this expression with respe
t to a andb a

ording to Eq. (6), we obtain after appropriatenormalization :mP
([a; b℄jr; s) = �(n+ 1)�(r)�(s)ar�1(1� b)s�1; (11)where � is the gamma fun
tion.(4) Finally, assume that you want to 
ompute the be-lief that the next out
ome will be a su

ess, given thatyou have already observed r su

esses and s failuresin n = r + s independent trial. We havebel
(Sjr; s) = Z 10 Z 1a bel
(Sj[a; b℄)mP
([a; b℄jr; s)dbda= rn+ 1 : (12)Similarly, we have bel
(F jr; s) = s=(n+1), and, 
onse-quently,m
(
jr; s) = 1=(n+1). Note that bel
(Sjr; s)tends to the true probability of su

ess when n tendsto in�nity.3 Appli
ation to DT indu
tion3.1 Prin
iples of DT indu
tionA de
ision tree (DT) is a sequential 
lassi�
ation pro-
edure in whi
h the attributes des
ribing an obje
tare examined one at a time until one rea
hes a de
i-sion regarding the assignment of the obje
t to a 
lass[2, 7℄. The root of a DT is the top node, and examplesare passed down the tree with de
isions being made atea
h node, until a terminal node, or leaf, is rea
hed.Ea
h leaf has a 
lass label, and ea
h example is 
las-si�ed by the label of the leaf it rea
hes. A DT thuspartitions the attribute spa
e in a hierar
hi
al man-ner.Usually, DT's are grown from a training set of exam-ples with known 
lassi�
ation, by su

essively split-ting leaves. The pro
ess stops when the tree 
lassi�es
orre
tly every learning example. In a noisy environ-ment, a pruning rule is generally applied to preventover�tting. DT indu
tion algorithms di�er essentiallyby the splitting rule and the pruning strategy used.A 
ommon strategy for splitting nodes is to de�ne an\impurity" measure for ea
h node and ask that 
hild



nodes be \purer" than their parent. A 
ommon impu-rity measure is the entropyi(t) = �Xj nj(t)n(t) log2 nj(t)n(t) ; (13)where nj(t) is the number of examples from 
lass jin node t, and n(t) is the size of node t. Consider a
andidate split s whi
h divides node t into tL and tR,su
h that a proportion pL of the 
ases go to tL and aproportion pR goes to tR. Then the goodness of thesplit may be de�ned as the de
rease in impurity:�i(s; t) = i(t)� pLi(tL)� pRi(tR): (14)For ea
h attribute, the best split is sear
hed for, andthe attribute allowing to redu
e the degree of impurityby the largest amount is sele
ted.3.2 The TBM approa
hIn this paper, we propose to re
onsider the problemof DT indu
tion using the TBM framework3. Let
 = f!1; !2g denote the set of 
lasses (only two-
lassproblems will be 
onsidered here; a way to deal withmulti-
lass problems will be brie
y dis
ussed in the se-quel). Let us assume for the moment that all trainingexamples have known 
lassi�
ation: among the learn-ing examples whi
h have rea
hed node t, it is knownthat n1(t) belong to 
lass 1, and n2(t) belong to 
lass2. Using the inferen
e me
hanism presented in Se
tion2.2, it is possible to use this information to determineour belief 
on
erning the 
lass of a previously unseenexample, if we only know that it has rea
hed note t.Using Eq. (12), this is de�ned asbel
(!j jt) = nj(t)n(t) + 1 ; j = 1; 2 (15)m
(
jt) = 1n(t) + 1 : (16)This belief fun
tion, with 
lear interpretation, maybe used to de�ne a new impurity measure. In thesame way that the Shannon entropy was used in Eq(13) to des
ribe the empiri
al probability fun
tionfnj(t)=n(t)g, we propose to use entropy-like 
riteriafor quantifying the un
ertainty of belief fun
tions [6℄.As remarked by Klir, a belief fun
tion a
tually modelstwo di�erent kinds of un
ertainty: nonspe
i�
ity and
on
i
t [6℄. For instan
e, the va
uous belief fun
tion3An alternative approa
h to de
ision tree generation inthe TBM framework has been investigated independently byElouedi et al. [5℄.

de�ned by m(
) has maximal nonspe
i�
ity but no
on
i
t, whereas the uniform probability fun
tion on
 has maximal 
on
i
t but is fully spe
i�
 (sin
e be-lief masses are assigned to singletons). A measure ofnonspe
i�
ity that appears to be well justi�ed isN(m) = XA�
m(A) log2 jAj; (17)whi
h is maximal for the va
uous BF, and 0 for prob-ability fun
tions. To quantify the degree of 
on
i
tin a belief fun
tion, several extensions of the Shannonentropy may be de�ned. One of these extensions isthe degree of dis
ord, de�ned byD(m) = �XA�
m(A) log2 BetP(A); (18)whi
h is maximal for the uniform probability distribu-tion on 
. A 
omposite measure of un
ertainty maybe de�ned using a 
onvex sum of N and D, of the formU�(m) = (1� �)N(m) + �D(m); (19)where � 2 [0; 1℄ is a positive 
oeÆ
ient (Klir proposesto give equal weights to both terms, but we shall seethat greater 
exibility may be useful).A measure of \impurity" or \un
ertainty" u�(t) for anode t is obtained by applying the un
ertainty mea-sure (19) to the BS de�ned by Eqs (15)-(16), whi
hleads tou�(t) = U�(m
(�jt))= 1� �n(t) + 1 � � 2Xj=1 nj(t)n(t) + 1 log2�2nj(t) + 1n(t) + 1 � :(20)Note that the �rst term in the left-hand side of theabove equation 
orresponds to the nonspe
i�
ity ofm
(�jt) and is a de
reasing fun
tion of n(t), whereasthe se
ond term depends on both the size of t, andthe 
lass proportions in t. We de�ne the goodness ofa split s as�u�(s; t) = u�(t)� pLu�(tL)� pRu�(tR);with the same notations as in Eq (14). Note that pa-rameter � allows to 
ontrol the tree growing strategy:low values of � penalize small nodes, whi
h leads toearly stopping of the tree growing pro
ess. In pra
ti
e,� may be determined by 
ross-validation (see Se
tion4).On
e the de
ision tree has been built, a BS m
(�jt) isasso
iated to ea
h leaf t. This BS quanti�es one's be-liefs regarding the 
lass of an arbitrary pattern rea
h-ing that leaf.



3.3 Handling of un
ertain labelsLet us now assume that we have a learning set of theform f(xi;mi); i = 1; ng, where xi is the feature ve
torfor example i, and mi is a BS on 
 des
ribing one'spartial knowledge regarding the 
lass of that example.The 
lassi
al situation of pre
ise labeling is re
overedwhen mi(f!g) = 1 for some ! 2 
. Complete ig-noran
e regarding the 
lass membership 
orrespondsto mi(
) = 1. We 
an thus model a whole range ofsituations from fully supervised to fully unsupervisedlearning.To see how this more general learning problem 
anbe solved by our method, let us return to the infer-ential framework de�ned in Se
tion 2.2. Suppose thatwe have performed n independent Bernouilli experi-ments, but that the out
omes 
ould only be partiallyobserved (for example, the urn experiment was ob-served at a distan
e, so that the results of some trials
ould only be partially observed). Let mi be the BSdes
ribing one's belief 
on
erning the result of exper-iment i. Then Eqs (8) and (9) should be repla
ed byqP
([a; b℄jmi) = ami(S) + (1� b)mi(F ) +mi(
):After 
ombining the eviden
e from the n experimentsby Dempster's rule we getqP
([a; b℄jm1; : : : ;mn) = nYi=1 qP
([a; b℄jmi)= Xj+k�n �jkaj(1� b)k; (21)where the �jk are 
oeÆ
ients depending only on themi (the 
oeÆ
ients 
an easily be 
omputed by indu
-tion on n). After derivation and integration as in Eqs(11) and (12), we �nally obtainbel(Sjm1; : : : ;mn) = Xj+k�n�jk jj + k + 1 ; (22)and similar expression for bel(F jm1; : : : ;mn) andm(
jm1; : : : ;mn).This result 
an be immediately transferred to the 
on-text of DT generation. Let us assume that we haven(t) examples in node t, with labels mi, i = 1; nt.Then Eq (22) allows the 
al
ulation of a BF bel
(�jt)quantifying our belief 
on
erning the 
lass of an exam-ple rea
hing node t. The impurity measure for node tis de�ned as above. It 
an be veri�ed that unlabeledexamples (i.e., examples su
h that mi(
) = 1) 
an beadded to or removed from node t without 
hangingthe value of u�(t), as it should be, sin
e su
h exam-ples 
arry no information regarding the 
lassi�
ationproblem at hand.

Table 1: Results with 
risp and un
ertain 
lass labels.
risp labels un
. labelserror rate 0.35 0.34E 0.26 0.224 ResultsDetailed results from preliminary experiments withthe above method are given in [1℄. These resultsare only brie
y summarized here. The learning task
onsidered was to dete
t di�erent waveforms in sleepele
troen
ephalogram (EEG) data, and in parti
ularto dis
riminate between K-
omplex and delta wave-forms. For a thorough presentation of this problem,see [8℄. The data used in this experiment were EEGsignals measured 64 times during 2-se
ond intervalsfor one person during sleep4. Ea
h obje
t was thendes
ribed by 64 attributes. Sin
e the K-
omplex pat-tern is diÆ
ult to dete
t visually even by domain ex-perts, �ve physi
ians were asked to inspe
t graphi
aldisplays of the data and state whether they believeda K-
omplex signal was present or not. As the ex-perts did not always agree on the 
lassi�
ation, thisintrodu
ed un
ertainty in the labeling of the obje
ts.Our data base 
onsisted of (1) EEG patterns 
lassi�edin the K-
omplex 
lass by at least one expert, and (2)delta wave patterns, whi
h are known to bear some re-semblan
e with K-
omplex waves, although they arerelated to di�erent phenomena. One of the data sets
onsidered in our study was 
omposed of 50 delta wavepatterns, and 100 K-
omplex pattern, of whi
h onlyone half had been 
lassi�ed as su
h by a majority ofexperts.Un
ertain 
lass labels were assigned to the training ex-amples in the following manner. Let !1 and !2 denote,respe
tively, the delta wave and the K-
omplex 
lass.Delta wave examples 
ertainly belong to that 
lass andwere assigned labels mi with mi(f!1g) = 1. For theK-
omplex patterns, the proportion q of experts 
las-sifying ea
h example i in the K-
omplex 
lass was usedto de�ne a BS mi assigning the mass mi(f!2g) = q tothat 
lass, and the rest of the mass to 
.The measurement of 
lassi�
ation eÆ
ien
y is not easyin su
h a 
ontext, be
ause, in the 
ase of data with un-
ertain 
lass membership, disagreement between the4These data 
ome from the Foundation for Applied Neuro-s
ien
e Resear
h in Psy
hiatry in Rou�a
h, Fran
e, and wereprovided to us by C. Ri
hard and R. Lengell�e from Universit deTe
hnologie de Troyes.




lassi�er output and the 
lass label does not ne
es-sarily indi
ate an error. Intuitively, errors made forpatterns whose 
lass membership is un
ertain should\
ount less" than errors made for patterns with 
om-pletely known 
lassi�
ation. With this in mind, thefollowing error 
riterion was introdu
ed:E = 1n0 n0Xi=1(1�[BetPi(mi)); (23)where n0 is the size of the test set, [BetPi is the pignisti
fun
tion indu
ed by the output BS bmi for test examplei, and [BetPi(mi) is de�ned as[BetPi(mi) = XA�
mi(A)[BetPi(A): (24)Note that examples i su
h that mi(
) = 1 have zero
ontribution to the sum in Eq (23), and therefore donot parti
ipate in the performan
e evaluation.We used a 5-fold 
ross-validation to �nd the value of� providing the optimal tree in ea
h 
ase, and to eval-uate the performan
e of that tree. Table 1 shows the
ross-validation estimates of our method both in termsof standard error rate and generalized error rate de-�ned in Eq (23). Also shown in this table are the re-sults obtained with our method when the un
ertaintyin the 
lass labels was ignored, i.e., the learning ex-amples being then assigned 
risp labels regardless ofthe un
ertainty pertaining to the 
lass membership ofthese examples. The error rate of our method ap-plied to data with 
risp label (35 %) is equivalent tothat of Quinlan's C4.5 algorithm (not shown in Table1). However, taking into a

ount the un
ertainty in
lass labels (whi
h is not possible using standard DTgeneration te
hniques) does improve the 
lassi�
ationperforman
e for this problem, marginally in terms oferror rate, but signi�
antly in term of the more mean-ingful error measure de�ned here.5 Con
lusionsA new tree-stru
tured 
lassi�er based on theDempster-Shafer theory of eviden
e has been de-s
ribed. The method is appli
able to partially 
las-si�ed data, in whi
h the 
lass labels are provided inthe form of belief fun
tions. On
e a de
ision tree hasbeen built, the method allows to 
ompute a belieffun
tion des
ribing the un
ertainty pertaining to the
lass of any pattern under 
onsideration. Althoughthe method was presented in the 
ase of two 
lasses,

it 
an be applied to more general situations by 
on-verting a 
-
lass problem (with 
 > 2) into severaltwo-
lass problems, and 
ombining the results at thebelief fun
tion level.Referen
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