
Chapter 1

Mixture model estimation with soft labels

E. Côme, L. Oukhellou, T. Denœux, and P. Aknin

Abstract This paper addresses classification problems in which the class membership of training
data is only partially known. Each learning sample is assumed to consist in a feature vector and an
imprecise and/or uncertain “soft” label mi defined as a Dempster-Shafer basic belief assignment
over the set of classes. This framework thus generalizes many kinds of learning problems including
supervised, unsupervised and semi-supervised learning. Here, it is assumed that the feature vectors
are generated from a mixture model. Using the General Bayesian Theorem, we derive a criterion
generalizing the likelihood function. A variant of the EM algorithm dedicated to the optimization
of this criterion is proposed, allowing us to compute estimates of model parameters. Experimental
results demonstrate the ability of this approach to exploit partial information about class labels.

Key words: Dempster-Shafer theory, Transferable Belief Model, Mixture models, EM algorithm,
Classification, Clustering, Partially supervised learning, Semi-supervised learning.

1.1 Introduction

Machine learning classically deals with two different problems: supervised learning (classification)
and unsupervised learning (clustering). However, other paradigms exist such as semi-supervised
learning [10], and partially-supervised learning [5, 1, 9, 11]. In the former approach, one use a mix
of unlabelled and labelled examples, whereas in the latter, one can define constraints on the possible
classes of the examples. The importance for such problems comes from the fact that labelled data
are often difficult to obtain, while unlabelled or partially labelled data are easily available.

The investigations reported in this paper follow this path, in the context of belief functions. In
this way, both the uncertainty and the imprecision of class labels may be handled. The considered
training sets are of the form Xiu = {(x1,m1), . . . , (xN ,mN )}, where mi is a basic belief assignment,
or Dempster-Shafer mass function [14] encoding our knowledge about the class of example i. The
mis (hereafter referred to as “soft labels”) may represent different kinds of knowledge, from precise
to imprecise and from certain to uncertain. Thus, previous problems are special cases of this general
formulation. Other studies have already proposed solutions in which class labels are expressed by
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possibility distributions or belief functions [6, 8]. In this article, we present a new approach to
solve learning problems of this type, which completes a preliminary study by Vannoorenberghe
and Smets [21]. This solution is based on mixture models, and therefore assumes a generative
model for the data.

This article is organized as follows. Background material on belief functions and estimation of
parameters in mixture models using the EM algorithm will first be recalled in Sections 1.2 and 1.3,
respectively. The problem of learning from data with soft labels will then be addressed in Section
1.4, through the definition of a learning criterion, and of an EM type algorithm dedicated to its
optimization. Finally we will presented some simulations results in Section 1.5.

1.2 Background on Belief Functions

1.2.1 Belief Functions on a Finite Frame

The theory of belief functions was introduced by Dempster [3] and Shafer [14]. The interpretation
adopted throughout this paper will be that of the Transferable Belief Model (TBM) introduced by
Smets [20]. The first building block of belief function theory is the basic belief assignment (bba),
which models the beliefs held by an agent regarding the actual value of a given variable taking
values in a finite domain (or frame of discernment) Ω, based on some body of evidence. A bba mΩ

is a mapping from 2Ω to [0, 1] verifying
∑
ω⊆Ωm

Ω(ω) = 1. The subsets ω for which mΩ(ω) > 0 are
called the focal sets. Several kind of belief functions are defined according to the structure of focal
sets. In particular, a bba is Bayesian if its focal sets are singletons, it is consonant if its focal sets
are nested and a it is categorical if it has only one focal set. Bbas are in one to one correspondence
with other representations of the agent’s belief, including the plausibility function defined as:

plΩ(ω) 4=
∑

α∩ω 6=∅

mΩ(α), ∀ω ⊆ Ω. (1.1)

The quantity plΩ(ω) is thus equal to the sum of the basic belief masses assigned to propositions
that are not in contradiction with ω. The plausibility function associated to a Bayesian bba is a
probability measure. If mΩ is consonant, then plΩ is a possibility measure: it verifies plΩ(α∪ β) =
max(plΩ(α), plΩ(β)), for all α, β ⊆ Ω.

1.2.2 Conditioning and Combination

Given two bbas mΩ
1 and mΩ

2 supported by two distinct bodies of evidence, we may build a new
bba mΩ

1 ∩©2 = mΩ
1 ∩©mΩ

2 that corresponds to the conjunction of these two bodies of evidence:

mΩ
1 ∩©2(ω) 4=

∑
α1∩α2=ω

mΩ
1 (α1)mΩ

2 (α2), ∀ω ⊆ Ω. (1.2)

This operation is usually referred to as the unnormalized Dempster’s rule or the TBM conjunctive
rule. If the frame of discernment is supposed to be exhaustive, the mass of the empty set is usually
reallocated to other subsets, leading to the definition of the normalized Demspter’s rule ⊕ defined
as:

mΩ
1⊕2(ω) =

 0 if ω = ∅
mΩ1 ∩©2(ω)

1−mΩ
1 ∩©2

(∅) if ω ⊆ Ω,ω 6= ∅, (1.3)

which is well defined provided mΩ
1 ∩©2(∅) 6= 1. Note that, if mΩ

1 (or mΩ
2 ) is Bayesian, then

mΩ
1⊕2(ω) is also Bayesian. The combination of a bba mΩ with a categorical bba focused on

α ⊆ Ω using the TBM conjunctive rule is called (unnormalized) conditioning. The resulting
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bba is denoted mΩ(ω|α). Probabilistic conditioning is recovered when mΩ is Bayesian, and nor-
malization is performed. Using this definition, we may rewrite the conjunctive combination rule:
mΩ

1 ∩©2(ω) =
∑
α⊆Ωm

Ω
1 (α)mΩ

2 (ω|α),∀ω ⊆ Ω, which is a counterpart of the total probability theo-
rem in probability theory [7, 17]. This expression provides a shortcut to perform marginal calcula-
tions on a product space when conditional bbas are available [17]. Consider two frames Ω and Θ,
and a set of conditional belief functions mΘ|Ω(·|ω) for all ω ⊆ Ω. Each conditional bba mΘ|Ω(·|ω)
represents the agent’s belief on Θ in a context where ω holds. The combination of these conditional
bbas with a bba mΩ on Ω yields the following plausibility on Θ:

plΘ(θ) =
∑
ω⊆Ω

mΩ(ω)plΘ|Ω(θ|ω), ∀θ ⊆ Θ. (1.4)

This property bears some resemblance with the total probability theorem, except that the sum is
taken over the power set of Ω and not over Ω. We will name it the total plausibility theorem.

1.2.3 Independence, Continuous Belief functions and Bayes Theorem

The usual independence concept of probability theory does not easily find a counterpart in belief
function theory, where different notions must be used instead. The simplest form of independence
defined in the context of belief functions is cognitive independence [14, p. 149]. Frames Ω and
Θ are said to be cognitively independent with respect to plΩ×Θ iff we have plΩ×Θ(ω × θ) =
plΩ(ω) plΘ(θ),∀ω ⊆ Ω, ∀θ ⊆ Θ. Cognitive independence boils down to probabilistic independence
when plΩ×Θ is a probability measure.

The TBM can be extended to continuous belief functions on the real line, assuming focal sets
to be real intervals [19]. In this context, the concept of bba is replaced by that of basic belief
density (bbd), defined as a mapping mR from the set of closed real intervals to [0,+∞) such that∫ +∞
−∞

∫ +∞
x

mR([x, y])dydx ≤ 1. By convention, the one’s complement of this integral is allocated to
∅. As in the discrete case, plR([a, b]) is defined as an integral over all intervals whose intersection
with [a, b] is non-empty. Further extension of these definitions to Rd, d > 1 is possible and it is
also possible to define belief functions on mixed product spaces involving discrete and continuous
frames.

The Bayes’ theorem of probability theory is replaced in the framework of belief functions by the
Generalized Bayesian Theorem (GBT), [18]. This theorem provides a way to reverse conditional
belief functions without any prior knowledge. Let us suppose two spaces, X the observation space
and Θ the parameter space. Assume that our knowledge is encoded by a set of conditional bbas
mX|Θ(.|θi), θi ∈ Θ, which express our belief in future observations conditionally on each θi, and
we observe a realization x ⊆ X . The question is: given this observation and the set of conditional
bbas, what is our belief on the value of Θ? The answer is given by the GBT and states that the
resulting plausibility function on Θ has the following form:

plΘ|X (θ|x) = plX|Θ(x|θ) = 1−
∏
θi∈θ

(1− plX|Θ(x|θi)). (1.5)

When a prior bba mΘ
0 on Θ is available, it should be combined conjunctively with the bba

defined by (1.5). The classical Bayes’ theorem is recovered when the conditional bbas mX|Θ(.|θi)
and the prior bba mΘ

0 are Bayesian.

1.3 Mixture Models and the EM Algorithm

After this review of some tools from belief functions theory, the next part is dedicated to the
probabilistic formulation of the clustering problem in terms of mixture model. We will therefore
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present the data generation scheme underlying mixture models and the solution to parameter
estimation in the unsupervised case.

1.3.1 Mixture Models

Mixture models suppose the following data generation scheme:

• The true class labels {y1, . . . , yN} of data points are realizations of independent and identically
distributed (i.i.d) random variables Y1, . . . , YN ∼ Y taking their values in the set of all K classes
Y = {c1, . . . , cK} and distributed according to a multinomial distributionM(1, π1, . . . , πK). The
πk are thus the class proportions and they verify

∑K
k=1 πk = 1. The information on the true

class labels of samples coming from such variables can also be expressed by a binary variable
zi ∈ {0, 1}K , such that zik = 1 if yi = ck, and zik = 0 otherwise.

• The observed values {x1, . . . ,xN} are drawn using the class conditional density in relation with
the class label. More formally, X1, . . . , XN ∼ X are continuous random variables taking values
in X , with conditional probability density functions f(x|Y = ck) = f(x;θk), ∀k ∈ {1, . . . ,K}.

The parameters that need to be estimated are therefore the proportions π = (π1, . . . , πK)
and the parameters of the class conditional densities θ1, . . . ,θK . To simplify the notations, the
vector of all model parameters is denoted Ψ = (π1, . . . , πK ,θ1, . . . ,θK). In unsupervised learning
problems, the available data are only the i.i.d realizations of X, Xu = {x1, . . . ,xN}, provided by
the generative model. To learn the parameters and the associated clustering, the log-likelihood
must be computed according to the marginal density

∑K
k=1 πkf(xi;θk) of Xi. This leads to the

unsupervised log-likelihood criterion :

L(Ψ ; Xu) =
N∑
i=1

ln

(
K∑
k=1

πkf(xi;θk)

)
. (1.6)

1.3.2 EM Algorithm

The log-likelihood function defined by (1.6) is difficult to optimize and may lead to a set of different
local maxima. The EM algorithm [4] is nowadays the classical solution to this problem. The missing
data of the clustering problem are the true class labels yi of learning examples. The basis of the
EM algorithm can be found in the decomposition of the likelihood function in two terms :

L(Ψ ; Xu) =
N∑
i=1

K∑
k=1

t
(q)
ik ln (πkf(xi;θk))︸ ︷︷ ︸
Q(Ψ ,Ψ (q))

−
N∑
i=1

K∑
k=1

t
(q)
ik ln

(
πkf(xi;θk)∑K

k′=1 πk′f(xi;θk′)

)
︸ ︷︷ ︸

H(Ψ ,Ψ (q))

, (1.7)

with:

t
(q)
ik = EΨ (q) [zik|xi] = P(zik = 1|Ψ (q),xi) =

π
(q)
k f(xi;θ

(q)
k )∑K

k′=1 π
(q)
k′ f(xi;θ

(q)
k′ )

. (1.8)

Such a decomposition is useful to define an iterative ascent strategy thanks to the form of H. As a
consequence of Jensen’s inequality we may write H(Ψ (q),Ψ (q))−H(Ψ ,Ψ (q)) ≥ 0,∀Ψ . Consequently,
the maximization of the auxiliary function Ψ (q+1) = arg maxΨ Q(Ψ ,Ψ (q)) is sufficient to improve
the likelihood. Furthermore, because the sum over the classes is outside the logarithm in the
Q function, the optimization problems are decoupled and the maximization is simpler. The EM
algorithm can be described as follows. It starts with initial estimates Ψ (0) and alternates two
steps : the E step where the tik are computed according to the current parameters estimates,
defining a new Q function maximized during the M step. Thanks to (1.7), this defines a sequence
of parameter estimates with increasing likelihood values. Finally, the mixture model setting and
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the EM algorithm can be adapted to handle specific learning problems such as the semi-supervised
[10] and the partially supervised cases [1].

1.4 Extension to Imprecise and Uncertain Labels

1.4.1 Derivation of a Generalized Likelihood Criterion

Our method extends the approach described above to handle imprecise and uncertain class labels
defined by belief functions. In this section, we shall assume the learning set to be of the form
Xiu = {(x1,m

Y
1 ), . . . , (xN ,mYN )}, where each mYi is a bba on the set Y of classes, encoding all

available information about the class of example i. As before, the xi will be assumed to have
been generated according to the mixture model defined in Section 1.3.1. Our goal is to extend
the previous method to estimate the model parameters from such dataset. For that purpose, an
objective function generalizing the likelihood function needs to be defined.

The concept of likelihood function has strong relations with that of possibility and, more gener-
ally, plausibility, as already noted by several authors [16, 15, 13]. Furthermore, selecting the simple
hypothesis with highest plausibility given the observations Xiu is a natural decision strategy in the
belief function framework [2]. We thus propose as an estimation principle to search for the value of
parameter ψ with maximal conditional plausibility given the data: ψ̂ = arg maxψ plΨ (ψ|Xiu). The
correctness of the intuition leading to this choice of criterion as an estimation principle seems to be
confirmed by the fact that the logarithm of plΨ (ψ|Xiu) is an immediate generalization of criterion
(1.6), and the other likelihood criteria used for semi-supervised learning and partially supervised
learning of mixture model, as shown by the following proposition.

Proposition 1. If the samples {x1, . . . ,xN} are drawn independently according to the generative
mixture model setting and if the soft labels {m1, . . . ,mN} are independent from the parameters
values, then the logarithm of the conditional plausibility of Ψ given Xiu is given by

ln
(
plΨ (ψ|Xiu)

)
=

N∑
i=1

ln

(
K∑
k=1

plik.πkf(xi;θk)

)
+ ν, (1.9)

where the plik are the plausibilities of each class k for each sample i according to soft labels mi and
ν is a constant independent of ψ.

Proof. Using the GBT (1.5), the plausibility of parameters can be expressed from the plausibility
of the observed values. By making the conditional independence assumption, this plausibility can
be decomposed as a product over samples. Using the Total Plausibility Theorem (1.4), we may
express the plausibility of an observed value as:

plXi(xi|ψ) =
∑
C⊆Y

mYi(C|ψ)plXi|Yi(xi|C,ψ), (1.10)

where mYi(.|ψ) is a bba representing our beliefs regarding the class of example i. This bba comes
from the combination of two information sources: the “soft” label mYi and the proportions π,
which induce a Bayesian bba mY(·|π). As these two sources are supposed to be distinct, they
can be combined using the conjunctive rule (1.2). As mY(·|π) is Bayesian, the same property
holds for the result of the combination mYi(.|ψ) and we have mYi({ck}|ψ) = plik πk. There-
fore, in the right-hand side of (1.10), the only terms in the sum that need to be considered are
those corresponding to the singletons. Consequently, we only need to express plXi|Yi(xi|ck,ψ)
for all k. There is a difficulty at this stage, since plXi|Yi(·|ck,ψ) is the continuous probabil-
ity measure with density function f(x;θk): consequently, the plausibility of any single value
would be null if observations xi had an infinite precision. However, observations always have
a finite precision, so that what we denote by plXi|Yi(xi|ck,ψ) is in fact the plausibility of a
infinitesimal region around xi with volume dxi1 . . . dxip (where p is the feature space dimen-
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sion). We thus have plXi|Yi(xi|ck,ψ) = f(xi;θk)dxi1 . . . dxip. Using all this results we obtain

plΨ (ψ|Xiu) =
∏N
i=1

[(∑K
k=1 plikπkf(xi;θk)

)
dxi1 . . . dxip

]
. The terms dxij can be considered as

multiplicative constants that do not affect the optimization problem. By taking the logarithm we
get (1.9), which completes the proof. ut

Remark 1. Our approach can be shown to extend unsupervised, partially supervised and semi-
supervised learning when the labels are, respectively, vacuous, categorical, and either vacuous
or certain. This justifies denoting criterion, 1.9 as L(Ψ ,Xiu), as it generalizes the classical log-
likelihood function.

1.4.2 EM algorithm for Imprecise and Uncertain Labels

Once the criterion is defined, the remaining work concerns its optimization. This section presents
a variant of the EM algorithm dedicated to this task. To build an EM algorithm able to optimize
L(Ψ ; Xiu), we follow a path that parallels the one recalled in Section 1.3.2. At iteration q, our
knowledge of the class of example i given the current parameter estimates comes from three sources:
the class label mYi of example i; the current estimates π(q) of the proportions; the vector xi and
the current parameter estimate θ(q), which, using the GBT (1.5), gives a plausibility over Y. By
combining these three items of evidence using Dempster’s rule (1.3), we get a Bayesian bba. Let
us denote by t(q)ik the mass assigned to {ck} after combination. We have

t
(q)
ik =

plikπ
(q)
k f(xi;θ

(q)
k )∑K

k′=1 plik′π
(q)
k′ f(xi;θ

(q)
k′ )

, (1.11)

Using this expression, we may decompose the log-likelihood in two parts, as in (1.7).

L(Ψ ; Xiu) =
N∑
i=1

K∑
k=1

t
(q)
ik ln (πkplikf(xi;θk))−

N∑
i=1

K∑
k=1

t
(q)
ik ln

(
πkplikf(xi;θk)∑K

k′=1 πk′plik′f(xi;θk′)

)
(1.12)

This decomposition can be established thanks to basic properties of logarithmic functions and
the fact that

∑K
i=1 t

(q)
ik = 1. Therefore, using the same argument as for the classical EM algorithm

(Section 1.3.2), an algorithm which alternates between computing tik using (1.11) and maximization
of the first term in the right hand side of (1.12) will increase our criterion. This algorithm is
therefore the classical EM algorithm, except for the E step, where the posterior distributions tik
are weighted by the plausibility of each class. During the M step the proportions are updated
classically using π

(q+1)
k = 1

N

∑N
i=1 t

(q)
ik . If multivariate normal densities functions are considered,

f(x;θk) = N (x;µk,Σk), their parameters are updated using the following equations :

µ
(q+1)
k =

1∑N
i=1 t

(q)
ik

N∑
i=1

t
(q)
ik xi, Σ

(q+1)
k =

1∑N
i=1 t

(q)
ik

N∑
i=1

t
(q)
ik (xi − µ(q+1)

k )(xi − µ(q+1)
k )′. (1.13)

1.4.3 Comparison with Previous Work

The idea of adapting the EM algorithm to handle soft labels can be traced back to the work of
Vannoorenberghe and Smets [21], which was recently extended to categorical data by Jraidi et
al. [12]. These authors proposed a variant of the EM algorithm called CrEM (Credal EM), based
on a modification of the auxiliary function Q(Ψ ,Ψ (q)). However, our method differs from this
previous approach in several respects. First, the CrEM algorithm was not derived as optimizing
a generalized likelihood criterion such as (1.9); consequently, its interpretation was unclear, the
relationship with related work (see Remark 1) could not be highlighted and, most importantly,



1 Mixture model estimation with soft labels 7

the convergence of the algorithm was not proven. Furthermore, in our approach, the soft labels
mYi appear in the criterion and in the update formulas for posterior probabilities (1.11) only in
the form of the plausibilities plik of the singletons. In constrast, the CrEM algorithm uses the 2|Y|

values in each bba mYi . This fact has an important consequence, as the computations involved in
the E step of the CrEM algorithm have a complexity in O(2|Y|) whereas our solution only involves
calculations which scale with the cardinality of the set of classes.

1.5 Simulations

The experiment presented in this section aimed at using information on class labels simulating
expert opinions. As a reasonable setting, we assumed that the expert supplies, for each sample i,
his/her more likely label ck and a measure of doubt pi. This doubt is represented by a number in
[0, 1], which can be seen as the probability that the expert knows nothing about the true label. To
handle this additional information in the belief function framework, it is natural to discount the
categorical bba associated to the guessed label with a discount rate pi [14, Page 251]. Thus, the
imperfect labels built from expert opinions are simple bbas such that mYi ({ck∗}) = 1− pi for some
k∗, and mYi (Y) = pi. The corresponding plausibilities are plik∗ = 1 and plik = pi for all k 6= k∗.

Simulated data sets were build as follows. Two data sets of size N ∈ {2000, 4000} were generated
in a ten-dimensional feature space from a two component normal mixture with common identity
covariance matrix and balanced proportions. The distance between the two centers was kept fixed
at δ = 2. For each training sample i, a number pi was drawn from a specific probability distribution
to define the doubt expressed by a hypothetical expert on the class of that sample. With probability
(1− pi), the true label of sample i was kept and with probability pi the expert’s label was drawn
uniformly in the set of all class. The probability distribution used to draw the pi specifies the
expert’s labelling error rate. For our experiments we used Beta distributions with expected value
equal to {0.1, . . . , 0.8} and variance kept equal to 0.2.

The results of our approach were compared to supervised learning using the potentially wrong
expert’s labels; unsupervised learning, which does not use any information on class label coming
from experts, and a strategy based on semi-supervised learning which takes into account the reli-
ability of labels supplied by the pi. This strategy considers each sample as labelled if the expert’s
doubt is moderate (pi ≤ 0.5) and as unlabelled otherwise (pi > 0.5). Figure 1.1 shows the averaged
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Fig. 1.1 Empirical classification error (%, estimated on a test set of 5000 observations) averaged over one hundred

independent training sets, as a function of expert’s mean doubt and for different sample size. For all methods, the

EM algorithm was initialized with the true parameter values.

performances of the different classifiers trained with one hundred independent training sets. As
expected, when the expert’s doubt increases, the error rate of supervised learning also increases.
Our solution based on soft labels does not suffer as much as supervised learning and adaptive semi-
supervised learning from label noise. Whatever the dataset size, our solution takes advantage of
additional information on the reliability of labels to keep good performances. Finally, our approach
clearly outperforms unsupervised learning, when the number of samples is low (N = 2000).
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1.6 Conclusions

The approach presented in this paper, based on concepts coming from maximum likelihood esti-
mation and belief function theory, offers an interesting way to deal with imperfect and imprecise
labels. The proposed criterion has a natural expression that is closely related to previous solutions
found in the context of probabilistic models, and has also a clear and justified origin in the context
of belief functions. Moreover, the practical interest of imprecise and imperfect labels, as a solution
to deal with label noise, has been highlighted by an experimental study using simulated data.
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[19] Ph. Smets. Belief functions on real numbers. Int. Jour. of Appr. Reasoning, 40(3):181–223,

2005.
[20] Ph. Smets and R. Kennes. The Transferable Belief Model. Artif. Intel., 66:191–243, 1994.
[21] P. Vannoorenberghe and P. Smets. Partially supervised learning by a credal EM approach. In

ECSQARU’ 05, pages 956–967, Barcelona, Spain, 2005. Springer.


