Computational Statistics
 Chapter 1: Continuous optimization

1. The following data are assumed to be an i.i.d. sample from a $\operatorname{Cauchy}(\theta, 1)$ distribution:

$$
\begin{gathered}
1.77,-0.23,2.76,3.80,3.47,56.75,-1.34,4.24,-2.44,3.29,3.71 \\
\quad-2.40,4.53,-0.07,-1.05,-13.87,-2.53,-1.75,0.27,43.21
\end{gathered}
$$

The density function of the $\operatorname{Cauchy}(\theta, 1)$ distribution is

$$
\begin{equation*}
f(x)=\frac{1}{\pi}\left[(x-\theta)^{2}+1\right]^{-1} \tag{1}
\end{equation*}
$$

(a) Draw a box plot and a dot plot of this dataset (use the functions boxplot() and dotchart()).
(b) Plot the log-likelihood in the interval $[-10,10]$. How many modes does it have?
(c) Program the the bisection method in R and apply it to these data with starting points -1 and 1 . Use additional runs to explore ways in which the bisection method may fail to find the global maximum.
(d) Program the Newton-Raphson method and/or the secant method and apply it/them to the same data. Study the behavior of the algorithm for different starting points.
(e) Solve the same problem with the R function optimize.
2. The data transportation.txt from Greene's book "Econometric analysis" concern transportation equipment manufacturing in $n=25$ states of United States. The output variable Y is ValueAdd and the two input variables x_{1} and x_{2} are Capita (capital input) and Labor (labor input). The stochastic frontier model is

$$
\begin{equation*}
\ln Y_{i}=\boldsymbol{\beta}^{\prime} \ln \mathbf{x}_{i}+V_{i}-U_{i} \tag{2}
\end{equation*}
$$

for $i \in\{1, \ldots, n\}$, where $\boldsymbol{\beta}$ is a vector of coefficients, V_{i} is an error term assumed to have a normal distribution $\mathcal{N}\left(0, \sigma_{v}^{2}\right)$ and U_{i} is a positive
inefficiency term having a half-normal distribution $\left|\mathcal{N}\left(0, \sigma_{u}^{2}\right)\right|$ (i.e., the distribution of the absolute value of a normal variable). The \log likelihood function is

$$
\begin{equation*}
\ln L_{y}(\theta)=-n \ln \sigma+\frac{n}{2} \log \frac{2}{\pi}-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\epsilon_{i}}{\sigma}\right)^{2}+\sum_{i=1}^{n} \ln \Phi\left(-\frac{\epsilon_{i} \lambda}{\sigma}\right), \tag{3}
\end{equation*}
$$

with $\lambda=\sigma_{u} / \sigma_{v}, \sigma^{2}=\sigma_{u}^{2}+\sigma_{v}^{2}$ and $\theta=(\boldsymbol{\beta}, \sigma, \lambda)$.
(a) Using function read.table, store the data as a data table.
(b) Display a matrix plot of the logarithm of the data (use function plot).
(c) Using function 1 m , find the least-squares estimate of $\boldsymbol{\beta}$.
(d) Compute the maximum likelihood (ML) estimate of θ, using function optim with the least-squares estimates $\widehat{\boldsymbol{\beta}}_{L S}$ as a starting point.
(e) Plot contours of the log-likelihood by fixing two parameters at their ML values and letting the other two parameter vary (use function contour). Verify that the solution found in the previous question is a maximum.
(f) Perform again the optimization with the following starting point: $\theta_{0}=\left(3, \widehat{\boldsymbol{\beta}}_{L S}[2: 3], 0.5,10\right)$. What do you observe? Check graphically that the solution found is a maximum.

