Computational Statistics Chapter 1: Continuous optimization

- 1. The following data are assumed to be an i.i.d. sample from a Cauchy(θ ,1) distribution: 1.77, -0.23, 2.76, 3.80, 3.47, 56.75, -1.34, 4.24, -2.44, 3.29, 3.71, -2.40, 4.53, -0.07, -1.05, -13.87, -2.53, -1.75, 0.27, 43.21.
 - (a) Draw a box plot and a dot plot of this dataset (use the functions boxplot() and dotchart()).
 - (b) Plot the log-likelihood in the interval [-10, 10]. How many modes does it have?
 - (c) Program the the bisection method in R and apply it to these data with starting points −1 and 1. Use additional runs to explore ways in which the bisection method may fail to find the global maximum.
 - (d) Program the Newton-Raphson method and apply it to the same data. Study the behavior of the algorithm for different starting points.
 - (e) Solve the same problem with the R function optimize.
- 2. The data transportation.txt from Greene's book "Econometric analysis" concern transportation equipment manufacturing in n=25 states of United States. The output variable Y is ValueAdd and the two input variables x_1 and x_2 are Capita (capital input) and Labor (labor input). The stochastic frontier model is

$$\ln Y_i = \beta' \ln \mathbf{x}_i + V_i - U_i \tag{1}$$

for $i \in \{1, ..., n\}$, where $\boldsymbol{\beta}$ is a vector of coefficients, V_i is an error term assumed to have a normal distribution $\mathcal{N}(0, \sigma_v^2)$ and U_i is a positive inefficiency term having a half-normal distribution $|\mathcal{N}(0, \sigma_u^2)|$ (i.e., the distribution of the absolute value of a normal variable). The log-likelihood function is

$$\ln L_y(\theta) = -n \ln \sigma + \frac{n}{2} \log \frac{2}{\pi} - \frac{1}{2} \sum_{i=1}^n \left(\frac{\epsilon_i}{\sigma}\right)^2 + \sum_{i=1}^n \ln \Phi\left(-\frac{\epsilon_i \lambda}{\sigma}\right), \quad (2)$$

with
$$\lambda = \sigma_u/\sigma_v$$
, $\sigma^2 = \sigma_u^2 + \sigma_v^2$ and $\theta = (\boldsymbol{\beta}, \sigma, \lambda)$.

- (a) Using function read.table, store the data as a data table.
- (b) Display a matrix plot of the logarithm of the data (use function plot).
- (c) Using function lm, find the least-squares estimate of β .
- (d) Compute the maximum likelihood (ML) estimate of θ , using function optim with the least-squares estimates $\widehat{\boldsymbol{\beta}}_{LS}$ as a starting point.
- (e) Plot contours of the log-likelihood by fixing two parameters at their ML values and letting the other two parameter vary (use function contour). Verify that the solution found in the previous question is a maximum.
- (f) Perform again the optimization with the following starting point: $\theta_0 = (3, \hat{\boldsymbol{\beta}}_{LS}[2:3], 0.5, 10)$. What do you observe? Check graphically that the solution found is a maximum.