
Estimation of Pollution Solubility in
Wastewater by Fusion of Expert Knowledge
with Data using the Belief Functions Theory

Sebastien POPULAIRE
����� ���

and Thierry DENŒUX
�����

sebastien.populaire@hds.utc.fr thierry.denoeux@hds.utc.fr

(1) Information Technology Division (2) UMR CNRS 6599, Heudiasyc
Technical and Research Center, Ondeo Services, Université de Technologie de Compiègne
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Abstract. In this paper, we propose a methodology for combining expert knowledge
with information extracted from statistical data, for estimating pollution solubility in
wastewater. The method is based on (1) a case-based approach allowing to predict
a quantity of interest from past cases in the form of a belief function, (2) Bayesian
networks for modelling expert knowledge and (3) a tuning mechanism allowing to
mix information sources, so as to minimize a performance criterion. The use of this
method for this environmental problem is motivated by the fact that knowledge in this
domain is very partial and ill- structured. The belief functions theory allows to handle
the induced uncertainty and imprecision. The approach is expected to be useful in
situations where both small databases and partial expert knowledge are available.

1 Introduction

Pollution in wastewater can be decomposed into 3 parts: a settled part, a coagulable part
and a soluble part. It is important for wastewater treatment specialists to determine the per-
centage of each of these parts, in order to adapt the treatment that will efficiently remove
pollution. Pollution solubility has been analyzed in different countries and different cities.
These studies have revealed an important variability from one place to another: water pollu-
tion solubility is influenced by environmental conditions, sewage systems features and sample
taking point. Chemical Oxygen Demand (COD) is one of wastewater pollutants, particulary
important in wastewater analysis. COD solubility assessment from the input parameters is
a complex problem due to strong non-linearities that are not easily handled using classical
data-analysis methods.
The task of building a classifier in this given domain is a difficult problem because only few
data are available and, consequently, a lot of the domain cases are not listed. This task is
even more difficult because data are uncertain. A way to handle this uncertainty is the use
of the Demspster-Shafer theory of evidence [14], which allows to represent any degree of
partial knowledge ranging from full knowledge to complete ignorance. In particular, Smets
[15] developped a coherent and axiomatically justified interpretation of this theory called



the Tranferable Belief Model (TBM). Belief functions encompass probability and possibility
measures as special cases, thus constituting a very general and flexible framework for uncer-
tainty representation.
A way to complement information given by poor quality data is to use the knowledge of
one or several domain experts. Bayesian Networks provide a convenient formalism to encode
expert knowledge, and more generally, relations between domain variables [12]. Bayesian
Networks can be constructed in 3 different ways: with data only when a comprehensive data
collection is available, with both data and expert knowledge, or with expert knowledge only
(see [5] for a review of these techniques). But it can be risky to combine information from
different sources in one single network [7].
In this paper, we propose a method for fusing expert knowledge with data. Section 2 briefly
recalls the background of this study, i.e., the theory of belief functions, evidential case-based
classification, and BN’s. Section 3 addresses in a little more detail the issue of building BN’s
from expert knowledge. We then show in Section 4 how these knowledge sources expressed
in the belief function formalism can be optimally combined. Finally, Section 5 describes a
real-world application of the above tools to the prediction of chemical oxygen demand (COD)
solubility, a parameter of interest for the design of wastewater treatment plants.

2 Background

2.1 Belief function Theory

In this section, we briefly review the basis of the belief function theory and the TBM (see
[15] for further informations). In Dempster-Shafer theory, a problem is represented by a set�

of mutually exclusive hypotheses, called the frame of discernement [14]. A basic belief
assignement (bba) is a function �������	�
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A bba verifying ���#"$�%�&� is said to be normal, but this condition is not necessarily imposed
in the TBM. The quantity ������� can be interpreted as a measure of the belief that is commited
exactly to � , given the available evidence. Two evidential functions derived from the bba are
the credibility function ')(+* and the plausibility function ,-* , defined as
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for all �>=@? . '.(+*/�0�1� quantifies the total amount of justified specific support given to � ,
whereas ,8*9����� corresponds to the total amount of potential specific support given to � .

Two useful operations that play a central role in the manipulation of belief functions are
discounting, and Dempster’s rule of combination. The discounting operation is used when a
source of information provides a bba � , but one knows that this source has probability �%ACB



of being reliable. The bba � is then discounted by a factor B , resulting in a new bba defined
as:

� � ����� � �9� A B �9������� � ��� � (1)

� � � � � � B�� � � A B �9��� � � (2)

Consider now two pieces of evidence on the same frame
�

represented by two bbas � �

and � � . The joint bba quantifying the combined impact of these two pieces of evidence is
obtained through the conjunctive combination rule as follows:
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The conjunctive combination followed by a normalization step is known as Dempster’s rule
of combination [14]. It is noted � ��� � � .

A probability function ')(��9, on
�

can be derived from the � function in order to make
decisions. It is called the pignistic probability function, obtained by applying the pignistic
transformation, defined by
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2.2 Case-based evidential classification

A cased-based evidential classification procedure was introduced by Denœux in [2], and
subsequently refined in [18] and [3]. This approach allows to consider a learning set � �� ����� � ��� �4���)� ��! ! !��! where ��� � ��"#� � � �$"#� � � ��! ! !%"#� � & � is a ' -dimensional vector of measure-
ments related to object � , and ��� is a bba over a set

� � �)( � ��!�!�!�� (+*  of classes, which
represents the partial knowledge about the class ,-� of object � . The learning task considered
is to determine the bba of a new case, given the observed value � of the measurement vector.

The method described in [2] consists in calculating the distance . ���/� �$� � between � and
each ��� of the learning set, using a suitable distance measure. Each bba �0� is then discounted
by a factor B�� defined as an increasing function of the distance .��1��� �$� � . The discounted bba’s
are then finally combined using either the conjunctive rule, or Dempster’s rule of combina-
tion. A learning scheme for optimizing the function relating the discounting factors to the
distances is decribed in [18].

2.3 Bayesian Networks

A Bayesian network (also called probabilistic network or causal network) is a probabilistic
expert system where knowledge can be divided into two parts: a qualitative part and a quan-
titative part. The qualitative part encodes the causal relations among the domain variables in
the form of a directed acyclic graph (DAG). Each node of the graph represents a random vari-
able and each arc, a causal dependence between variables. The quantitative part of a Bayesian
network consists of prior probability distributions over the variables on which no arc is di-
rected, and conditional probability distributions over the variables that have predecessors. A
Bayesian network is a representation of the joint probability distribution over all the variables.



Bayesian networks allow to calculate the conditional probabilities of the unobserved
nodes in the network given the values of some observed nodes. The main advantage of
Bayesian networks is to considerably reduce the amount of numbers that are necessary to
describe the entire joint distribution. Some good introductions to Bayesian networks can be
found in [10], [12] and [1].

3 Building a Bayesian network

3.1 Graph structure

The task of building the network structure is the first step in a Bayesian network construction
[9]. The goal of this first step is to be able to describe causal relationships between variables
of the domain. The method used to ask questions to the expert is essentially described in [4].
The first step is building the model from the focus of the study. The expert is asked about
the variables that could have an influence on the cited focus, or that could be influenced by
it. Then, the same questions are asked, for every new variable given by the first step until
the answer is no. So, a graph is built, for which variables are causally linked by arcs. To
complete this information, the expert is also asked to sign the interactions among variables in
the model. The aim of this operation is to build a Qualitative Probabilistic Network (QPN).
QPN is the qualitative abstraction of BN. QPN have the same structure than BN, but instead
of quantifying them with probabilities, we just try to determine if, for example, the truth of
proposition � makes a proposition

�
(linked to � by an arc) more or less probable. For further

information about QPNs, see [17].

3.2 Quantifying the probabilities

Once the structure of the BN is built, the second step consists in fixing the probabilities that
will quantify the network. In this part, we will describe the two main tools that has been used:
Noisy-Or gates and the probability scale.

3.2.1 Noisy-Or Gates

Noisy-Or gates are very useful tools that allow to reduce considerably the number of prob-
abilities that have to be elicited. Indeed, expert time is often scarce and the ways that could
reduce the time that an expert had to spend for the elicitation of probabilities have to be used.

We give here a short explanation of Noisy-Or Gates principles. See [11] for a complete
information. Noisy-Or Gates are generally used to quantify relationships between � causes� � � � � ! ! ! ��� and one effect � . In the network, this relation is modelled by � arcs that link
nodes

� � � � � ! ! ! ��� to the node � . Then, two conditions have to be satisfied:

1. each cause
� � has the probability '#� of being sufficient to cause the effect Y when all

other causes are absent;

2. the ability of each cause
� � being sufficient to cause Y is independent of all other causes.

So, in the case of binary variables, the above 2 conditions allow to define the conditional joint
probability distributions with � numbers instead of �

�
. '
� represents the probability that � is



true when
� � is present and all other causes

� � ������ � are absent. So,

'
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and for
� & , a subset of true variables

� �
	 , we obtain:
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The full conditional probability distribution of � given causes
� � � � � ��! ! ! � ��� can then be

computed.

3.2.2 The probability scale

In the last step, probabilities have to be assessed by experts. This is often considered as a
difficult part because experts are generally reluctant to express numerical probabilities. For
an overview of methods that helps solving this problem, see [5] and [13]. For example, the
probability scale described in [13] can be used (a real world application of BN in medicine
using this scale can be found in [16]). This scale uses both words and numbers, in order to
help experts who do not feel comfortable with numbers.

4 Combination of data information and expert knowledge

Let us now assume that we have, for a given classification problem, the following sources of
information:�

a data set � related to � cases with partially known classification, and�
knowledge from one or several experts, modeled by ' Bayesian Networks ' ��� , � �
����!�!�!�� ' .

We want to build a classifier that efficiently combines these informations sources. This can be
achieved in the TBM framework, using the expert tuning technique introduced by Elouedi et
al. [8] . For each object �)� in the data base, let � � � �  � ��� � � denote the bba concerning the class
of �+� , induced by the rest of the learning set (i.e., the � other learning cases), and constructed
as explained in Section 2.2. Let , � �)�  �
' ��� � denote the probability function regarding the
class of � � , computed using ' ��� , � � ����!�!�! � ' . For each object � � in the learning set, we go
through the following steps:

1. Apply a discounting factor B on bba � � �)�  � � � � �
� � � �+�  � � � � � ������� �9� A B � �9� � �+�  � � � � � �0�1�4� � � � � (7)

� � � � �  � � � � � � � ��� B � � �9� A B � �9� � �+�  � � � � � � � � (8)

2. Apply a discounting factor ��� on each probability distribution , � �)�  � ' ��� �
���! � �+�  �
' ��� � �0�1� � � � A"�#� �/, � � �� � ' ��� � ���1� � � ��� � (9)

� �! � �+�  �
' ��� � � � � �$�#� (10)



3. Combine the above ' � � discounted bba’s using Dempster’s rule, to obtain a combined
bba � � �+�  .

4. Build the pignistic probabilities ')(��9, � � �� based on � � � �  .
5. Compute the distance . � 	�� � between ')(��9, � � �  and the most probable class of object �)� ,

defined as:

. � 	�� � �
*
�
� 5 � ��')(��9,

� � �  � ( � � A � � � � � � (11)

where
� � � � = 1 if

( � is the class of maximum pignistic probability according to � � , and 0
otherwise.

Finally, we find the discounting factors �#B%� � � ��!�!�! � �#� � that minimize the total error

��� � 	�� � � �
� 5 � . ��	 � � � (12)

using a numerical optimization procedure.

5 Estimation of COD solubility

5.1 The database

The available database was composed of observations made on � ���	� wastewater treatment
plants. Each case � was described by�

a vector
� � of 8 binary variables �1" � � ��! ! ! � "#��
4� describing the main characteristics of the

sewage system (about 15 % of the values were missing),�
��� measurements � � � � �.� ��! ! � � of COD solubility (CODS) taken at different times.

The COD solulibility variable was discretized in three classes: Low, Medium and High, and
for each case i a bba ��� was constructed as follows. First, the class , � corresponding to the
average � �1� �� � � � 5 � �� 5 � � � � of the ��� CODS measurements was determined. A bba �0� was
then defined as:

���9� � , �  �>� 
�� (13)

���9� � �>� � A�
-� (14)

��� ����� � � � ���C� ��� � � � � , ��  (15)

with

8� ���

����� � � � � ��� � ��� � ����! ! ! ��� �
The bba ��� thus reflects the amount of knowledge related to case � : the more measurements
are available, the more precise is ��� .



Figure 1: The qualitative probabilistic network

5.2 Expert knowledge

As explained in Section 3.1, the first step has been the construction of the graph and the QPN.
The obtained result can be seen in Figure 1.

In order to quantify the BN, a questionnaire containing 38 questions was prepared and
submitted to two experts. Each question corresponded to one of the graph probability, and
each expert had to give his answer using the scale mentionned in Section 3.2.2. We thus
obtained two distinct BN’s, with the same structure but different probabilities.

To test the BN, we used the database described in Section 5.1 and we proceeded as fol-
lows. For each case of the database, we:�

entered the known values of the measured variables in the BN,�
obtained a probability for each class of CODS.

The GeNIe software [6] was used for the implementation.

5.3 Results

The confusion matrices of the cased-based classifier, the two BN’s, and the optimized clas-
sifer using the three sources of information are reported in Tables 1, 2, 3 and 4, respectively.
The cased-based and combined classifier error-rates were obtained using the leave-one-out
method: the error for each case � was computed using a classifier built exclusively from a
training set � � � composed of the other � A � training cases. Consequently, the reported er-
ror estimates are unbiased. Table 5 shows the the sum

� � � 	�� of squared distances between



output probabilities and class indicator variables as defined in (12), for the four classification
rules. The optimized discounted factors are

BC� � � � � � � � � �
We can see that the BN obtained from expert 2, which performs rather poorly (Table 3), is
effectively removed from the combination using the discounting procedure. The probabilities
produced by the BN of expert 1, although insufficient to provide reliable prediction (Table 2),
do improve the performances of the case-based classifier (Table 5).

Table 1: Confusion matrix for the case-based classifier

predicted class
real class High Medium Low

High 6 4 3
Medium 9 28 9

Low 3 7 7

Table 2: Confusion matrix for the BN of expert 1

predicted class
real class High Medium Low

High 3 10 0
Medium 0 46 0

Low 0 17 0

Table 3: Confusion matrix for the BN of expert 2

predicted class
real class High Medium Low

High 12 0 1
Medium 40 0 6

Low 17 0 0

From this tuning, to define an error rate, it can be observed that the probability of event
’Class is Low’ while the predicted class (chosen as the class with highest probability) is
’High’, is 0.17 and probability of event ’Class is High’ while the predicted class is ’Low’, is
0.25.

6 Conclusion

In this paper, we have described a method for building a classification system in the TBM
framework, using both a case-based approach and expert knowledge encoded as BN’s. The
optimal tuning of the different information sources is realized by minimizing an empirical



Table 4: Confusion matrix for the optimized combined classfier

predicted class
real class High Medium Low

High 5 7 1
Medium 9 36 1

Low 3 12 2

Table 5: Value of the TDist criterion for the four classification rules

Method Criterion Value
case-based 82

BN - Expert 1 78
BN - Expert 2 92

Tuning 76

error criterion. The main advantage of the method is the ability to combine effectively the
information that can be inferred from small amounts of possibly poor quality data, with partial
knowledge elicited from experts. The presented case-study in wastewater treatment shows
that this methodology can be used in real-world applications.
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