
EVIDENCE-BASED DAMAGE CLASSIFICATION FOR AN AIRCRAFT
STRUCTURE

Worden, K1, Manson, G1 & Denœux, T2

1Dynamics Research Group, Department of Mechanical Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.

2U.M.R. CNRS 6599 Heudiasyc, Université de Technologie de Compiègne,
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1 INTRODUCTION

The recent past has seen considerable use of machine learning techniques for Structural Health
Monitoring (SHM). The basic idea of the approach is to use data measured from undamaged and
damaged structures in order to train a learning machine to assign a condition label to previously
unseen data. The simplest problem of SHM is arguably damage detection. This is most easily carried
out in the machine learning context by using a novelty detector [1]. Novelty detection involves the
construction of a model of the normal condition of a system or structure, which can then be used in a
hypothesis test on unseen data to establish whether the new data corresponds to normal condition or
not. The advantage of the novelty detection approach is that it can be carried out using unsupervised
learning, i.e. with only samples of undamaged data. If a more detailed diagnosis of a system is
required, e.g. it is necessary to specify the type or location of damage in a structure, this can still
be done using machine learning methods. For higher levels of diagnostics, algorithms based on
classification or regression are applicable; however, these must be applied in a supervised learning
context and examples of data from both the undamaged and damaged conditions can be used [2].

The most popular classifiers for damage location and quantification so far have been those based
on Multi-Layer Perceptron (MLP) neural networks [3] (although there is growing popularity for clas-
sifiers based on the concepts of statistical learning theory - like support vector machines [2]). Training
of MLP networks as classifiers is usually accomplished by using the 1 of M strategy [3] which im-
plicitly assumes a Bayesian probabilistic basis for the classification. While probability theory is only
one (but arguably the most important) of a group of theories which can quantify and propagate uncer-
tainty, other theories of uncertainty, perhaps with the exception of fuzzy set theory, have been largely
unexplored in the context of damage identification. The object of this paper is to design a classifier
for damage location based on the Dempster-Shafer theory of evidence [4]. To the knowledge of the
authors, DS theory was first used in the context of SHM by researchers at El Paso as in [5]. The the-
ory has also been used in the context of machine condition monitoring [6]. The reason for exploring
the possibilities of DS theory is that it extends probability in a number of ways which are potentially
exploitable in an SHM context. For the moment though, the current paper is looking only to demon-
strate that the method is competitive with the probability-based MLP approach on an experimental
case study of an aircraft wing. The DS classifier here is also implemented using a neural network
structure [7].

The layout of the paper is as follows. Section Two provides a pedagogical introduction to DS
theory and places its use in the context of SHM. Section Three briefly describes the neural network
implementation of the DS Classifier. Section Four describes the case study discussed in this paper
and the results of the analysis are given in Section Five. The paper ends with some discussion and
conclusions.



2 DEMPSTER-SHAFER REASONING

Theory Dempster-Shafer Theory is a means of decision-fusion which is formulated in terms of
probability-like measures but extends probability theory in a number of important respects. The basic
idea, that of belief was introduced by Dempster in [8] and extended in Shafer’s treatise [4].

The basic model is formulated in similar terms to probability. In the place of the sample space is the
frame of discernmentΘ, which is the set spanning the possible events for observation Ai, i = 1, . . . ,N.
On the basis of sensor evidence, each event or union of events is assigned a degree of probability mass
or Basic Belief Assignment (BBA) m such that,

0 ≤ m(Ai) ≤ 1 ∀Ai ⊆ Θ (1)

m(φ) = 0 (2)
∑

Ai⊆Θ
m(Ai) = 1 (3)

where φ is the empty set. (Note that normalisation, as in equation (3), is not always required in belief
function theory. In particular, it is not the case in the Transferable Belief Model (TBM), an important
variant developed by Smets [9].) The difference between this evidential theory and probability theory
is that the total probability mass need not be exhausted in the assignments to individual events. There
is allowed to be a degree of uncertainty or ignorance. This is sometimes denoted by a probability
mass assignment to the whole frame of discernment m(Θ) or m(A1 ∪ . . . ∪ AN).

The belief in an event B is denoted Bel(B) and is defined by,

Bel(B) =
∑

Ai⊆B

m(Ai) (4)

and this is the total probability which is committed to the support of the proposition that B has oc-
curred.

The doubt in the proposition B is denoted by Dou(B) and is defined by

Dou(B) = Bel(B) (5)

i.e. the doubt is the total support for the negation of the proposition B (negation is denoted by a double
underline).

One of the fundamental differences between Dempster-Shafer and probability theory is that the
belief and doubt do not necessarily sum to unity i.e. it is not certain that B ∪ B is true. This can be
illustrated diagrammatically as follows:

The uncertainty Un in the proposition B is that portion of the probability mass which does not
support B or its negation. If further evidence were provided, some of the uncertainty could move in
support of B but the mass assigned to the doubt cannot move. This means that the possible belief in
B is bounded above by the quantity Bel(B) + Un(B) = 1 − Dou(B) and this quantity is termed the
plausibility of B and denoted Pl(B). The plausibility can also be defined by,

Pl(B) =
∑

Ai∩B�φ

m(Ai) (6)

The interpretation of some common instances of the uncertainty interval for a proposition B is as
follows.

[0,0 ] B is impossible.

[1,1 ] B is certain.
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Figure 1: The Dempster-Shafer uncertainty interval.

[0.75,0.75 ] There is no uncertainty, B has a true probability of 0.75.

[0,1 ] There is total ignorance regarding B.

[0.25,1 ] B is plausible, there is no support for B.

[0,0.75 ] B is plausible, there is no support for B.

[0.25,0.75 ]. Both B and B are plausible.

All this suffices to establish terminology, to explain how to compute belief functions and how to
interpret the results. It does not provide a means of data fusion - that requires the use of Dempster’s
combination rule.

Suppose that one has two sensors 1 and 2. Basic probability assignments are possible on the
basis of either sensor alone, denoted m1 and m2. Belief functions Bel1 and Bel2 can be computed.
Dempster’s rule allows the calculation of an overall probability assignment m+ and a corresponding
overall belief function Bel+, where this direct sum,

Bel+ = Bel1 ⊕ Bel2 (7)

is induced by m+. Suppose that sensor 1 makes assignments m1(Ai) to the proposition Ai (which can,
and usually does, include the frame of discernment), and sensor 2 makes assignments m2(Bj), then
Dempster’s rule makes assignments as follows.

Consider a matrix with row entries labelled by i and column entries j, then the (i, j) th element of
the matrix is an assignment of probability mass m1(Ai) × m2(Bj) to the proposition Ai ∪ Bj.

In mathematical terms, Dempster’s combination rule is expressed as

m+(C) =
∑

Ai∩Bj=C

m1(Ai)m2(Bj) (8)

and,

Bel+(C) =
∑

B⊆C

m+(B) (9)

Unfortunately things are not quite as straightforward as this. Problems arise in using Dempster’s
rule if the intersection between supported propositions Ai and Bj is empty. In this circumstance a
non-zero mass assignment will be made to the empty set φ and this contradicts the basic definition of
the mass assignment which demands m+(φ) = 0. In order to preserve this rule, Dempster’s rule must



assign zero mass to non-overlapping propositions. However, if this is the case, probability mass is lost
and the total mass assignment for m+ will be less than unity, contradicting another rule for probability
numbers. A valid mass assignment is obtained by re-scaling m+ to take account of the lost mass. If
the mass lost on non-overlapping propositions totals k, the remaining mass assignments should be
re-scaled by a factor K = 1/(1 − k). The combination rule (8) is modified to,

m+(C) = K
∑

Ai∩Bj=C

m1(Ai)m2(Bj) (10)

The differences between the Dempster-Shafer approach and the probabilistic are manifest. First
of all, probabilistic - or rather Bayesian - approaches are unable to accommodate ignorance. All
probability must be assigned to the set of propositions under consideration. Secondly, the Bayesian
approach is unable to meaningfully assign probabilities to the union of propositions. If the uncertainty
for all propositions is zero and the mass assigned to unions is zero, Dempster-Shafer is reduced to
Bayesian probability reasoning.

There are other frameworks which seek to extend Bayesian methods in a similar manner to Dempster-
Shafer such as the Generalised Evidence Processing (GEP) approach of [11] and those proposed in
[12] and [13].

3 THE DS NEURAL NETWORK

The object of this section is to briefly describe the neural network implementation of the DS-based
classifier. Much more detail can be found in the original reference [7].

The basic idea will be to assign one of M classes C1,. . . ,CM (these form the frame of discernment),
to a feature vector x on the basis of a set of N training examples x1, . . . , xN . Suppose the vector x is
close to a training example xi with respect to an appropriate distance measure d (di = ||x − xi||). It is
then appropriate that the class of the vector xi influences ones beliefs about the class of x. One has
evidence about the class of xi. The approach to the classification taken in [14] is to allocate belief to
the event Cq (the class of xi, according to the distance di(x).

mi(Cq) = αφq(di) (11)

where 0 < α < 1 is a constant and φq is an appropriate monotonically decreasing function. Each
training vector close to x will contribute some degree of belief. For each training vector, a degree of
belief is also assigned to the whole frame of discernment Θ as follows,

mi(Θ) = 1 − αφq(di) (12)

The function φq used here is the basic Gaussian,

φq(di) = exp(−γq(di)
2) (13)

where γq is a positive constant associated with class q. To simplify matters, one confines the construc-
tion of the belief assignment for the vector x to a sum of the beliefs induced by its nearest neighbours.
The sum is computed using Dempster’s combination rule as described in Section Two. Actually,
a further simplification is made to speed up the processing. Rather than summing over the nearest
neighbours from the whole training set in order to assign the belief, one sums over a set of prototypes
constructed from the training set by a clustering algorithm. Each prototype p

i
is assigned a degree of

membership to the class q denoted by ui
q with the constraint

∑M
q=1u

i
q = 1. These are used to compute

the belief in the class q for x given the distances di from the prototypes.
Although it is a gross simplification, the algorithm can be summed up as follows:

1. Construct the prototypes p
i
from the training data using a clustering algorithm.



2. Given a vector x, compute the distances from the vector to the prototypes. Using the parameters
di and ui

q assign a degree of belief for each class q.

3. Use Dempster’s combination rule to compute the total belief in each class from all the con-
tributing prototypes.

The algorithm extends the probabilistic classifier by also making an assignment to the frame of
discernment and this quantifies the degree of uncertainty of the classification. The reference [7]
explains how the algorithm can be implemented in terms of a four-layer neural network. Unlike an
MLP, the network is not a simple feed-forward structure.

In order to assign a class to the vector x, one selects that with the largest overall belief assignment
induced by the training data (There are other decision strategies as in [15].

4 A DAMAGE LOCATION EXAMPLE

In the two papers [16, 17], methods of novelty detection were applied to the damage detection
problem for experimental structures. In [16], the structure of interest was an idealised laboratory
model of an aircraft wingbox, while in [17], the problem was to detect damage in an inspection
panel of a Gnat aircraft wing. In both cases, a novelty detection approach was adopted based on
the statistical method of outlier analysis. The next stage of the programme was to investigate the
possibilities for damage location in the Gnat wing. Due to restrictions on actually damaging the
structure, it was decided to investigate if a method could be developed to see which of a number of
inspection panels had been removed. As there were a small number of distinct panels, the problem of
damage location was cast as one of classification. Only a short summary of the study will be given
here, the interested reader can refer to [18] for more details.

Due to the success of using novelty detectors for the damage detection problem, it was decided to
attempt to extend this approach to see whether it could be used for the location problem. A network
of sensors was used to establish a set of novelty detectors, the assumption being that each would
be sensitive to different regions of the wing. Once the relevant features for each detector had been
identified and extracted, a neural network was used to interpret the resulting set of novelty indices.

Test Set-up and Data Capture As described above, damage was simulated by the sequential
removal of nine inspection panels on the starboard wing. Figure 2 shows a schematic of the wing and
panels.

The area of the panels varied from about 0.008 m to 0.08 m with panels P3 and P6 the smallest.
Measured transmissibilities were used as the basic features for construction of the novelty indices and
were recorded in three groups, A, B and C as shown in Figure 2. Each group consisted of four sensors
(a centrally placed reference transducer and three others). In each case, the transmissibility was the
ratio of the acceleration spectrum at a receiver transducer divided by the acceleration spectrum at the
reference transducer for the group. Only the transmissibilities directly across the plates were mea-
sured in this study. One 16-average transmissibility and 100 one-shot measurements were recorded
across each of the nine panels for seven undamaged conditions (to increase robustness against vari-
ability) and the 18 damaged conditions (two repetitions for the removal of each of the nine panels).

Feature Selection and Novelty Detection The feature selection process for the novelty detectors
was conducted by inspecting the transmissibility functions to find small regions of the frequency
range of each which distinguished between damage conditions. An exhaustive visual classification
of potential features as weak, fair or strong was made with the intention of only selecting fair or
strong features, the details can be found in [18]. In order to simplify matters, only the group A
transmissibilities were considered to construct features for detecting the removal of one of the group
A panels; similarly for groups B and C.

Initially 44 candidate features were evaluated using outlier analysis. The best features were chosen
according to their ability to correctly identify the 200 (per panel) damage condition features as outliers
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Figure 2: Schematic of the starboard wing inspection panels and transducer locations.

while correctly classifying as inliers, those features corresponding to the undamaged condition. Fig-
ure 3 shows the results of the outlier analysis for a feature that was clearly able to recognise removal
of inspection panel 4. Once the 44 features had been selected by the empirical approach, a Genetic
Algorithm was used to select the best 4 location features by optimising the classification error using
an MLP as the classifier [19]. The reduction to 4 features was made to ensure that the MLP network
used for comparison with the DS network later was unlikely to suffer from overtraining.

The data was divided into training, validation and testing sets in anticipation of presentation to
the classifier. As there were 200 patterns for each damage class, the total number of patterns was
1800. These were divided evenly between the training, validation and testing sets, so (with a little
wastage) each set received 594 patterns, comprising 66 representatives of each damage class. The
plot in Figure 3 shows the discordancy (novelty index) values returned by the novelty detector over
the whole set of damage states. The horizontal dashed lines in the figures are the thresholds for
99% confidence in identifying an outlier, they are calculated according to the Monte Carlo scheme
described in [20]. The novelty detector substantially fires only for the removal of panel for which it
has been trained. This was the case for most panels but there were exceptions (e.g. there were low
sub-threshold discordancies for the smaller panels and some novelty detectors were sensitive to more
than one damage type).

Note that there are now two layers of feature extraction. At the first level, certain ranges of the
transmissibilities were selected for sensitivity to the various damage classes. These were used to
construct novelty detectors for the classes. At the second level of extraction, the 9 indices themselves
were used as features for the damage localisation problem. This depends critically on the fact that
the various damage detectors are local in some sense, i.e., they do not all fire over all damage classes.
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Figure 3: Outlier statistic for all damage states for the novelty detector trained to recognise panel 4
removal.

This was found to be true in this case.

5 NETWORKS FOR DAMAGE LOCATION

The final stage of the analysis was to produce a classifier based on the DS neural network algorithm
which could serve as a damage location system. As with a standard MLP network, the specification of
the DS network structure requires hyperparameters; in this case, the number of prototypes (analagous
to the number of hidden units in the first layer of the network) and the starting values of the weights
before training. These were computed by a cross-validation procedure as for the MLP [21]. Many
neural networks were trained with the same training data but with differing numbers of prototypes
and initial weights. Up to 30 prototypes were considered, and in each case 10 randomly chosen initial
conditions were used. The best network was selected by observing which produced the minimum
misclassification error on the validation set. The final judgement of the network capability was made
by using the independent testing set.

The results for the presentation to the classifier are summarised in the confusion matrix given
in Table 1. The best DS network used 29 prototypes. The probability of correct classification was
89.7%. There were 4 events associated with the frame of discernment, corresponding to probability
mass of 0.007. (Note that there are other ways to implement rejection, [15].) This means that allowing
for the fact that the network indicates when it has insufficient evidence to make a classification, the
classification error is 9.6%.

The main source of confusion is in locating damage to the two smallest panels, 3 and 6, and of
course this was anticipated.

In order to make a comparison with the standard approach, the algorithm chosen was a standard
Multi-Layer Perceptron (MLP) neural network. The neural network was presented with 9 novelty
indices at the input layer and required to predict the damage class at the output layer.

The procedure for training the neural network again followed the guidelines in [21]. The training
set was used to establish weights, whilst the network structure and training time etc. were optimised
using the validation set. The testing set was then presented to this optimised network to arrive at a
final classification error. For the network structure, the input layer necessarily had four neurons, one
for each novelty index, and the output layer had nine nodes, one for each class.



Prediction 1 2 3 4 5 6 7 8 9 Θ

True Class 1 54 5 5 0 0 0 2 0 0 0
True Class 2 0 63 0 0 2 0 0 0 0 1
True Class 3 6 1 56 2 0 0 0 0 0 1
True Class 4 5 0 1 55 0 3 0 2 0 0
True Class 5 0 0 0 0 65 0 0 1 0 0
True Class 6 2 2 2 4 0 54 1 0 0 1
True Class 7 0 1 1 0 0 0 61 2 1 0
True Class 8 0 0 1 0 1 0 0 62 1 1
True Class 9 0 0 0 0 0 0 0 3 63 0

Table 1: Confusion matrix for best DS network using 4 log features - testing set.

The training phase used the 1 of M strategy [3]. This approach is simple, each pattern class was
associated with a unique network output; on presentation of a pattern during training, the network
was required to produce a value of 1.0 at the output corresponding to the desired class and 0.0 at all
other outputs.

It is known that MLP networks trained using a squared-error cost function with the 1 of M strat-
egy for the desired outputs, actually estimate Bayesian posterior probabilities for the classes with
which the outputs are associated [3]. This means that such a network actually implements a Bayesian
decision rule if each pattern vector is identified with the class associated with the highest output.

The best neural network had 19 hidden units and resulted in a testing classification error of 0.118
i.e. 89.2% of the patterns were classified correctly. This means that the misclassification probability
is of course 10.8%. The confusion matrix is given in Table 2. Again, the main errors were associated
with the two small panels P3 and P6.

Prediction 1 2 3 4 5 6 7 8 9

True Class 1 61 1 0 0 0 0 1 0 0
True Class 2 0 63 0 0 3 0 0 0 0
True Class 3 1 0 48 8 0 5 7 2 0
True Class 4 0 1 3 56 0 2 0 4 0
True Class 5 0 0 0 0 66 0 0 0 0
True Class 6 4 1 0 9 0 52 0 0 0
True Class 7 1 0 0 0 0 0 59 5 1
True Class 8 1 0 0 0 1 0 1 59 4
True Class 9 0 0 0 0 0 0 0 5 61

Table 2: Confusion matrix for best MLP neural network using 4 log features - testing set.

6 CONCLUSIONS

The main conclusion here is that the Dempster-Shafer approach to classification implemented as a
neural network gives comparable results to the standard analysis using a MLP neural network. The
data used is from a full-scale experimental test on an aircraft wing and is therefore a stringent test
of algorithms from the point of view of SHM. In fact the DS network shows a slight improvement,
giving a classification probability of 89.7% compared to 89.2% for the MLP. One possible advantage
of the DS approach is the fact that it can assign patterns to the frame of discernment and thus indicate
to the analyst that there is insufficient evidence to make a classification. The effect is small here, with



only 0.7% of the probability mass assigned to Θ. Taking this effect into account, one can say that the
probability of misclassification of the DS network is 9.6% compared to 10.8% for the MLP network.
It is conceivable that situations could arise where this scale of difference could be important. Another
advantage of using the DS approach might be to provide methodological diversity in order to use data
fusion. In this case, the errors made by the DS network and the MLP network are similar; nonetheless
there may be some advantage to fusion.
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