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Abstract – A methodology is proposed for assessing

the risk to produce non-compliant potable water, taking

into account the quality of the raw water, as well as

characteristics of the treatment unit and different fail-

ure modes. Belief functions are used to describe expert

knowledge of treatment process efficiency, failure rates,

latency times and raw water quality. Evidential rea-

soning provides mechanisms to combine this informa-

tion and assess the plausibility of non-compliant water

production. This approach may be used by treatment

plant designers to choose the optimal architecture, given

a user-defined level of residual risk.
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1 Problem description and prob-

abilistic solution
To manage the risk due to drinking water treatment

process, it is fundamental to take into account the de-
sign and good dimensioning of the plant, during con-
struction or rehabilitation steps. It is thus of primary
importance to define the efficient but just necessary pro-
cess line which will make it possible to lower the raw
water quality parameters below the standards set by
contractual clauses or by regulation.

The probabilistic approach described in [2] allows to
define the probability of the undesirable event “produc-
tion of non-compliant water”, by taking into account the
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quality of the resource to be treated (i.e., the estimated
probability to find a given concentration of an undesir-
able component), characteristics of the treatment unit
(efficiency of the treatment steps), as well as different
failure modes that can occur in the process line (failure
rate and latency time of each failure mode).

Initially, the efficiency of each basic treatment step
over each quality parameter is modelled by a trans-
fer function, which gives the output concentration as a
function of the input concentration for the correspond-
ing quality parameter. In most cases, it is equivalent
to a reduction factor (exceptions are undesirable com-
ponents that can be introduced in treated water by the
treatment process itself).

The second step of the approach consists in deter-
mining the failure modes that can affect the different
treatment steps, synthesized in FMECA (Failure Mode
Effects and Criticality Analyses) arrays, allowing to
clearly identify, for each fault, possible causes, failure
rate, detection means, corresponding latency time, qual-
itative effects, and finally the degraded transfer func-
tion, which is equivalent to a new reduction factor,
smaller than or equal to the nominal reduction.

The third step allows to define acceptable water qual-
ity thresholds for raw water: by inversion of all global
transfer functions (nominal and degraded ones), and by
application of these inverse functions on all treated wa-
ter thresholds (national regulation and internal recom-
mendations), it is possible to define a series of thresh-
olds now relative to raw water quality: if one or more
raw water quality parameters exceeds the corresponding
threshold, a scenario of non-compliant treated water is



identified. Such scenarios are then synthesized by fault
trees for each quality standard.

Finally, a global indicator of compliant water unavail-
ability is calculated using the probability of the elemen-
tary events (unavailability of treatment steps and prob-
ability for the resource to exceed the different thresh-
olds). This unavailability indicator is compared to the
objective risk level, which allows to define an effective
treatment line minimizing sanitary and financial risks.

However, one major difficulty in applying risk assess-
ment methods in the environmental engineering domain
is that basic data are not perfectly known and are of-
ten determined by expert judgment with a high level of
uncertainty. We therefore propose to model the uncer-
tainty on raw water quality, process line efficiency and
state of the treatment plant (nominal or failure mode)
in the belief function framework. This framework was
chosen because of its flexibility for representing weak
forms of knowledge, and because it generalizes Prob-
ability Theory, allowing to recover the classical results
when all required data are available. Belief functions are
used to describe expert knowledge of treatment steps
efficiency, failure rates, latency times and raw water
quality. By combining these basic belief functions, it
is possible to obtain an assessment of the plausibility to
produce non-compliant water.

2 Modeling uncertainties
As previously mentioned, the probabilistic solution

assumes the availability of precise and complete prior
knowledge of transfer function, failures rates and la-
tency times, as well as enough historical data to estimate
the distribution of water quality parameters. However,
such knowledge and data are usually not available, in
particular in the case of call for bids, where a proposal
must be submitted based on partial information. More-
over, transfer functions, latency times and failure rates
can only be obtained by laboratory tests, expert knowl-
edge or feedback from operational sites, which generally
does not allow to obtain reliable estimates for a specific
site. This is why an approach integrating these various
uncertainties was developed, using the belief function
framework.

2.1 Notations and background

The interpretation of belief functions adopted in
this paper is that of Smets’ Transferable Belief Model
(TBM) [8]. In this model, a belief function is under-
stood as representing an agent’s state of belief, without
resorting to an underlying probability model. Only the
essential definitions and specific notations will be given
here. A detailed exposition of the TBM may be found
in [8]. A basic belief assignment (bba) on domain (or
frame of discernment) X is noted mX (for convenience,
we use the same notation X for a variable and its do-
main). It is defined as a function from the powerset

2X of X to [0, 1] verifying
∑

A⊆X mX(A) = 1. The
corresponding belief and plausibility functions are de-
fined, respectively, as: belX(A) =

∑
∅6=B⊆A mX(B) and

plX(A) =
∑

B∩A6=∅ mX(B).

Given a bba mX×Y defined on the Cartesian product
of two domains X and Y , the marginal bba mX×Y ↓X

on X is defined, for all A ⊆ X , as

mX×Y ↓X(A) =
∑

{B⊆X×Y | Proj(B↓X)=A}

mX×Y (B),

(1)
where Proj(B ↓ X) denotes the projection of B onto
X , defined as

Proj(B ↓ X) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ B} . (2)

Conversely, let mX be a bba on X . Its vacuous exten-

sion on X × Y is defined as:

mX↑X×Y (B) =





mX(A) if B = A × Y,
for some A ⊆ X,

0 otherwise.
(3)

Another useful notion is that of ballooning extension [7].
Let mX [y] denote the conditional bba on X, given that
Y = y. The ballooning extension of mX [y] on X × Y is
the least committed bba, whose conditioning on y yields
mX [y] (see [7] for detailed justification). It is obtained
for all B ⊆ X × Y as:

mX [y]⇑X×Y (B) =

{
mX [y](A) if B = C
0 otherwise

(4)

where C = (A×{y})∪ (X× (Y \{y})) for some A ⊆ X .
Let us now consider two bba’s mX

1 and mX
2 induced

by two distinct sources of information. If both sources
are known to be reliable, they can be combined using the
(unnormalized) Dempster’s rule of combination, leading
to a new bba mX

1 ∩©2 = mX
1 ∩©mX

2 , defined as:

mX
1 ∩©2(A) =

∑

B∩C=A

mX
1 (B)mX

2 (C). (5)

Finally, the TBM is based on a two level mental model:
the credal level where beliefs are entertained and repre-
sented by belief functions, and the pignistic level where
decisions are made. The pignistic transformation maps
a bba mX to a probability measure BetP X on X , de-
fined as:

BetP X(A) =
∑

B⊆X

mX(B)

1 − mX(∅)

|A ∩ B|

|B|
, ∀A ⊆ X. (6)

2.2 Application of the TBM

Available data. As previously explained, the princi-
pal difficulty when modeling such a problem is to ob-
tain enough good quality data. Information necessary
to evaluate the non-compliant water production risk are



abatement rates (modeling the efficiency of the vari-
ous treatment steps), occurrence probabilities of differ-
ent failure modes (requiring the knowledge of failure
rates and latency times), and finally, the distribution
of raw water quality parameters. To take into account
uncertainties on these data, we suppose that, for each
operating modes xi, (i = 0..., n), the abatement rate
for a given parameter is modeled by a triangular fuzzy
number, noted α̃i = (α−

i , α0
i , α

+
i ). We also suppose

that [λ−
i , λ+

i ] and [T−
i , T+

i ] denote interval-valued as-
sessments of failure rate λi and latency time Ti. The
precise knowledge of one or more of these data would
result in α−

i = α0
i = α+

i , λ−
i = λ+

i or T−
i = T+

i . Finally,
the probability distribution of the raw water quality pa-
rameter of interest is no longer assumed to be exactly
known. Instead, we now suppose, more realistically,
that a finished sample of measurement Cin,1, ..., Cin,K

has been observed.

Discretization. In the probabilistic approach, the
output concentration was discretized in only two cate-
gories, depending on whether water met a fixed qual-
ity limit or not. However, this approach is too re-
strictive and results in a loss of information. To re-
fine this discretization, we now define ` + 1 thresholds
σk , k = 0, . . . , `, which induce ` + 2 possible states sk,
k = 0, . . . , ` + 1 for the output water. This approach
is more realistic, since risk studies are generally made
on several sanitary gravity level. This new discretiza-
tion will thus allow a criticality classification of non-
compliant production scenarios.

For a given mode xi of the treatment plant, the out-
put threshold σk defines an input threshold θk,i (the
input concentration must be less than θk,i for the out-
put concentration to be less than σk when the treatment
plant is in mode xi). In order to recover the classical
limit, one of the output thresholds must be the norm
(N = σk for some k) and the input thresholds must at
least contain the n + 1 values θk,i obtained with that k
and all operating modes i of the treatment plant. How-
ever, the discretization can take into account more val-
ues than this minimal set. We note ηj (0 ≤ j ≤ m) the
input thresholds arranged in decreasing order and ej

(0 ≤ j ≤ m + 1) the corresponding input states. Note
that we define ` + 1 thresholds for each of the n + 1
modes, so that m+1 ≤ (n+1)(l +1) (the upper bound
may not be strict because some of the thresholds may
be equal). This discretization scheme is represented in
Figure 1.

We thus have three underlying variables: the dis-
cretized input concentration taking values in E =
{e0, . . . , em+1}, the discretized output concentration
taking values in S = {s0, . . . , s`+1}, and the plant state
in X = {x0, . . . , xn}. The available pieces of infor-
mation will now be modeled using the belief function
framework: uncertainties on raw water quality as well

Coutt

Cin

sk

θk-1,i

σk

θk,i ηj η j-1

ej

σk-1

Abatement αi
-

Abatement αi
0

Abatement αi
+

Figure 1: Discretization of input and output concentra-
tion, and fuzzy transfer functions.

X E

S

belX belE

bel0
X× E×S bel1

X× E×S

Figure 2: Representation of the 3 frames of discern-
ment and associated belief functions (case of one failure
mode).

as imprecise failure probabilities previously defined will
induce belief functions belE and belX on E and X , re-
spectively. For each operating mode xi, the fuzzy trans-
fer function will also be represented by a conditional be-
lief function belE×S[xi] on the joint space E × S; this
conditional belief function may be converted to an un-
conditional belief function belYi on Y = X×E×S using
the ballooning extension (4). The three variables and
associated belief functions can be represented by a val-
uation network [6] as shown in Figure 2.

Belief on X. In the probabilistic case, knowledge of
failure rates λi and latency times Ti induce a probabil-
ity function on X . Since λi and Ti are now only known
to lie in given intervals, it is possible to define an im-
precise probability [p−i ; p+

i ] for each operating mode of
the treatment plant as

p−i = λ−
i T−

i , p+
i = λ+

i T+
i , i = 1, . . . , n,

p−0 = 1−
n∑

i=1

λ+
i T+

i , p+
0 = 1 −

n∑

i=1

λ−
i T−

i .

A family PX of probability distributions on X is defined
by the constraints p−i ≤ pi ≤ p+

i (i = 0, ..., n), and the
lower and upper probability of an event A ⊆ X are given



by:

P−(A) = max




∑

xi∈A

p−i , 1 −
∑

xi 6∈A

p+
i


 (7)

P+(A) = min




∑

xi∈A

p+
i , 1 −

∑

xi 6∈A

p−i


 (8)

These lower and upper probabilities do not, in general,
verify the axioms of belief and plausibility measures.
However, we may represent this information in the be-
lief function framework by the most specific bba mX

(according, e.g., to the nonspecificity uncertainty mea-
sure [5]), whose set of compatible probability functions
includes PX . This may be obtained by solving the fol-
lowing linear program:

min
mX

∑

∅6=A⊆X

mX(A) log |A|

under the constraints:

belX(A) ≤ P−(A) ≤ P+(A) ≤ plX(A), ∀A ⊆ X.

Belief on E. The available information on E consists
of a finite sample Cin,1, . . . , Cin,K of observed values of
the raw water quality parameter under study. A simple
approach to build a belief function on E might be to
consider the histogram, i.e., to define mE(ej) as the rel-
ative frequency of observations falling in class ej . This
approach, however, is not satisfactory in the small sam-
ple case because it does not take into account the sample
size. Ideally, the inferred belief function should reflect
the amount of available information, and hence the sam-
ple size.

One way to achieve this goal is to generate B boot-
strap replicates of the data [4]. Let us denote by pb(ej)
the relative frequency of class ej in bootstrap sample b,
and let us define p−(ej) and p+(ej) as, say, the 1st and
9th deciles of the distribution pb(ej), b = 1, . . . , B. We
then obtain lower and upper probabilities on E, which
define a family PE of probability distributions. As be-
fore, we may translate this information in the belief
function format by considering the most specific bba
mE , whose set of compatible probability distributions
includes PE . However, as E may be much larger than
X , the complexity of this solution might become too
high. A simpler approach is to restrict the number of
focal elements of mE . For instance, if mE is constrained
to be quasi-Bayesian (i.e., to have only singletons and
E as focal elements), the solution can be shown to be:

mE({ej}) = p∗−(ej) j = 0, . . . , m + 1 (9)

mE(E) = 1 −
m+1∑

j=0

mE({ej}) (10)

mE(A) = 0 ∀A ⊆ E, A 6= E, |A| 6= 1 (11)

Figure 3: Possibility distribution on E × S and dis-
cretization procedure. The possibility distribution de-
fined by (13) is represented by two pieces of hyperbolic
paraboloids.

with

p∗−(ej) = max


p−(ej), 1 −

m+1∑

j′ 6=j

p+(ej′ )


 (12)

for j = 0, . . . , m + 1.

Belief on X × E × S. The fuzzy abatement rate α̃i

for operating mode i may be seen as defining a fuzzy
relation between input and output concentrations. This
fuzzy relation may be expressed as a possibility distribu-
tion πi on variables Cin and Cout defined as a function
of the ratio ρ = Cout/Cin as:

πi(Cin, Cout) =





0 if ρ ≤ β−
i or ρ ≥ β+

i

ρ − β−
i

β0
i − β−

i

if β−
i < ρ ≤ β0

i

β+
i − ρ

β+
i − β0

i

if β0
i < ρ < β+

i

(13)
with β−

i = 1 − α+
i , β0

i = 1 − α0
i and β+

i = 1 − α−
i .

In order to avoid discontinuity problems linked to a
division of space E × S into rectangles, a “smooth”
discretization procedure was adopted. The value of
the discretized possibility distribution in the rectangle
Rjk = [ηj , ηj+1)×[σk , σk+1) was computed as the height
of the intersection between the quadratic possibility dis-
tribution defined by (13) and a pyramidal membership
function with support Rjk and with kernel equal to the
center of Rjk (Figure 3).

After discretization, we obtain for each state xi a con-
ditional possibility distribution πE×S [xi], which can be
seen as defining a consonant bba mE×S [xi] (see [3]).
This conditional bba can be converted into a joint bba
mY

i using the ballooning extension (4).

Combination and marginalization. The final step
is to combine all the available evidence, and marginal-
ize on S. For that purpose, belX and belE must be
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Figure 4: Possibility distribution on E × S conditional
on the nominal state, when the transfer function is pre-
cisely known, and graphical representation of this trans-
fer function.

extended to the product space Y = X×E×S using the
vacuous extension (3). The resulting belief functions
are combined using Dempster’s rule, and the result is
marginalized on S. Formally, the final bba mS on S is
thus defined as:

mS =
(
( ∩©n

i=0m
Y
i ) ∩©mX↑Y

∩©mE↑Y
)↓S

. (14)

Note that these operations can be performed very ef-
ficiently using local computation algorithms such as the
one described in [6].

This modeling approach was shown in [1] to provide
results identical to those of the probabilistic method, in
the case where all input data are known precisely.

3 Simulation results
As an example, let us consider a simple problem with

one normal mode x0, one failure mode x1 and six output
concentration states. The cases of precise and imprecise
data will be considered successively.

In the first case, the abatement rates as well as the
failure rate and latency time of the failure mode are as-
sumed to be known: α0 = 0.8, α1 = 0.2, λ1 = 1e−3 and
T1 = 2× 24. Figure 4 shows to the conditional possibil-
ity distribution on space E × S related to the nominal
state x0. The corresponding figure for state x1 would be
similar with a larger slope. Only “diagonal” rectangles
(i.e. those rectangles whose diagonal is crossed by the
line ρ = 1 − α0) receive a possibility value equal to 1.
The resulting mass function has a unique focal element
composed of these rectangles.

Figure 5 shows the belief, the pignistic probability
and the plausibility for the output concentration to be
lower than an output level s. We can see that be-
liefs, plausibilities and pignistic plausibilies are equal
at discretization thesholds σk. This confirms that, in
the case of precise data, the solution given by the
belief function approach is identical to that given by
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Figure 5: Belief distribution, pignistic probability and
plausibility distribution for the output concentration to
be smaller than an output thresholds s.
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Figure 6: Possibility distribution on E × S conditional
on the nominal state, and fuzzy transfer function.

the probabilistic method. In that case, we also have
belS((s, +∞)) = 1 − belS(−∞, s)) for s ∈ {σ0, . . . , σ`},
and similar relations for plS and BetP S .

In the second case (imprecise data), some uncertainty
was introduced on abatement rates, failure rate and la-
tency time: α̃0 = (0.75, 0.8, 0.85), α̃1 = (0.15, 0.2, 0.25),
λ1 = [0.8e−3, 1.2e−3], T1 = [24, 3× 24].

Figure 6 shows the conditional possibility distribution
on space E × S related to the nominal state x0; it is
therefore directly comparable to Figure 4. Once again,
the corresponding figure for the failure mode x1 would
be similar with larger slopes (weaker abatement rates).

Figure 7 represents the belief, the pignistic probabil-
ity and the plausibility for the output concentration to
be less than an output value. The dotted line represents
results obtained by the classical fault tree approach. We
can see that the TBM approach allows to estimate the
imprecision on output data resulting from the impreci-
sion of inputs.

Finally, we can study the evolution of belief, pignistic
probability and plausibility degrees for compliant water
production, as a function of the uncertainty on abate-
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Figure 7: Belief, pignistic probability and plausibility
for the output concentration to be smaller than an out-
put value s as a function of this value.
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Figure 8: Variation of compliant water production be-
lief, pignistic probability and plausibility degree as a
function of uncertainty on abatement rates ∆α.

ment rates α. Figure 8 presents the variation of the 3
quantities in the case where α̃0 = (0.8 − ∆α, 0.8, 0.8 +
∆α) and α̃1 = (0.2 − ∆α, 0.2, 0.2 + ∆α) as a function
of ∆α (all other necessary data are known with perfect
accuracy, see previous simulation paragraph for numeric
value details). This is a good way to see the variation
of output uncertainty as a function of input data in-
certainty. The three curves converge to the same point
(equal to the probabilistic limit) when ∆α tends to zero.

4 Conclusion
This paper has presented a methodology for assessing

the risk with regard to unavailability of compliant water,
by taking into account the quality of the resource, the
characteristics of the treatment plant, and the possible
failure modes of the treatment process. This approach
integrates uncertainties on basic data (failure rates, la-
tency times, raw water quality variability and efficiency
of the treatment line) in order to define a degree of confi-
dence in compliant water production. In the case where

all available data are known with perfect accuracy, this
method is equivalent to probabilistic method previously
described and shortly recalled in this paper. Detailed
simulations have shown that this approach meets opera-
tional needs. It allows the redimensioning of an existing
plant or the dimensioning of a new plant, according to
a risk level considered to be acceptable. It gives a level
of confidence in the results as a function of uncertainty
of input data. This is a very important point in ill-
structured domains and poorly informed environments,
where only weak forms of data and knowledge are avail-
able.
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