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Computational statistics

Modern methods in statistics and econometrics rely heavily on
computational methods, for instance,

Nonlinear optimization
Monte Carlo simulation
Resampling techniques (bootstrap, cross-validation)
Nonparametric density estimation and smoothing
Machine Learning, data mining, big data analysis, etc.

Computational statistics is a branch of Statistics at the intersection
with Computer Science. It concerns the study of efficient procedures
for solving statistical problems with computers.
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Contents of this course

Two parts:
1 Part I: optimization
2 Part II: simulation

We will use the R programming
language (free, flexible, large collection
of available statistical methods).
Recommended textbook: G. H. Givens
and J. A. Hoeting, Computational
Statistics, Wiley.
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Part I: Optimization

Many problems in statistics can be seen as optimizing (i.e., minimizing
or maximizing) some function, for instance:

Maximizing the likelihood
Finding the mode of the posterior density, or highest posterior density
intervals
Minimizing risk in Bayesian decision problems
Minimizing empirical risk (error) in machine learning problems, etc.

For the simplest models (e.g. least-squares linear regression), a
closed-form expression of the solution can be found. In most cases, we
have to resort to iterative procedures.
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Categories of optimization problems

Continuous vs. combinatorial optimization
Univariate vs. multivariate
Unconstrained vs. constrained
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Contents of this course (Part I)

1 Optimizing smooth univariate functions: bisection, Newton’s method,
Fisher scoring, secant method

2 Optimizing smooth multivariate functions: nonlinear Gauss-Seidel
iteration, Newton’s method, Fisher scoring, Gauss-Newton method,
ascent algorithms, discrete Newton method, quasi-Newton methods

3 Combinatorial optimization: local search, ascent algorithms, simulated
annealing, genetic algorithms

4 Expectation-Maximization (EM) algorithm for maximizing the
likelihood or posterior density
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Contents of this course (Part II: simulation)

1 Simulation of probability distributions: probability integral transform,
rejection sampling, sampling importance resampling

2 Markov chain Monte Carlo (MCMC) methods: Metropolis-Hastings
algorithm, Gibbs sampling, application to Bayesian inference

3 Bootstrap
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Introduction

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Introduction

Introduction to optimization

In this first part, the real-valued function g : Rp → R to be maximized
or minimized will be assumed to be smooth (at least differentiable).
It may be a likelihood, a profile likelihood, a Bayesian posterior, an
error/loss function, or any other function
Minimizing g is equivalent to maximizing −g .
Unless otherwise specified, we will consider maximization problems,
without loss of generality.
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Introduction

Introduction to optimization (continued)

For maximum likelihood estimation, g is the log likelihood function `,
and x is the corresponding parameter vector θ. If θ̂ is a MLE, it
maximizes the log likelihood. Therefore θ̂ is a solution to the score
equation

`′(θ) = 0,

where `′(θ) =
(
∂`(θ)
∂θ1

, . . . , ∂`(θ)∂θp

)T
and 0 is a column vector of zeros.

We see that optimization is intimately linked with solving nonlinear
equations. Finding a MLE amounts to finding a root of the score
equation.
In general, the maximum of g is a solution to g ′(x) = 0.
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Introduction

Univariate Optimization for Smooth g

Example 1: Maximize

g(x) =
log(x)
1+ x

with respect to x .
We cannot find the root of g ′(x) = 1+1/x−log x

(1+x)2
analytically.

The maximum of g(x) = log(x)
1+x occurs at x∗ ≈ 3.59112, indicated by

the vertical line.
Thierry Denœux (UTC) Continuous Optimization Fall 2021 11 / 79



Introduction

Example 2

The following data are an i.i.d. sample from a Cauchy(θ, 1)
distribution:
1.77, −0.23, 2.76, 3.80, 3.47, 56.75, −1.34, 4.24, −2.44, 3.29, 3.71,
−2.40, 4.53, −0.07, −1.05, −13.87, −2.53, −1.75, 0.27, 43.21.
The likelihood function is

L(θ) =
20∏
i=1

1

π
(
1+ (xi − θ)2

)
Find the MLE for θ.
The score function `′(θ) has multiple roots requiring numerical
solution. (See next slide)
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Introduction

Log likelihood and score function for the Cauchy data

Remark: in this example, the roots of equation `′(θ) = 0 correspond to
minima and maxima. The maxima satisfy the additional condition
`′′(θ) < 0.
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Introduction

Local vs. global maximum

Definition (Local maximum)

A vector x0 is a local maximum of g if ∃ ε > 0 such that, for all x ∈ Rp,

‖x− x0‖ ≤ ε⇒ g(x0) ≥ g(x)
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g(x)

Definition (Global maximum)

A vector x0 is a global maximum of g if, for all x ∈ Rp,

g(x0) ≥ g(x)
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Introduction

Local vs. global maximum (continued)

We usually want to find a global maximum, but optimization
algorithms can only be guaranteed to converge to a local maximum.
Solution: restart the algorithm from different initial conditions, but we
can never be sure to have reached a global maximum.
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Introduction

Iterative Methods

Recall the simple example where we seek to maximize

g(x) =
log(x)
1+ x

with respect to x .
We will rely on successive approximations of the solution.
If we know that the maximum is around 3, it might be reasonable to
use x (0) = 3.0 as an initial guess, or starting value.
An update equation will be used to produce an improved guess,
x (t+1), from the most recent value x (t), for t = 0, 1, 2, . . . until
iterations are stopped.
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Univariate problems

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Univariate problems Bisection

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Univariate problems Bisection

Bisection Method
Intermediate value theorem

In this section we assume that g : R→ R is a univariate function.
We will use the following theorem:

Theorem (Intermediate value theorem (IVT))

If f is a continuous function whose domain contains the interval [a, b], then
for any s ∈ [f (a), f (b)], there exists x ∈ [a, b] such that f (x) = s.
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Univariate problems Bisection

Bisection Method

If g ′ is continuous on [a0, b0] and g ′(a0)g
′(b0) ≤ 0 then by the IVT

there exists at least one x∗ ∈ [a0, b0] for which g ′(x∗) = 0; hence, x∗

is a local optimum of g .
To find such a root, the bisection method systematically shrinks the
interval from [a0, b0] to [a1, b1] to [a2, b2] and so on, where
[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · are nested intervals.
If these intervals are chosen to retain g ′(ai )g

′(bi ) ≤ 0, then the ith
interval contains a root.
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Univariate problems Bisection

Bisection Method

Let x (0) = (a0 + b0)/2 be the starting value.
The update equations are

[at+1, bt+1] =

{
[at , x

(t)] if g ′(at)g ′(x (t)) ≤ 0
[x (t), bt ] if g ′(at)g ′(x (t)) > 0

and
x (t+1) =

at+1 + bt+1

2
.

If g has more than one root in the starting interval, it is easy to see
that bisection will find one of them, but will not find the rest.
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Univariate problems Bisection

Example

To find the value of x maximizing

g(x) =
log(x)
1+ x

,

we might take a0 = 1, b0 = 5, and x (0) = 3.
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Univariate problems Bisection

Properties

For continuous smooth functions, bisection is guaranteed to converge
to a root because a root is always in the interval and the length of the
interval halves at each iteration.
However, the method is slow.
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Univariate problems Bisection

Stopping Criteria

Near the root g ′(x (t+1)) ≈ 0. However, relatively large changes from
x (t) to x (t+1) are often seen even when g ′(x (t+1)) is roughly zero,
therefore a stopping rule based directly on g ′(x (t+1)) is not very
reliable.
On the other hand, a small change from x (t) to x (t+1) is most
frequently associated with g ′(x (t+1)) near zero. Therefore, we
typically assess convergence by monitoring

∣∣x (t+1) − x (t)
∣∣ and use

g ′(x (t+1)) as a backup check.
The absolute convergence criterion mandates stopping when∣∣∣x (t+1) − x (t)

∣∣∣ < ε,

where ε is a constant chosen to indicate tolerable imprecision.
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Univariate problems Bisection

Stopping Criteria (continued)

The relative convergence criterion mandates stopping when iterations
have reached a point for which∣∣x (t+1) − x (t)

∣∣∣∣x (t)∣∣ < ε. (1)

This criterion enables the specification of a target precision (e.g.,
‘within 1%’) without worrying about the units of x .
Preference between the absolute and relative convergence criteria
depends on the problem at hand:

If the scale of x is huge (or tiny) relative to ε, an absolute convergence
criterion may stop iterations too reluctantly (or too soon).
The relative convergence criterion corrects for the scale of x , but can
become unstable if x (t) values (or the true solution) lie too close to
zero.

In this latter case, another option is to monitor relative convergence by

stopping when |x
(t+1)−x(t)|
|x(t)|+ε < ε.
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Univariate problems Bisection

Convergence diagnostics

Also important to include stopping rules that flag a failure to
converge:

Stop after N iterations, regardless of convergence. Do not devote all
affordable iterations to one attempt! Budget time for many smaller
attempts, anticipating convergence failures, data corrections, multiple
starting values, etc.
Could stop if any convergence measure fails to decrease or cycle over
several iterations.
It is also sensible to stop if the procedure appears to be converging to a
point at which g(x) is inferior to another value you have already found
(i.e., a known false peak or local maximum).

Regardless of which such stopping rules you employ, any indication of
poor convergence behavior means that x (t+1) must be discarded and
the procedure somehow restarted in a manner more likely to yield
successful convergence.
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Univariate problems Newton’s method

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Univariate problems Newton’s method

Newton’s Method

Suppose that g ′ is continuously differentiable and that g ′′(x∗) 6= 0.
At iteration t, the approach approximates g ′(x∗) by the linear Taylor
series expansion about x (t):

0 = g ′(x∗) ≈ g ′(x (t)) + (x∗ − x (t))g ′′(x (t))

Since g ′ is approximated by its tangent line at x (t), it seems sensible
to approximate the root of g ′ by the root of the tangent line. Thus,
solving for the root,

x∗ ≡ x (t+1) = x (t) − g ′(x (t))

g ′′(x (t))
= x (t) + h(t)
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Univariate problems Newton’s method

Example

Function of Example 1: g(x) = log(x)
1+x

Starting from x (0) = 3.0, Newton’s method quickly finds x (4) ≈ 3.59112.
For comparison, the first five decimal places of x∗ are not correctly
determined by the bisection method until iteration 19.
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Univariate problems Newton’s method

Convergence rate

Definition

Let ε(t) = x (t) − x∗ be the approximation error at iteration t. A method
has convergence of order β if limt→∞ ε

(t) = 0 and

lim
t→∞

∣∣ε(t+1)
∣∣∣∣ε(t)∣∣β = c

for some constants c 6= 0 and β > 0.

Higher orders of convergence are better in the sense that precise
approximation of the true solution is more quickly achieved.
Newton’s method has quadratic convergence order, β = 2
Unfortunately, high orders are sometimes achieved at the expense of
robustness: some slow algorithms are more robust than their faster
counterparts.
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Univariate problems Newton’s method

Convergence of Newton’s method

Newton’s method may fail to converge. For instance

Starting from x (0), Newton’s method diverges by taking steps that are
increasingly distant from the true root, x∗. In contrast, the bisection
method would converge in this case.
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Univariate problems Newton’s method

When does Newton’s method converge?
First theorem

Theorem
If g ′ has two continuous derivatives and g ′′(x∗) 6= 0, then there exists a
neighborhood of x∗ for which NM converges to x∗ when started from some
x (0) in that neighborhood.
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Univariate problems Newton’s method

Convex function
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↵f(x) + (1 � ↵)f(y)

Definition
A real-valued function f defined on an interval I is convex if the line
segment between any two points on the graph of the function lies above or
on the graph,

∀x , y ∈ I , ∀α ∈ [0, 1], f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Univariate problems Newton’s method

When does Newton’s method converge?
Second theorem

Theorem
If g ′ is twice continuously differentiable, is convex and has a root, then NM
converges to that root from any starting point.
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Univariate problems Newton’s method

Importance of the starting point

Log-likelihood for the Cauchy data. Arrows show convergence of Newton’s
method from several starting values
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Univariate problems Newton’s method

Case of maximum likelihood estimation (MLE)

When the optimization of g corresponds to a MLE problem, where θ̂ is
a solution to `′(θ) = 0, the updating equation for Newton’s method is

θ(t+1) = θ(t) − `′(θ(t))

`′′(θ(t))
.

The Fisher scoring method consists in replacing `′′(θ(t)) by its
expectation for θ = θ(t), called the Fisher information evaluated at
θ(t).
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Univariate problems Newton’s method

Fisher Scoring

Fisher information (for scalar parameter) is

I (θ) = Eθ
[
`′(θ)2

]
=∗ −Eθ

[
`′′(θ)

]
∗under regularity conditions.
Reminder: for large iid samples, it holds approximately that
θ̂ ∼ N

(
θ, I (θ)−1

)
.

I (θ) can be approximated by I (θ̂), or by Iobs(θ̂) = −`′′(θ̂) (observed
information). Usually I (θ̂) ≈ Iobs(θ̂)

This suggests using the increment h(t) = `′(θ(t))/I (θ(t)) where I (θ(t))
is the Fisher information evaluated at θ(t).
This yields

θ(t+1) = θ(t) +
`′(θ(t))

I (θ(t))
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Univariate problems Newton’s method

Fisher Scoring vs. Newton’s method

Fisher scoring (FS) and Newton’s method (NM) share the same
asymptotic properties; either may be easier for a particular problem.
In particular, I (θ) may be easier to compute. In the case of iid data,
In(θ) = nI1(θ).
The observed information −`′′(θ) may be negative (resulting in
divergence), specially far from the solution, whereas I (θ) is always
positive.
Generally, FS makes rapid improvements initially, while NM gives
better refinements near the end.
Case of the linear canonical one-parameter exponential family:

f (x ; θ) = b(x) exp [θt(x)− c(θ)]

We have −`′′(θ) = c ′′(θ) = I (θ): FS and NM coincide.

Thierry Denœux (UTC) Continuous Optimization Fall 2021 38 / 79



Univariate problems Secant method

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Univariate problems Secant method

Secant Method

When differentiating g ′ is difficult, we can replace the derivative by
the discrete differenced approximation,

g ′′(x (t)) ≈ g ′(x (t))− g ′(x (t−1))

x (t) − x (t−1)

This yields the update

x (t+1) = x (t) − g ′(x (t))
x (t) − x (t−1)

g ′(x (t))− g ′(x (t−1))

for t ≥ 1.
Requires two starting points, x (0) and x (1).
The following figure illustrates the first steps of the method for
maximizing the simple function of Example 1.
The order of convergence of the secant method is superlinear:
β ≈ 1.62
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Univariate problems Secant method

Example

The secant method locally approximates g ′ using the secant line between
x (0) and x (1). The corresponding estimated root, x (2), is used with x (1) to
generate the next approximation
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Multivariate problems

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Multivariate problems

Multivariate optimization for smooth g

Let g : x ∈ Rp → R
Stopping criteria:

D(x(t+1), x(t)) < ε,
D(x(t+1), x(t))
D(x(t), 0)

< ε,

or
D(x(t+1), x(t))
D(x(t), 0) + ε

< ε.

for D(u, v) =
∑p

i=1 |ui − vi | or D(u, v) =
√∑p

i=1(ui − vi )2.

Same strategy of iterative approximation. We will extend previous
methods and introduce new options.
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Multivariate problems Cyclic coordinate ascent

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Multivariate problems Cyclic coordinate ascent

Cyclic coordinate ascent

Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.
Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How?

Approach: optimize g with respect to each component of x
successively, fixing all other components to their last obtained value.
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Multivariate problems Cyclic coordinate ascent

Cyclic coordinate ascent

Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.
Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How?
Approach: optimize g with respect to each component of x
successively, fixing all other components to their last obtained value.

Thierry Denœux (UTC) Continuous Optimization Fall 2021 45 / 79



Multivariate problems Cyclic coordinate ascent

Algorithm

Case p = 2:
Initialize x1 = x

(0)
1

Find x
(1)
2 = argmaxx2 g(x

(0)
1 , x2)

Find x
(1)
1 = argmaxx1 g(x1, x

(1)
2 )

Find x
(2)
2 = argmaxx2 g(x

(1)
1 , x2)

...
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Multivariate problems Cyclic coordinate ascent

Cyclic coordinate ascent: pros and cons

Advantages:
1 Simplifies a potentially difficult problem
2 Solution of each univariate problem is easier and more stable

Drawbacks
1 Convergence is not guaranteed
2 Can be slow

For hard problems (high dimension, complex function shape), we need
more sophisticated optimization procedures.
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Multivariate problems Gradient methods

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Multivariate problems Gradient methods

Gradient ascent

Gradient methods are based on the gradient

g′(x) =
(
∂g(x)
∂x1

, . . . ,
∂g(x)
∂xp

)T

,

which indicates the direction of steepest ascent of function g at x.
The steepest ascent method uses the update equation

x(t+1) = x(t) + α(t)g′(x(t)),

where α(t) is the step size at iteration t. (See next slide)
How to determine the step size?
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Multivariate problems Gradient methods

Gradient ascent

<latexit sha1_base64="4JkUVP1HWTEOabR4qyqfWvZghUI="></latexit>

x(t)

<latexit sha1_base64="o323FzyMspAnFW22mWiDUI5zIVo="></latexit>

g0(x(t))
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Multivariate problems Gradient methods

Ascent property

For small enough α(t), we have g(x(t+1)) > g(x(t)).
Proof: we have

g(x(t+1))− g(x(t)) = g(x(t) + α(t)g′(x(t)))− g(x(t)) (2)

= α(t)g′(x(t))Tg′(x(t)) + o(α(t)), (3)

where the second equality follows from the linear Taylor expansion

g(x(t) + α(t)g′(x(t))) = g(x(t)) + α(t)g′(x(t))Tg′(x(t)) + o(α(t)),

with o(α(t))/α(t) → 0 as α(t) → 0.
Therefore, ascent can be ensured by choosing α(t) sufficiently small,
yielding

g(x(t+1))− g(x(t)) > 0

from (3).
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Multivariate problems Gradient methods

Determining α(t)

Choosing α(t) very small guarantees ascent, but can result in very slow
convergence.
We need a strategy to adapt α(t), making it as large as possible, while
ensuring uphill steps.
Backtracking: attempt a step for, say, α(t) = 1;

If it is downhill, backtrack and reduce (e.g.,halve) α(t).
If the step is still downhill, continue halving α(t) until a sufficiently
small step is found to be uphill.

Step adaptation: attempt a step with the current value α(t);
If it is downhill, backtrack and set α(t+1) = bα(t) with b < 1.
If it is uphill, keep the last move and set α(t+1) = aα(t) with a > 1
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Multivariate problems Gradient methods

Example

Steepest ascent with backtracking, using α = 0.25 initially at each step
The steepest ascent direction is not necessarily the wisest, and
backtracking doesn’t prevent oversteps
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Multivariate problems Gradient methods

Silva-Almeida algorithm

Update rule:

x
(t+1)
j = x

(t)
j + α

(t)
j

∂g(x(t))
∂xj

A learning rate α(t)
j is adapted separately for each variable xj .

x(t)	 x(t+1)	 x(t+1)	 x(t+1)	

1	 2	

3	

x

g(x)

1 Case 1: accept the change and set
α
(t+1)
j = a α

(t)
j with a > 1;

2 Case 2: accept the change and set
α
(t+1)
j = b α

(t)
j with b < 1;

3 Case 3: backtrack and
α
(t+1)
j = c α

(t)
j with c < 1 for all j .

Typically, a = 1.2, b = 0.8, c = 0.5.
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Multivariate problems Newton and quasi-Newton methods

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Multivariate problems Newton and quasi-Newton methods

Multivariate Newton’s method

The gradient direction is not always the best.
For instance, if g is quadratic,

g(x) =
1
2
xTAx + bTx + c

with A negative definite, we have

g ′(x∗) = Ax + b

so the unique maximum is found by

g ′(x∗) = 0⇔ x∗ = −A−1b
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Multivariate problems Newton and quasi-Newton methods

Multivariate Newton’s method (continued)

This maximum can be found in one step from any starting point x(0)

by
x∗ = x(0) − g′′(x(0))−1g′(x(0)) (4)

where g′′(x) =
(
∂2g(x)
∂xi∂xj

)
= A is the p × p Hessian matrix of g at x.

Indeed,

x(0) − g′′(x(0))−1g′(x(0)) = x(0) − A−1(Ax(0) + b) = −A−1b

Newton’s method: at each time step, approximate g(x) around x(t) by
a second-order Taylor series expansion, and use update equation (4).
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Multivariate problems Newton and quasi-Newton methods

Multivariate Newton’s method and Fisher scoring

2nd order approximation of g(x) around x(t):

g(x) ≈ g(x(t)) + (x− x(t))Tg′(x(t)) +
1
2
(x− x(t))Tg′′(x(t))(x− x(t)).

Setting g′(x) = 0, we get the update equation

x(t+1) = x(t) − g′′(x(t))−1g′(x(t)).

Fisher scoring:

θ(t+1) = θ(t) + I(θ(t))−1`′(θ(t)),

where I(θ) = −Eθ

[
`′′(θ)

]
is the Fisher information matrix at θ.

Thierry Denœux (UTC) Continuous Optimization Fall 2021 58 / 79



Multivariate problems Newton and quasi-Newton methods

Example

Two runs starting from x(0)a and x(0)b are shown. These converge to the true
maximum and to a local minimum, respectively.
Newton’s method is not guaranteed to walk uphill. It is not guaranteed to
find a local maximum. Step length matters even when step direction is
good.
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Multivariate problems Newton and quasi-Newton methods

Newton-like methods

Some very effective methods rely on update equations of the form

x(t+1) = x(t) −
(
M(t)

)−1
g′(x(t))

where M(t) is a p × p matrix approximating the Hessian, g′′(x(t)).
Two issues:

We want to avoid calculating the Hessian if it is computationally
expensive or analytically difficult
We want to guarantee uphill steps
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Multivariate problems Newton and quasi-Newton methods

Ascent algorithms

If we use the updating increment

h(t) = −α(t)
[
M(t)

]−1g′(x(t)).
then any positive definite matrix −M(t) will ensure ascent for a
sufficiently small α(t)

Backtracking can be used, as in the steepest ascent method.
Steepest ascent is recovered as a special case, with M(t) = −I.
Fisher scoring is another special case with −M(t) = I(θ(t)). Since
I(θ(t)) is positive semi-definite, backtracking with Fisher scoring
avoids stepping downhill.
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Multivariate problems Newton and quasi-Newton methods

Discrete Newton method

To avoid calculating the Hessian, one could resort to an analogue of
the 1-dimensional secant method.
For example,

M(t)
ij =

g ′i
(
x(t) + h

(t)
ij ej

)
− g ′i

(
x(t)
)

h
(t)
ij

≈ ∂2g(x(t))
∂xi∂xj

where g ′i (x) = ∂g(x)/∂xi is the ith element of g′(x), ej is the
p-vector with a 1 in the jth position and zeros elsewhere, and h

(t)
ij are

some constants.
h
(t)
ij = h for all (i , j) and t leads to linear convergence order: β = 1.

Alternatively, h(t)ij = x
(t)
j − x

(t−1)
j for all i gives superlinear

convergence.
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Multivariate problems Newton and quasi-Newton methods

Quasi-Newton methods

The discrete Newton method strategy is computationally burdensome
because M(t) is wholly updated at every step.
A more efficient approach can be designed based on the direction of
the most recent step. From a first order Taylor series expansion of g′

about x(t), we have

g′(x(t+1))− g′(x(t)) ≈ g′′(x(t))(x(t+1) − x(t))

M(t+1) satisfies the secant condition if

g′(x(t+1))− g′(x(t)) = M(t+1)(x(t+1) − x(t)). (5)

Goal: generate M(t+1) from M(t) in a manner that requires few
calculations and satisfies (5), while learning about the curvature of g
in the direction of the most recent step.
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Multivariate problems Newton and quasi-Newton methods

BFGS method

The widely used BFGS method updates matrix M(t+1) so as to satisfy
the secant condition. It is defined by the following update equation

M(t+1) = M(t) − M(t)z(t)(M(t)z(t))T

(z(t))TM(t)z(t)
+

y(t)(y(t))T

(z(t))Ty(t)

where z(t) = x(t+1) − x(t) and y(t) = g′(x(t+1))− g′(x(t)).
The BFGS update confers hereditary positive definiteness: if −M(t) is
positive definite, so is −M(t+1).
Backtracking is normally used.
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Multivariate problems Newton and quasi-Newton methods

Example

Quasi-Newton optimization with the BFGS update and backtracking to
ensure ascent.
Convergence of quasi-Newton methods is generally superlinear, but not
quadratic. These are powerful and popular methods, available, for example,
in the R function optim().
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Multivariate problems Gauss-Newton method

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm
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Multivariate problems Gauss-Newton method

Basic idea

Consider a nonlinear least squares problem with observed data (zi , yi )
for i = 1, . . . , n and model

Yi = f (zi ,θ) + εi

for some non-linear function, f , and random error, εi .
We seek to estimate θ by maximizing an objective function

g(θ) = −
n∑

i=1

(yi − f (zi ,θ))2 .

Newton’s method approximates g via Taylor series. The
Gauss-Newton approach approximates f itself by its linear Taylor series
expansion about θ(t).
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Multivariate problems Gauss-Newton method

Linearized reformulation

We have

f (zi ,θ) ≈ f (zi ,θ(t)) + (θ − θ(t))T f ′(zi ,θ(t))

where for each i , f ′(zi ,θ(t)) is the column vector of partial derivatives
of f with respect to θj , for j = 1, . . . , p, evaluated at (zi ,θ(t)).
Now, instead of g(θ), we maximize

g̃(θ) = −
n∑

i=1

yi − f (zi ,θ(t))︸ ︷︷ ︸
x
(t)
i

−(θ − θ(t))T f ′(zi ,θ(t))︸ ︷︷ ︸
a(t)i


2

= −
n∑

i=1

(
x
(t)
i − (θ − θ(t))Ta(t)i

)2
with respect to θ.
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Multivariate problems Gauss-Newton method

Update equation

Then the approximated problem can be re-expressed as minimizing the
squared residuals of the linear regression model

x(t)︸︷︷︸
response

= A(t)︸︷︷︸
design matrix

(θ − θ(t))︸ ︷︷ ︸
coefficients

+ε

where x(t) and ε are column vectors whose ith elements consist of x (t)i

and εi , respectively. Similarly, A(t) is a matrix whose ith row is
(a(t)i )T .
The solution is

θ(t+1) = θ(t) +
(
(A(t))TA(t)

)−1
(A(t))Tx(t).

Requires no computation of Hessian.
Works best when the model fits fairly well and f is not severely
nonlinear.
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Multivariate problems Nelder-Mead algorithm

Overview

1 Introduction

2 Univariate problems
Bisection
Newton’s method
Secant method

3 Multivariate problems
Cyclic coordinate ascent
Gradient methods
Newton and quasi-Newton methods
Gauss-Newton method
Nelder-Mead algorithm

Thierry Denœux (UTC) Continuous Optimization Fall 2021 70 / 79



Multivariate problems Nelder-Mead algorithm

Main idea

An algorithm that does not require the calculation of g ′(x) or g ′′(x).
Idea: evaluation g at p + 1 points x1, . . . , xp+1 forming a simplex∗.
This simplex defines a region, which is iteratively reshaped by
replacing the worst point (vertex) by a better one.

Definition (∗k-simplex)

A k-simplex is a k-dimensional polytope which is the convex hull of k + 1
points (vertices). A a 2-simplex is a triangle.
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Multivariate problems Nelder-Mead algorithm

Definitions

Let
xbest : vertex with highest value of g
xworst : vertex with lowest value of g
xbad : 2nd worst vertex
Best face: face opposite to xworst , c its centroid.
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Multivariate problems Nelder-Mead algorithm

Transformations of a vertex

Five possible transformations of a vertex by replacing xworst :
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Multivariate problems Nelder-Mead algorithm

Basic algorithm

The location of the new vertex (replacing xworst) is based on the
reflection vertex xr = c + αr (c− xworst), usually αr = 1
If g(xbad) < g(xr ) < g(xbest): keep xr as the new vertex
If g(xr ) > g(xbest): try an expansion step
If g(xr ) < g(xbad): try a contraction step
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Multivariate problems Nelder-Mead algorithm

Expansion

If g(xr ) > g(xbest): Expansion.
Let xe = c + αe(xr − c), usually αe = 2

If g(xe) > g(xr ): set xe as the new vertex
Otherwise, keep xr
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Multivariate problems Nelder-Mead algorithm

Contraction

If g(xr ) < g(xbad): Contraction.
If g(xr ) > g(xworst): outer contraction. Let xo = c + αc(xr − c),
usually αc = 0.5.

If g(xo) > g(xr ): keep xo
Otherwise: perform a shrink transformation

If g(xr ) ≤ g(xworst): inner contraction. Let xi = c + αc(xworst − c).
If g(xi ) > g(xworst): keep xi
Otherwise: perform a shrink transformation
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Multivariate problems Nelder-Mead algorithm

Shrinking

Shrink transformation: all vertices except xbest are shrunk toward xbest :

x′j = xbest + αs(xj − xbest),

usually αs = 0.5.
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Multivariate problems Nelder-Mead algorithm

Example
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Multivariate problems Nelder-Mead algorithm

Example (continued)
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