
Computational statistics
Chapter 2: Combinatorial optimization

Thierry Denœux

June 2019

Thierry Denœux Combinatorial optimization June 2019 1 / 37

Combinatorial optimization

Assume we seek the maximum of f (θ) with respect to
θ = (θ1, . . . , θp) where θ ∈ Θ and Θ consists of N elements for a
finite positive integer N.
Θ is generally generated by combining or sequencing p items, which
may be done in a very large number of ways.
In statistical applications, it is not uncommon for a likelihood
function to depend on configuration parameters which describe the
form of a statistical model and for which there are many discrete
choices, as well as a small number of other parameters that are easily
optimized if the best configuration were known. In such cases, we
may view f (θ) as the log profile likelihood of a configuration, θ, i.e.,
the highest likelihood attainable using that configuration.

Thierry Denœux Combinatorial optimization June 2019 2 / 37

Example: traveling salesman problem

The salesman must visit each of p cities exactly once and return to
his point of origin, using the shortest total travel distance. We seek
to minimize the total travel distance over all possible routes. There
are (p − 1)!/2 possible routes (since the point of origin and direction
of travel are arbitrary).
Any tour corresponds to a permutation of the integers 1, . . . , p,
which specifies the sequence in which the cities are visited.
Statisticians frequently face combinatorial problems where Θ has p!
or 2p elements.

Thierry Denœux Combinatorial optimization June 2019 3 / 37

Complexity

The traveling salesman problem is NP-complete. There is no known
solution in O(pk) steps for any k .
Consider two problems. The first can be solved in O(p2) operations,
and the second O(p!) operations.

Time to solve problem of order. . .
p O(p2) O(p!)
20 1 minute 1 minute
21 1.10 minutes 21 minutes
25 1.57 minutes 12.1 years
30 2.25 minutes 207 million years
50 6.25 minutes 2.4×1040 years

The big number exceeds a billion billion billion times longer than the
age of the universe!
There are optimization problems that are inherently too difficult to
solve exactly by traditional means.

Thierry Denœux Combinatorial optimization June 2019 4 / 37

Example 1: Variable selection in regression

Given a dependent variable Y and a set of candidate predictors
x1, x2, . . . , xp, we must find the best model of the form
Y = β0 +

∑s
j=1 βij xij + ε where {i1, . . . , is} is a subset of {1, . . . , p}.

The goal is to select the best model according to the Akaike
information criterion (AIC), i.e., minimize AIC.
Variable selection problem requires an optimization over a space of
2p+1 possible models, since each variable and the intercept may be
included or omitted.

Thierry Denœux Combinatorial optimization June 2019 5 / 37

Example 2: Clustering

Problem: Find a partition of a set of n points that optimizes some
criterion.
Number of partitions on n points: Bell numbers

Bn+1 =
n∑

k=0

(
n

k

)
Bk

B1 = 1,B2 = 2, . . . ,B5 = 52,B6 = 203,B10 = 115975,B20 ≈ 5 ·1013

0 50 100 150 200

1e
−

11
1e

+
49

1e
+

10
9

1e
+

22
9

Bell numbers

n

nu
m

be
r

of
 p

ar
tit

io
ns

 o
f n

 o
bj

ec
ts

Thierry Denœux Combinatorial optimization June 2019 6 / 37

Heuristic search

Abandon algorithms that are guaranteed to find the global maximum
(under suitable conditions) but will never succeed within a practical
time limit.
Turn instead to algorithms that can find a good local maximum
within tolerable time.
Explicit trade of global optimality for speed.

Thierry Denœux Combinatorial optimization June 2019 7 / 37

Local search

Overview

Local search

Simulated Annealing

Genetic algorithms

Thierry Denœux Combinatorial optimization June 2019 8 / 37

Local search

Local search

Relies on
iterative improvement of a current candidate solution, and
limitation of the search to a local neighborhood at any particular
iteration.

θ(t) −→ θ(t+1) is a move or step.

Thierry Denœux Combinatorial optimization June 2019 9 / 37

Local search

Definition of neighborhood N (θ(t))

Keep it simple. E.g.: define N (θ(t)) by allowing k changes to the
current candidate solution. This is a k-neighborhood, and any move
is called a k-change.
In the regression model selection problem, suppose θ(t) is a binary
vector coding the inclusion/exclusion of each potential predictor. A
simple 1-neighborhood is the set of models that either add or omit
one predictor from θ(t).
Search strategies

Simple Ascent: θ(t+1) = any better θ in N (θ(t)).
Steepest Ascent: θ(t+1) = best θ in N (θ(t)).

Thierry Denœux Combinatorial optimization June 2019 10 / 37

Local search

Random starts local search

Approach:
Select many starting points by stratified or completely at random
sampling
Run simple/steepest ascent from each point
Choose best solution as final answer.

Works surprisingly well compared to more sophisticated local search
techniques.
The random starts strategy can be overlaid on any optimization
method to improve the odds of finding a globally competitive final
answer, or even the global optimum.

Thierry Denœux Combinatorial optimization June 2019 11 / 37

Local search

Example: Regression with 27 predictors and 227 possible
models

Table: Local search (LS) model selection results using 1-change steepest ascent,
for 5 random starts.

Predictors selected
Method 1 2 3 6 7 8 9 10 12 13 14 15 16 18 19 20 21 22 24 25 26 AIC
LS (2,4) • • • • • • • • • • • • −416.95
S-Plus • • • • • • • • • • • • −416.94
LS (1) • • • • • • • • • • −414.60
LS (3) • • • • • • • • • • • −414.16
LS (5) • • • • • • • • • • −413.52
Efroymson • • • • • • • • • −400.16

The S-Plus (function step()) and Efroymson’s methods are greedy
stepwise procedures.

Thierry Denœux Combinatorial optimization June 2019 12 / 37

Local search

Example: Regression (continued)

Results of random starts local search by 1-change steepest ascent for the
regression example, for up to 15 iterations from each of five random
starts. Only AIC values between −300 and −420 are shown.

Thierry Denœux Combinatorial optimization June 2019 13 / 37

Simulated Annealing

Overview

Local search

Simulated Annealing

Genetic algorithms

Thierry Denœux Combinatorial optimization June 2019 14 / 37

Simulated Annealing

Basic principles

Motivated by analogy to the physics of slowly cooling solids. The
method models the physical process of heating a material and then
slowly lowering the temperature to decrease defects, thus minimizing
the system energy.
Traditionally problems are posed as minimizations. We adopt this
convention for this algorithm only.
Relies on a sequence of numbers, τ0, τ1, τ2 . . ., called temperatures.
Temperature parameterizes how willing the algorithm should make
non-improving steps.

Thierry Denœux Combinatorial optimization June 2019 15 / 37

Simulated Annealing

Basic principles (continued)

Starts at time t = 0 with an initial point θ(0) and a temperature τ0.
The algorithm is run in stages indexed by j = 0, 1, 2, . . ., and each
stage consists of several iterations. The length of the jth stage is mj .
The new candidate solution is always adopted when it is superior to
the current solution, and sometimes adopted even when it is inferior.
This is stochastic descent designed to enable escape from
uncompetitive local minima.

Thierry Denœux Combinatorial optimization June 2019 16 / 37

Simulated Annealing

Algorithm

1 Select a candidate solution θ∗ within the neighborhood of θ(t), say
N (θ(t)), according to a proposal density g (t)(· | θ(t)).

2 Randomly decide whether to adopt θ∗ as the next candidate solution
or to keep another copy of the current solution. Specifically, let
θ(t+1) = θ∗ with probability equal to
min

(
1, exp

{
(f (θ(t))− f (θ∗))/τj

})
. Otherwise, let θ(t+1) = θ(t).

3 Repeat steps 1 and 2 a total of mj times.
4 Increment j . Update τj = α(τj−1) and mj = β(mj−1). Go to step 1.

α(·) should slowly decrease temperatures to zero.
β(·) should increase stage lengths as temperatures drop.

Thierry Denœux Combinatorial optimization June 2019 17 / 37

Simulated Annealing

Neighborhoods for simulated annealing

Small and easily computed. E.g., in variable selection, add or remove
one variable.
Neighborhood structure must allow all elements of Θ to
communicate (any two candidate solutions must be connectable via
a sequence of neighborhoods).
Common proposal distribution: discrete uniform over N (θ(t)).

Thierry Denœux Combinatorial optimization June 2019 18 / 37

Simulated Annealing

Cooling schedule and convergence

Cooling should be slow.
Simulated annealing produces a Markov chain θ(0),θ(1),θ(2), . . .
because θ(t+1) depends only on θ(t).
The distribution of θ(t) converges to some stationary distribution as
t →∞.
In principle, we would like to run the chain at each fixed temperature
long enough that the Markov chain is approximately in its stationary
distribution before the temperature is reduced.
Theoretical analysis of cooling schedules leads to “recommendations”
requiring impracticably long run lengths, sometimes longer than
exhaustive search.

Thierry Denœux Combinatorial optimization June 2019 19 / 37

Simulated Annealing

Theoretical results

First fix temperature at τ . Suppose that proposing θi from N (θj)
has the same probability as proposing θj from N (θi) for any pair of
solutions θi and θj in Θ.

Then the sequence of θ(t) generated by simulated annealing is a
Markov chain with stationary distribution

πτ (θ) ∝ exp{−f (θ)/τ}.

Consequently,
lim
t→∞

P(θ(t) = θ) = πτ (θ).

Thierry Denœux Combinatorial optimization June 2019 20 / 37

Simulated Annealing

Theoretical results (continued)

Suppose there are M global minima and the set of these solutions is
M. Then,

lim
τ↓0

πτ (θi) =

{
1/M if i ∈M
0 otherwise.

If, for each τ , we wait long enough to reach the stationary
distribution, and if we let τ tend to 0, then we are sure to reach a
global minimum (after a possibly infinite amount of time!).

Thierry Denœux Combinatorial optimization June 2019 21 / 37

Simulated Annealing

Practical advice on cooling schedules

Popular approach: set mj = 1 for all j and reduce temperature very
slowly according to

α(τj−1) =
τj−1

1+ aτj−1

for a small value of a.
A second option is to set

α(τj−1) = aτj−1

for a < 1 (usually a ≥ 0.9). Increase stage lengths as temperatures
decrease, using, e.g., β(mj−1) = bmj−1 for b > 1.

Thierry Denœux Combinatorial optimization June 2019 22 / 37

Simulated Annealing

Practical advice on initial temperature

Selection of the initial temperature, τ0, is usually problem dependent.
Try using a positive τ0 value so that exp {(f (θi)− f (θj))/τ0} is
close to one for any pair of solutions θi and θj in Θ. This provides
any point in the parameter space with a reasonable chance of being
visited in early iterations of the algorithm.
Final advice: Long runs at high temperatures are unneeded.
Decrease temperature rapidly at first but slowly thereafter.

Thierry Denœux Combinatorial optimization June 2019 23 / 37

Simulated Annealing

Example: Regression

Temperature for the bottom curve is shown with the dotted line and the right axis.
Neighborhoods given by adding or deleting one predictor. Discrete uniform proposal.
15-stage cooling schedule with stage lengths of 5 × 60, 5 × 120, and 5 × 220. Cooling
given by α(τj−1) = 0.9τj−1 after each stage. The bottom curve corresponds to τ0 = 1,
where we observe sticking because there is little tolerance for uphill moves. A second
run with τ0 = 10 (top solid line) yielded considerable mixing, with many uphill
proposals accepted as moves.

Thierry Denœux Combinatorial optimization June 2019 24 / 37

Simulated Annealing

Simulated annealing in R

Function optim, select method="SANN".
Parameters:

control$temp: τ0 (default = 10)
control$tmax: number mj of function evaluations at each
temperature (default = 10)
gr: function to generate a new candidate point.

Cooling schedule:

τj =
τ0

log[(j − 1)tmax+ e]

Thierry Denœux Combinatorial optimization June 2019 25 / 37

Genetic algorithms

Overview

Local search

Simulated Annealing

Genetic algorithms

Thierry Denœux Combinatorial optimization June 2019 26 / 37

Genetic algorithms

Basic Principles

Mimic the process of Darwinian natural selection.
Candidate solutions are envisioned as biological organisms
represented by their genetic code.
The fitness of an organism is analogous to the quality of a candidate
solution.
Breeding among highly fit organisms provides the best opportunity to
pass along desirable attributes to future generations, while breeding
among less fit organisms (and rare genetic mutations) ensures
population diversity.
Over time, the organisms in the population should evolve to become
increasingly fit, thereby providing a set of increasingly good
candidate solutions to the optimization problem.

Thierry Denœux Combinatorial optimization June 2019 27 / 37

Genetic algorithms

Basic definitions

Every candidate solution corresponds to an individual or organism,
and every organism is completely described by its chromosome.
A chromosome is a sequence of C symbols, each of which consists of
a single choice from a pre-determined alphabet. E.g., ‘100110001’.
The C elements of the chromosome are the genes. The values that
might be stored in a gene (i.e., the alphabet) are alleles. The
position of a gene in the chromosome is its locus.

Thierry Denœux Combinatorial optimization June 2019 28 / 37

Genetic algorithms

Basic definitions (continued)

The information encoded in an individual’s chromosome is its
genotype, ϑ. The expression of the genotype in the organism itself is
its phenotype, θ.
The fitness of an organism (or its genotype) depends on the
corresponding f (θ

(t)
i).

Example: regression model selection. Assume 9 predictors.
Genotype ϑ(t)

i =‘100110001’ corresponds to the phenotype of a model
containing only the fitted parameters for predictors 1, 4, 5, and 9.
The fitness of this individual equals the negative AIC of this model.

Thierry Denœux Combinatorial optimization June 2019 29 / 37

Genetic algorithms

Basic definitions (continued)

GA’s consider many candidate solutions simultaneously. Let the t-th
generation consist of a collection of P organisms θ(t)1 , . . . ,θ

(t)
P

having corresponding genotypes (encodings) ϑ(t)
1 , . . . ,ϑ

(t)
P .

As generations progress, organisms inherit from their parents bits of
genetic code that are associated with high fitness if fit parents are
predominantly selected for breeding.
An offspring is a new organism inserted in the (t + 1)-th generation
to replace a member of the t-th generation. The offspring’s
chromosome is determined from two parent chromosomes belonging
to the t-th generation.

Thierry Denœux Combinatorial optimization June 2019 30 / 37

Genetic algorithms

Selection mechanisms

Breeding drives most genetic change. The process by which parents
are chosen to produce offspring is called the selection mechanism.
Simplest: Select one parent (or both) with probability proportional to
fitness and select the other parent completely at random.
Better: Select a parent with probability equal to

ri
P(P + 1)/2

where ri is the rank of f (θ(t)i) among generation t.
Popular: Tournament selection. Randomly partition the set of
chromosomes in generation t into k disjoint subsets of equal size.
Select the best individual in each group as a parent. Repeat to
obtain sufficient parents. Finally, randomly pair parents for breeding.

Thierry Denœux Combinatorial optimization June 2019 31 / 37

Genetic algorithms

Genetic operators

After two parents from the t-th generation have been selected for
breeding, their chromosomes are combined in some way that allows
schemata from each parent to be inherited by their offspring, who
become members of generation t + 1.
Crossover: Select a random position between two adjacent loci and
split both parent chromosomes at this position. Glue the left
chromosome segment from one parent to the right segment from the
other parent to form an offspring chromosome.
Mutation: Randomly change one or more alleles in the chromosome.
Usually applied after breeding (crossover).

Thierry Denœux Combinatorial optimization June 2019 32 / 37

Genetic algorithms

Example

An example of generation production in a genetic algorithm for a
population of size P = 4 with chromosomes of length C = 3. Crossovers
are illustrated by boxing portions of some chromosomes. Mutation is
indicated by an underlined gene in the final column.

Thierry Denœux Combinatorial optimization June 2019 33 / 37

Genetic algorithms

Practical advice

Initial population: Purely random chromosomes.
Generation size: Larger provides greater search diversity, but also
greater computing burden. For binary encoding of chromosomes, try
C ≤ P ≤ 2C , where C is the chromosome length. Real applications
often have 10 ≤ P ≤ 200, but a review of empirical studies suggests
that P can often be as small as 30.
Mutation rates: Typically very low, in the neighborhood of 1%.
Studies have suggested a rate of 1/C or a rate roughly proportional
to 1/(P

√
C).

Thierry Denœux Combinatorial optimization June 2019 34 / 37

Genetic algorithms

Practical advice (continued)

Define the generation gap, G , to be the proportion of the generation
to be replaced by generated offspring.
G = 1 corresponds to a canonical genetic algorithm with distinct,
non-overlapping generations.
At the other extreme, G = 1/P corresponds to incremental updating
of the population one offspring at a time. Such a steady state GA
genetic algorithm produces one offspring at a time to replace the
least fit (or some random relatively unfit) individual.
When G < 1, we can ensure that the k best chromosomes are kept
in the next generation (elitist strategy).

Thierry Denœux Combinatorial optimization June 2019 35 / 37

Genetic algorithms

Example

Results of a genetic algorithm for regression model selection, with 100
generations of size P = 20, using rank-based fitness, simple crossover,
and 1% mutation. Darwinian ‘survival of the fittest’ is clearly seen. The
twenty random starting individuals quickly coalesce into three effective
subspecies, with the best of these slowly overwhelming the rest. The best
model was first found in generation 87.

Thierry Denœux Combinatorial optimization June 2019 36 / 37

Genetic algorithms

Genetic algorithms in R

Package GA.
Main function: ga
Some arguments:

type: set to "binary" (other values: "real-valued",
"permutation")
fitness: the fitness function
popSize: the population size
pcrossover: the probability of crossover between pairs of
chromosomes. Default = 0.8.
pmutation: the probability of mutation in a parent chromosome.
Default = 0.1.
elitism: the number of best fitness individuals to survive at each
generation. By default the top 5% individuals will survive at each
iteration.
run: the number of consecutive generations without any
improvement in the best fitness value before the GA is stopped.

Thierry Denœux Combinatorial optimization June 2019 37 / 37

	Local search
	Simulated Annealing
	Genetic algorithms

