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EM Algorithm

@ An iterative optimization strategy useful when maximizing the
likelihood is difficult, but:

o There are missing (non-observed) data
o If the missing data were observed, maximizing the likelihood would be
easy.

@ Many applications in statistics and econometrics.

@ Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
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EM algorithm Description

Notation

: Observed variables
: Missing or latent variables
: Complete data X = (Y, Z)
: Unknown parameter
) : observed-data likelihood, short for L(8;y) = f(y; 0)
Lc(0) : complete-data likelihood, short for L(0; x) = f(x; 0)
)

: observed and complete-data log-likelihoods
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Description
Q function

@ Suppose we seek to maximize L(8@) with respect to 6.

o Define Q(8,6) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y =y. Namely

Q(6,01) =Eq {£c(6) | v}
=Eg {log f(X;0) | y}

:/[Iog f(x;0)]f(z |y;0) dz

(f(x | y;0)) = f(z | y; 6)) because Z is the only random part of
X once we are given Y =)
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S
The EM Algorithm

Start with 8(©). Then
O E step: Compute Q(6,6()).

@ M step: Maximize Q(6,0(")) with respect to 8. Set 8("1) equal to
the maximizer of Q.

© Increment t and return to the E step unless a stopping criterion has
been met; e.g.,

200+ — g0y < ¢
or
[0+ — 6| < e

=\
Q’;
Ry
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Convergence of the EM Algorithm

@ It can be proved that L(0) increases after each EM iteration, i.e.,
L(OFFD) > 1(0M) for t = 0,1, .. ..

e Consequently, the algorithm converges to a local maximum of L(8) if
the likelihood function is bounded above.

o Typically, we run the algorithm several times with random initial
conditions, and we keep the results of the best run.

R
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EM algorithm Description

Example: mixture of normal and uniform distributions

o Let Y =(Y1,...,Y,) be an i.i.d. sample from a mixture of a normal
distribution N(u, o) and a uniform distribution U([—a, a]), with pdf
f(y:0) = 7d(y;p,0) + (1 —m)c, (1)

where ¢(-; i, o) is the normal pdf, ¢ = (2a)~! is a known constant,
7 is the proportion of the normal distribution in the mixture and
0 = (1, 0,7) 7 is the vector of parameters.

o Typically, the uniform distribution corresponds to outliers in the data.
The proportion of outliers in the population is then 1 — 7.

o We want to estimate 0.

g
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EM algorithm Description

Observed and complete-data likelihoods
o Let Z; = 1 if observation i is not an outlier, Z; = 0 otherwise. We
have Z; ~ B(m).

@ The vector Z = (Zi, ..., Z,) is the missing data.
@ Observed-data likelihood:

=170 0) = [ [ro(vii s, 0) + (1 = 7)c]
i=1 i=1
@ Complete-data likelihood:
= H f(vi,zi:0) = [ [ f(i | zii o) F (i3 )
j i=1

—H (i 1, 0) €% (1 = )]
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EM algorithm Description

Derivation of function @

o Complete-data log-likelihood:

0c(0) = zilog ¢(vii o) + (n -3 Zi> log c+
i=1 i=1

Z (zilogm+ (1 — z)log(1 — 7))

i=1
@ It is linear in the z;. Consequently, the @ function is simply

Q(6,61) =" 2V log ¢(yi; p, o) + ( - Z;‘”) log ¢+
i=1 i=1

i <zl.(t) logm + (1 — z,.(t)) log(1 — 7r)>

i=1
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EM algorithm Description

EM algorithm

E-step: compute

2 = By[Z | i)

(i

=Py»[Zi =1]yi]
(©), 5(0)7(0

N ¢(YI N(t

M-step: Maximize Q(8,0("). We get

(1) ZZ (t)

()7 (t) + (1 — (1))

(D) — E?:l Z,(t) Yi
e

SE41) _ J S0 2y — plerD)y2
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EM algorithm Description

Bayesian posterior mode

o Consider a Bayesian estimation problem with likelihood L(@) and
prior £(6).

@ The posterior density if proportional to L(8)f(8). It can also be
maximized by the EM algorithm.

@ The E-step requires
Q(6,61)) = Egy {€c(6) | y} + log £(6)

@ The addition of the log-prior often makes it more difficult to
maximize @ during the M-step.

@ Some methods can be used to facilitate the M-step in difficult
situations (see below).
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GRaPRis
Why does it work?

@ Ascent: Each M-step increases the log likelihood.

@ Optimization transfer:

0(0) > Q0,00 + £(01)) — Q™) 6(1))

G(6,01))

@ The last two terms in G(6,0(*)) do not depend on 6, so Q and G
are maximized at the same 6.

o Further, G is tangent to /¢ at O(t), and lies everywhere below . We
say that G is a minorizing function for £ (see next slide).

e EM transfers optimization from / to the surrogate function G, which
is more convenient to maximize.
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EM algorithm Analysis

The nature of EM

1(0]x)

21a] g(t+1) g(t+2)
[

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function

Ry

G, and each M step maximizes it to provide an uphill step.
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Analysis
Proof

o We have

oy fly,z,0)  f(x;6) o f(x;0)
= e T YO T R ey

o Consequently,
(6) = log f(y; 0) = log f(x;0) —log f(z | y; 6)
(0)
Le

o Taking expectations on both sides wrt the conditional distribution of
X given Y = y and using 8®) for 6:

0(6) = Q(6,6)) —Eg[log £(Z | y:6) | y] (2)
H(6,01)) ‘%?‘
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EM algorithm Analysis

Proof - the minorizing function

@ Now, for all 8 € ©,

H(0,0(f)) — H(G(t)’e(t)) =Eg [Iogm | y] (3a)
< logEi0 m |y] (+) (3b)

f f(zly:0) f(z|y,0(t))dz

Fzly 0
glog/f(z}’;e)dzzo (3¢)
_1,_/
(*): from the concavity of the log and Jensen's inequality. A

o Hence, 61 is a maximizer of H(8,6(")) l*w,,,
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EM algorithm Analysis

Proof - the minorizing function (continued)

Hence, for all 8 € ©,
H(6™,61) > H(0,61)

Q6,6 — ¢(8) > Q(6,6)) — £(8)
0(6) > Q(6,6)) + £(61) — Q(8), 6

G(6,6(0)
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Qabob
Proof - G is tangent to £ at o)

o As 8() maximizes H(0,0)) = Q(8,0)) — ¢(6), we have
H'(8,60)g_gtr = Q(8,6)|g_gr — £'(6)[g_gt0r = O,

SO

Q'(8,6)]g_gi0r = £(8)]g_gt0-
o Consequently, as G(8,0()) = Q(0,6()) + cst,

G'(8,0)| g0 = Q(8,01)] gy = €(8)]g_gto)-
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EM algorithm Analysis

Proof - monotonicity

e From (2),

(00D — g0y = Q1Y) (1)) — (1), 6(1))
A

— | HOY 91y — H(O®) g(1)

B

e A > 0 because 8(t"1) is a maximizer of Q(0,0(t)), and B<0
because, from (3), 8() is a maximizer of H(8,8")).

@ Hence,

E(e(t-f—l)) > Z(e(t))
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Faciltating the E-step
Monte Carlo EM (MCEM)

@ Sometimes, the conditional expectation of ¢.(0) given y cannot be
easily computed analytically in the E step.

@ Approach: randomly generate sets of missing values according to the
conditional distribution f(z]y; 8()), and replace the expectation by
an average over generated data sets.

e’
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Faciltating the E-step
Monte Carlo EM (MCEM)

@ Replace the t-th E step with
@ Draw missing datasets Z(t) "'725:,()0 iid. from f(zly; 0")). Each
ZJ(.t) is a vector of all the missing values needed to complete the
observed dataset, so XJ(-t) = (y, ZJ(-t)) denotes a completed dataset

where the missing values have been replaced by ZJ(-t).

@ Calculate

m(®)

Q1(0,01) = Z log £(X

o Then Q(tT1)(6,0()) is a Monte Carlo estimate of Q(8, 8(%)).
o The M step is modified to maximize Q(t+1)(, 6(1)). .
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Remarks

o It is advised to increase m(t) as iterations progress to reduce the
Monte Carlo variability of Q.

e MCEM will not converge in the same sense as ordinary EM, rather
values of 8 will bounce around the true maximum, with a precision

that depends on m(?).
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Overview
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Facilitating the M-step
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Faciltating the M-step
Generalized EM (GEM) algorithm

@ In the original EM algorithm, 0(t+1) is a maximizer of Q(G,H(t)), i.e
Q6" 69) > Q(6,6("))

for all 0.

@ However, to ensure convergence, we only need that
Qe 9y > Qo) 0())

o Any algorithm that chooses (t*1) at each iteration to guarantee the
above condition (without maximizing Q(0,0("))) is called a
Generalized EM (GEM) algorithm.
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(sl (Ul
EM gradient algorithm

@ Replace the M step with a single step of Newton's method, thereby
approximating the maximum without actually solving for it exactly.

@ Instead of maximizing, choose:

0(t+1) — a(t) o QII(079(t))71’ Q/(ejo(t))

0=0(1) 0=0(1)

— 9 _ Q//(979(t))—1’ 7(60)

=6

@ Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed convergence.

e’
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ECM algorithm

@ Replaces the M step with a series of computationally simpler
conditional maximization (CM) steps.

@ Call the collection of simpler CM steps after the t-th E step a CM
cycle. Thus, the t-th iteration of ECM is comprised of the t-th
E step and the t-th CM cycle.

@ Let S denote the total number of CM steps in each CM cycle.

e’
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Faciltating the M-step
ECM algorithm (continued)

@ Fors=1,...,5, the s-th CM step in the t-th cycle requires the
maximization of Q(,0(*)) subject to (or conditional on) a
constraint, say

£:(6) = g.(00+= /)

where 9(t+(5=1)/5) s the maximizer found in the (s — 1)-th CM step
of the current cycle.

@ When the entire cycle of S steps of CM has been completed, we set
01 = 9(t+5/5) and proceed to the E step for the (t + 1)-th
iteration.

o ECM is a GEM algorithm, since each CM step increases Q.

@ The art of constructing an effective ECM algorithm lies in choosing
the constraints cleverly.
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Faciltating the M-step
Choice 1: Iterated Conditional Modes / Gauss-Seidel

e Partition 0 into S subvectors, 8 = (64,...,05).

@ In the s-th CM step, maximize @ with respect to 85 while holding all
other components of 0 fixed.

@ This amounts to the constraint induced by the function

gs(e) = (017 B 705—17 65+17 s 705)'

A e =
e
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Facilitating the M-step
Choice 2

@ At the s-th CM step, maximize @ with respect to all other
components of @ while holding 6, fixed.

@ Then gs(0) = 0;.

o Additional systems of constraints can be imagined, depending on the
particular problem context.

@ A variant of ECM inserts an E step between each pair of CM steps,
thereby updating @ at every stage of the CM cycle.
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Variance estimation
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Variance of the MLE

o Let O be the MLE of 6.

o As n — 0o, the limiting distribution of 8 is A"(6*, /(8*)™1), where
0™ is the true value of 8, and

1(6) = Eo[¢'(8)¢'(0) "] = ~Eo[¢"(0)]

is the expected Fisher information matrix (the second equality holds
under some regularity conditions).

o /(0*) can be estimated by /(8), or by —"(8) = Ips(8) (observed
information matrix).

e Standard error estimates can be obtained by computing the square
roots of the diagonal elements of /,,s(8) 1.
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Variance estimation

Obtaining variance estimates

@ The EM algorithm allows us to estimate 0, but it does not directly
provide an estimate of /(6*).

o Direct computation of /(8) or lops(8) is often difficult.
@ Main methods:
@ Louis’ method

@ Supplemented EM (SEM) algorithm
© Bootstrap (to be studied in Chapter 6)

A e =
e
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Overview

Variance estimation
Louis’ method
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Missing information principle

@ We have seen that
f(x;0)

f(z]y:0)= fly 8)

from which we get
() = £c(0) —logf(z | y:0).

o Differentiating twice and negating both sides, then taking
expectations over the conditional distribution of X given y,

_82 logf(z | y;0)

—0"(0)=Eq [ (0 —E
iy (0) ix(0) i2v(6)

where
o Zy(0) is the observed information,
o 7x(0) is the complete information, and
o izy(0) is the missing information.
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Louis" method
o Computing ix(6) and iz)y (@) is sometimes easier than computing

—0"() directly

@ We can show that
iz)v(0) = Var [Sziv(9) | y] .
where the variance is taken w.r.t. Z|y, and

Ologf(z|y;0)

Szv(0) = 20

is the conditional score.

@ As the expected score is zero at 8, we have

’32|Y(5) = /Szv(a)szw(a)T log f(z | y;@)dz
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Monte Carlo approximation

® When they cannot be computed analytically, 2x(0) and 2z)y(8) can
sometimes be approximated by Monte Carlo simulation.

® Method: generate simulated datasets x; = (y,z;), j=1,..., N,
where y is the observed dataset, and the z; are imputed missing
datasets drawn from f(z|y; 6)

@ Then,

1L o2 log f(x;; )

TN & 00007
j=1

ix(0)

and 9z)y(0) is approximated by the sample variance of the values

Olog f(zjly; )
80 f:")ﬂv:?m"';
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Overview
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SEM algorithm
EM mapping

o Let W denotes the EM mapping, defined by
o+ — w(g(1)
@ From the convergence of EM, 0 is a fixed point:
6=w(o).
@ The Jacobian matrix of W is the p x p matrix

wio) - (240,

o It can be shown that
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Using W'(0) for variance estimation

@ From the missing information principle,
iy(8) = ix(8) — izw(a)
| = i2v(0)ix(8) ] ix(8)

—

Hence,

@ From the equality
1-P)'=(1-P+P)1-P) =1+P(1-P)}

we get

g

iy(0) ' =ix(6) ! {' WO [1-w(O)] 1} L@
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SEM algerithm
Estimation of W'(8)

o Let r; be the element (/, ) of W(8). By definition,

__0vi(6)
= 50,
— lim wi(é\la s 75j—1a0ja§j+17 e aé\p) - \Ul(/é)
OJ-%@J- (9J' — 9j
(7)) — w.(0
i YiO70) —VHO) g0
t—00 Qj(t) - 9j t—oo Y

where 80)(j) = (01,051,087, 841, B,), and (617)),

t =1,2,...1is a sequence of values converging to 6;.

@ Method: compute the r(t) t =1,2,... until they stabilize to some~ /ﬁ
values. Then compute zy(H) ! using (4). L
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SEM algorithm

@ Run the EM algorithm to convergence, finding 6.

@ Restart the algorithm from some 8(®) near 6. For t =0, 1,2
@ Take a standard E step and M step to produce 0+ from 6

@ Forj=1....p

o Define 0(j) = (bv,...,0-1,01", 011, . ..

,0,), and treating it as the
current estimate of @, run one iteration of EM to obtain W(8'"(j)).

>

o Obtain the ratio
_ Wi(O(t)U))— i
! 0 — 0

fori=1,...,p. (Recall that lIJ(G) =0. )
© Stop when all ré.) have converged
@ The (i,j)th element of W'(8) equals lim;_,o rl . Use the final

estimate of W/(6) to get the variance.
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