Induction of decision trees from partially classified data
using belief functions*

T. Denceux and M. Skarstein Bjanger
Université de Technologie de Compiegne
UMR CNRS 6599 Heudiasyc
BP 20529 F-60205 Compiegne cedex, France

Abstract

A new tree-structured classifier based on the
Dempster-Shafer theory of evidence is presented. The
entropy measure classically used to assess the impurity
of nodes in decision trees is replaced by an evidence-
theoretic uncertainty measure taking into account not
only the class proportions, but also the number of ob-
jects in each node. The resulting algorithm allows the
processing of training data whose class membership is
only partially specified in the form of a belief function.
Experimental results with EEG data are presented.

1 Introduction

Most of the work in pattern recognition and machine
learning has focused on the induction of decision rules
from learning examples with known classification. In
certain real-world problems, however, such “perfect”
information is not always available. Instead, one may
have an “uncertain” training set of objects with par-
tially known classification. For instance, an expert
or a group of experts may have expressed conflicting
opinions regarding the class of objects contained in a
data base. In Ref. [3, 4], the Dempster-Shafer theory
of belief functions was shown to provide a convenient
framework for dealing with such learning problems. A
distance-based approach was proposed, whereby a be-
lief function for a pattern is constructed by combining
the evidence of neighboring prototypes in a data set.
This method was shown to behave equally well in the
presence of data with precise or imprecise class labels.
In this paper, the problem of learning from partially
classified data is addressed from a different perspective
using a new approach to decision tree (DT) induction
based on the theory of belief functions [1]. Like most
tree-based classification techniques [2, 7], our method
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recursively partitions the feature space into subregions
corresponding to the leaves of the tree. The specificity
of the proposed algorithm lies in the splitting rule ap-
plied at each step, and in the pruning strategy, which
use concepts from Evidence theory. At each node t
of the tree, we construct a belief function quantifying
one’s belief concerning the class of an example reach-
ing t, using results by Smets concerning parametric
inference for the Bernouilli distribution in an Eviden-
tial framework [10]. The impurity of each node is then
assessed using an evidence-theoretic uncertainty mea-
sure, which happens to depend not only on the class
proportions in the node, but also on its size, thus al-
lowing to control the complexity of the tree. An in-
teresting feature of this method is its ability to deal
with training data, the class membership of which is
uncertain or imprecise, and is described by a belief
function.

The paper is organized as follows. The necessary back-
ground on belief functions and their use for statistical
inference is recalled in Section 2. Our method is then
explained in Section 3 and experimental results are
presented in Section 4. Section 5 concludes the pa-
per. Note that some familiarity of the reader with
decision trees will be assumed throughout the paper.
Two standard references on this topic are the books
by Breiman et al. [2] and Quinlan [7].

2 Background

2.1 Belief functions

A belief function on a finite set © is a subadditive
measure of the form

bel(4) = > m(B) VACQ, (1)
P#£BCQ

where m is a basic belief assignment, also called a
belief structure (BS), i.e., a function from 29 to [0, 1]



verifying Y ,om(A4) = 1. It can be shown that a
belief function is induced by a unique belief structure,
so that m and bel can be considered as different forms
of a single mathematical object!.

The idea of using belief functions for modeling par-
tial belief and reasoning under uncertainty was intro-
duced by Shafer [9]. In the last 25 years, Shafer’s
work gave rise to an important literature about the so-
called Dempster-Shafer (D-S) theory, in which belief
functions received different interpretations (e.g. in a
random set or an imprecise probability setting), which
sometimes obscured the debate about their usefulness
and their relationship to Probability Theory [11]. In
this paper, we shall adopt the point of view of Smets’
Transferable Belief Model (TBM), a non probabilistic
and subjectivist interpretation of D-S theory in which
the state of belief of a rational agent, with respect
to a certain question, is assumed to be represented
by a belief function, defined independently from any
probabilistic notion [11]. This model postulates the
existence of two levels: a credal level at which beliefs
are entertained and updated in view of incoming ev-
idence, and a pignistic level in which belief functions
are converted into probability functions for decision
making purposes.

The basic mechanism for combining two belief func-
tions induced by distinct information sources is Demp-
ster’s rule of combination [9]. This rule can be conve-
niently expressed by means of commonality functions.
The commonality function ¢ induced by a BS m is
defined as

g(A) = > m(B) VACQ. (2)
BDA

If ¢1, ¢o and g are the commonality functions induced,
respectively, by my, ms and m = my N ms (the com-
bination of my and ms»), we have g(A) = ¢1(A)g2(A)
for all A C Q, and m or bel may be recovered from ¢
using simple formula [9, p. 41].

At the pignistic level, a BS m is converted into a so-
called pignistic probability function BetP defined as

Z m*(A) ’ 3)

{ACQweA}

BetP(w) =

where m* is the normalized BS induced by m (defined
by m*(A) = m(A)/(1 —m(0)) for A # 0 and m*(0) =
0), and |A| denotes the cardinality of A.

The D-S framework can be nicely extended to the case
where 2 = R by assigning basic probability masses to

IThe normality condition m (@) = 0 originally imposed by
Shafer is not generally assumed in the TBM.

closed intervals [z, y] by means of a basic belief density
(BBD) function m([z,y]) (see, e.g., [10]). Belief and
commonality densities are then defined, respectively,
as

b b
bel(o ) = [ [ mesdody @)

a(la,B]) = / ' / m (e y])dady (5)

and we have

Further essential material on belief functions may be
found in Refs. [9, 11].

2.2 Beliefs induced by Bernouilli trials

Let us assume that we have a random experiment (a
Bernouilli trial) with two outcomes (success or fail-
ure, denoted by S and F'), such as drawing a ball
from an urn containing white and black balls. Asso-
ciated with this experimental setting is an objective
probability function P on @ = {S,F}. If it is known
that P(S) = p, then one’s belief that the outcome will
be a success can reasonably be assumed to be equal
to p (this is called the Hacking Frequency principle
by Smets [10]). In most cases of interest, however,
P is unknown, and all the available information re-
sides in observed outcomes from n independent ex-
periments (such as the colors of n balls drawn from
the urn with replacement). Given such partial infor-
mation, how can we compute a belief function on
quantifying one’s belief that the next outcome will be
a success ? An answer to this question was provided
by Smets in the TBM framework [10]. The argument
is technically involved and only the main findings will
be summarized here. The reader is invited to refer to
Smets’ paper for a detailed presentation.

Let Pq denote the set of probability functions on €,
and W = Pq x Q. Since 2 only has 2 elements,
each probability function P € Pgo can be indexed
by P(S) € [0,1], so that Pq can be identified with
the interval [0,1]. The basic idea is to deduce from
first principles (such as the Hacking principle) a BS
my on W quantifying one’s beliefs in the absence of
any information. The impact of additional evidence
(such as the observation of past outcomes) is then re-
flected by the updating of my using Dempster’s rule
of combination, and a belief function mq is deduced
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Figure 1: Structure of the domain of my and one
example of a focal element A(a) centered on a.

by marginalization over . As shown by Smets, it fol-
lows from simple requirements (including the Hacking
principle) that the focal element of my are of the form
A(a) = ([0,a) x {F'}) U ([a, 1] x {S}), as illustrated in
Figure 1. To simplify the notation, we shall denote by
mw ([a, 1]) the mass given to A(a). It may be shown
that mw ([a,1]) = 1 for all @ € [0,1]. The following
facts then result from the definition of myy.

(1) Suppose we learn that the “true” probability func-
tion P is such that ¢ < P(S) < b. The impact
of this evidence on myy is obtained by conditioning?
mw on the cylindrical extension of [a,b], defined by
cyl([a,b]) = [a,b] x Q; the BBD m(A) for A C W
is thus transferred to A N cyl([a,b]). Let us denote
by bela(S|[a, b]) the belief that the outcome will be a
success, given that p € [a,b]. This degree of belief is
equal to the integral of all the BBD that touch only S
after conditioning on cyl([a, b]), which leads to

belg (S|[a, b)) = /OamW([x, Ndz =a.  (7)

(2) Suppose now that all you know is that an exper-
iment has been carried out and a success has been
observed. The impact of this evidence is reflected by
conditioning my on S, which has the effect of trans-
ferring the non-null BBD to the intervals [a,1]. The
commonality function induced on Pg is then

qpo([a,b]]S) = a. (8)

Similarly, if a single failure has observed, conditioning
myw on F leads to

gpo([a, b]|F) =1 —b. (9)

(3) If n independent experiments have been per-
formed, and r successes and s failures have been ob-
served, the resulting commonality function may be ob-
tained, as a consequence of Dempster’s rule, by mul-
tiplying the n corresponding commonality functions,

2See [11] for a detailed presentation of the conditioning mech-
anism in the TBM.

leading to
pa([a,b]lr,s) = a”(1 - b)*. (10)

By derivating this expression with respect to a and
b according to Eq. (6), we obtain after appropriate
normalization :

mPQ([aa b]|7.’ S) =

where I is the gamma function.

(4) Finally, assume that you want to compute the be-
lief that the next outcome will be a success, given that
you have already observed r successes and s failures
in n = r + s independent trial. We have

1ol
belg(S|r,s):/ / belq (S|[a, b])mp,([a, b]|r, s)dbda
0 a
T
n+1

(12)

Similarly, we have belq(F|r, s) = s/(n+1), and, conse-
quently, mq (Q|r, s) = 1/(n+1). Note that belg(S|r, s)
tends to the true probability of success when n tends
to infinity.

3 Application to DT induction

3.1 Principles of DT induction

A decision tree (DT) is a sequential classification pro-
cedure in which the attributes describing an object
are examined one at a time until one reaches a deci-
sion regarding the assignment of the object to a class
[2, 7]. The root of a DT is the top node, and examples
are passed down the tree with decisions being made at
each node, until a terminal node, or leaf, is reached.
Each leaf has a class label, and each example is clas-
sified by the label of the leaf it reaches. A DT thus
partitions the attribute space in a hierarchical man-
ner.

Usually, DT’s are grown from a training set of exam-
ples with known classification, by successively split-
ting leaves. The process stops when the tree classifies
correctly every learning example. In a noisy environ-
ment, a pruning rule is generally applied to prevent
overfitting. DT induction algorithms differ essentially
by the splitting rule and the pruning strategy used.
A common strategy for splitting nodes is to define an
“impurity” measure for each node and ask that child



nodes be “purer” than their parent. A common impu-
rity measure is the entropy

: ni(t), ni(t)

where n;(f) is the number of examples from class j
in node ¢, and n(t) is the size of node ¢. Consider a
candidate split s which divides node ¢ into ¢, and tg,
such that a proportion pr of the cases go to {7 and a
proportion pg goes to tg. Then the goodness of the
split may be defined as the decrease in impurity:

Ai(s,t) =i(t) — pri(tr) — pri(tr). (14)

For each attribute, the best split is searched for, and
the attribute allowing to reduce the degree of impurity
by the largest amount is selected.

3.2 The TBM approach

In this paper, we propose to reconsider the problem
of DT induction using the TBM framework®. Let
Q = {w1, w2} denote the set of classes (only two-class
problems will be considered here; a way to deal with
multi-class problems will be briefly discussed in the se-
quel). Let us assume for the moment that all training
examples have known classification: among the learn-
ing examples which have reached node ¢, it is known
that nq(t) belong to class 1, and ns(t) belong to class
2. Using the inference mechanism presented in Section
2.2, it is possible to use this information to determine
our belief concerning the class of a previously unseen
example, if we only know that it has reached note ¢.
Using Eq. (12), this is defined as

belg(w;|t) = #(’21 j=12  (15)
ma(Qlt) = ﬁ (16)

This belief function, with clear interpretation, may
be used to define a new impurity measure. In the
same way that the Shannon entropy was used in Eq
(13) to describe the empirical probability function
{n;(t)/n(t)}, we propose to use entropy-like criteria
for quantifying the uncertainty of belief functions [6].
As remarked by Klir, a belief function actually models
two different kinds of uncertainty: nonspecificity and
conflict [6]. For instance, the vacuous belief function

3An alternative approach to decision tree generation in
the TBM framework has been investigated independently by
Elouedi et al. [5].

defined by m(Q) has maximal nonspecificity but no
conflict, whereas the uniform probability function on
Q has maximal conflict but is fully specific (since be-
lief masses are assigned to singletons). A measure of
nonspecificity that appears to be well justified is

N(m)=">" m(A)log, A, (17)
ACQ

which is maximal for the vacuous BF, and 0 for prob-
ability functions. To quantify the degree of conflict
in a belief function, several extensions of the Shannon
entropy may be defined. One of these extensions is
the degree of discord, defined by

D(m) = - ) _ m(A)log, BetP(4), (18)
ACQ

which is maximal for the uniform probability distribu-
tion on 2. A composite measure of uncertainty may
be defined using a convex sum of N and D, of the form

Un(m) = (1 = \)N(m) + AD(m), (19)

where A € [0,1] is a positive coefficient (Klir proposes
to give equal weights to both terms, but we shall see
that greater flexibility may be useful).

A measure of “impurity” or “uncertainty” uy(¢) for a
node t is obtained by applying the uncertainty mea-
sure (19) to the BS defined by Eqs (15)-(16), which
leads to

ux(t) = Ux(ma(-|t))
_1-h s () (1) +1
S Ajzln(t)Hlogz( n(t) + 1 )
(20)

Note that the first term in the left-hand side of the
above equation corresponds to the nonspecificity of
mq(-|t) and is a decreasing function of n(t), whereas
the second term depends on both the size of ¢, and
the class proportions in ¢. We define the goodness of
a split s as

Auy(s,t) = ur(t) — prua(ty) — prua(tr),

with the same notations as in Eq (14). Note that pa-
rameter A allows to control the tree growing strategy:
low values of A penalize small nodes, which leads to
early stopping of the tree growing process. In practice,
A may be determined by cross-validation (see Section
4).

Once the decision tree has been built, a BS mgq(+|t) is
associated to each leaf t. This BS quantifies one’s be-
liefs regarding the class of an arbitrary pattern reach-
ing that leaf.



3.3 Handling of uncertain labels

Let us now assume that we have a learning set of the
form {(x;,m;),i = 1,n}, where x; is the feature vector
for example i, and m; is a BS on  describing one’s
partial knowledge regarding the class of that example.
The classical situation of precise labeling is recovered
when m;({w}) = 1 for some w € Q. Complete ig-
norance regarding the class membership corresponds
to m;(2) = 1. We can thus model a whole range of
situations from fully supervised to fully unsupervised
learning.

To see how this more general learning problem can
be solved by our method, let us return to the infer-
ential framework defined in Section 2.2. Suppose that
we have performed n independent Bernouilli experi-
ments, but that the outcomes could only be partially
observed (for example, the urn experiment was ob-
served at a distance, so that the results of some trials
could only be partially observed). Let m; be the BS
describing one’s belief concerning the result of exper-
iment 5. Then Eqs (8) and (9) should be replaced by

gpo([a, b]lmi) = am;(S) + (1 — b)ym;(F) + m;(2).

After combining the evidence from the n experiments
by Dempster’s rule we get

apo([a, b]|ma, . ..

amn) = H QPQ([av b]|ml)
> ajal (1-b)k,

J+k<n

(21)

where the o are coefficients depending only on the
m,; (the coefficients can easily be computed by induc-
tion on n). After derivation and integration as in Eqs
(11) and (12), we finally obtain

J
m) = ¥ et (22)
ithen j+k+1

bel(S|m, ...

and similar expression for bel(F|my,...
m(Qma, ... ,my).

,My,) and

This result can be immediately transferred to the con-
text of DT generation. Let us assume that we have
n(t) examples in node ¢, with labels m;, i = 1,n;.
Then Eq (22) allows the calculation of a BF belq (-|t)
quantifying our belief concerning the class of an exam-
ple reaching node ¢. The impurity measure for node ¢
is defined as above. It can be verified that unlabeled
examples (i.e., examples such that m;(2) = 1) can be
added to or removed from node t without changing
the value of uy(¢), as it should be, since such exam-
ples carry no information regarding the classification
problem at hand.

Table 1: Results with crisp and uncertain class labels.

crisp labels unc. labels
error rate 0.35 0.34
E 0.26 0.22

4 Results

Detailed results from preliminary experiments with
the above method are given in [1]. These results
are only briefly summarized here. The learning task
considered was to detect different waveforms in sleep
electroencephalogram (EEG) data, and in particular
to discriminate between K-complex and delta wave-
forms. For a thorough presentation of this problem,
see [8]. The data used in this experiment were EEG
signals measured 64 times during 2-second intervals
for one person during sleep*. Each object was then
described by 64 attributes. Since the K-complex pat-
tern is difficult to detect visually even by domain ex-
perts, five physicians were asked to inspect graphical
displays of the data and state whether they believed
a K-complex signal was present or not. As the ex-
perts did not always agree on the classification, this
introduced uncertainty in the labeling of the objects.
Our data base consisted of (1) EEG patterns classified
in the K-complex class by at least one expert, and (2)
delta wave patterns, which are known to bear some re-
semblance with K-complex waves, although they are
related to different phenomena. One of the data sets
considered in our study was composed of 50 delta wave
patterns, and 100 K-complex pattern, of which only
one half had been classified as such by a majority of
experts.

Uncertain class labels were assigned to the training ex-
amples in the following manner. Let w; and ws denote,
respectively, the delta wave and the K-complex class.
Delta wave examples certainly belong to that class and
were assigned labels m; with m;({w:1}) = 1. For the
K-complex patterns, the proportion ¢ of experts clas-
sifying each example i in the K-complex class was used
to define a BS m; assigning the mass m;({w2}) = ¢ to
that class, and the rest of the mass to 2.

The measurement of classification efficiency is not easy
in such a context, because, in the case of data with un-
certain class membership, disagreement between the

4These data come from the Foundation for Applied Neuro-
science Research in Psychiatry in Rouffach, France, and were
provided to us by C. Richard and R. Lengellé from Universit de
Technologie de Troyes.



classifier output and the class label does not neces-
sarily indicate an error. Intuitively, errors made for
patterns whose class membership is uncertain should
“count less” than errors made for patterns with com-
pletely known classification. With this in mind, the
following error criterion was introduced:

!
n

1 —
E=— > (1 = BetP;(m,)), (23)
i=1
where n' is the size of the test set, B/eHDi is the pignistic
function induced by the output BS m; for test example

i, and @i(mi) is defined as

BetP;(m;) = > mi(A)BetP;(A). (24)
ACQ

Note that examples i such that m;(2) = 1 have zero
contribution to the sum in Eq (23), and therefore do
not participate in the performance evaluation.

We used a 5-fold cross-validation to find the value of
A providing the optimal tree in each case, and to eval-
uate the performance of that tree. Table 1 shows the
cross-validation estimates of our method both in terms
of standard error rate and generalized error rate de-
fined in Eq (23). Also shown in this table are the re-
sults obtained with our method when the uncertainty
in the class labels was ignored, i.e., the learning ex-
amples being then assigned crisp labels regardless of
the uncertainty pertaining to the class membership of
these examples. The error rate of our method ap-
plied to data with crisp label (35 %) is equivalent to
that of Quinlan’s C4.5 algorithm (not shown in Table
1). However, taking into account the uncertainty in
class labels (which is not possible using standard DT
generation techniques) does improve the classification
performance for this problem, marginally in terms of
error rate, but significantly in term of the more mean-
ingful error measure defined here.

5 Conclusions

A new tree-structured classifier based on the
Dempster-Shafer theory of evidence has been de-
scribed. The method is applicable to partially clas-
sified data, in which the class labels are provided in
the form of belief functions. Once a decision tree has
been built, the method allows to compute a belief
function describing the uncertainty pertaining to the
class of any pattern under consideration. Although
the method was presented in the case of two classes,

it can be applied to more general situations by con-
verting a c-class problem (with ¢ > 2) into several
two-class problems, and combining the results at the
belief function level.
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