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EM Algorithm

@ An iterative optimization strategy useful when maximizing the
likelihood is difficult, but:

o There are missing (non-observed) data

o If the missing data were observed, maximizing the likelihood would be
easy.

@ Many applications in statistics and econometrics.

@ Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
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EM algorithm Description

Notation

: Observed variables

Y
Z : Missing or latent variables
X : Complete data X = (Y, 2Z)
6 : Unknown parameter
) : observed-data likelihood, short for L(8;y) = f(y; 0)
Lc(0) : complete-data likelihood, short for L(0; x) = f(x; )
)

: observed and complete-data log-likelihoods
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Description
Q function

@ Suppose we seek to maximize L(8@) with respect to 6.

o Define Q(8,0) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y =y. Namely

Q(6,61) =Eq {£c(6) | v}
=Eg {log f(X;0) | y}

:/[Iog f(x;0)]f(z |y;0) dz

(f(x | y;0%)) = f(z | y; 89) because Z is the only random part of X
once we are given Y =y)

/\‘;
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S
The EM Algorithm

Start with 8(©). Then
Q E step: Compute Q(6,6()).
@ M step: Maximize Q(6,60()) with respect to 6. Set (1) equal to
the maximizer of Q.

© Increment t and return to the E step unless a stopping criterion has
been met; e.g.,

200+ — g0y < ¢

or
6+ — 69 <
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S
Convergence of the EM Algorithm

@ It can be proved that L(0) increases after each EM iteration, i.e.,
L(OFFD) > 1(0D) for t = 0,1, .. ..

e Consequently, the algorithm converges to a local maximum of L(8) if
the likelihood function is bounded above.

o Typically, we run the algorithm several times with random initial
conditions, and we keep the results of the best run.

R
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EM algorithm Description

Example: mixture of normal and uniform distributions

o Let Y =(Y1,...,Yy) be an i.i.d. sample from a mixture of a normal
distribution N(u, o) and a uniform distribution U([—a, a]), with pdf
f(y:0) = mo(y; p,0) + (1 —7)c, (1)

where ¢(-; i1, o) is the normal pdf, ¢ = (2a)~! is a known constant, 7
is the proportion of the normal distribution in the mixture and
0 = (1, 0,7) " is the vector of parameters.

o Typically, the uniform distribution corresponds to outliers in the data.
The proportion of outliers in the population is then 1 — .

o We want to estimate 0.
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EM algorithm Description

Observed and complete-data likelihoods
o Let Z; = 1 if observation / is not an outlier, Z; = 0 otherwise. We
have Z; ~ B(m).

@ The vector Z = (Zi, ..., Z,) is the missing data.
@ Observed-data likelihood:

=170 0) = [ [ro(vii s, 0) + (1 = 7)c]
i=1 i=1
@ Complete-data likelihood:
= H f(vi,zi:0) = [ [ f(i | zii o) F (i3 )
j i=1

—H (i 1, 0) €% (1 = )]
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EM algorithm Description

Derivation of function @

o Complete-data log-likelihood:

(0) = zilog ¢(yii o) + (n -3 z,-> log c+
i=1 i=1

n

Z (zilogm+ (1 — z) log(1 — 7))

i=1
@ It is linear in the z;. Consequently, the @ function is simply

Q(6,0)=>" 2 log ¢(yii 11, o) + <n - Z,-(t)> log c+
i=1 i=1

n

Z <z,.(t) logm+ (1 — z,.(t)) log(1 — 7r)>

i=1

3
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S
EM algorithm

E-step: compute

2 = Ey0[Z | yi] =

S(yi; u9, o)z (0)

Poo[Zi =1 yi]

6y 1, 0)r () 4 c(1 - #(0)

M-step: Maximize Q(8,0(")). We get

(1) ZZ (t)

(f)

n
) — Ei:l Zi Vi

21?2

(1)

I
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EM algorithm Description

Bayesian posterior mode

o Consider a Bayesian estimation problem with likelihood L(@) and prior
().

@ The posterior density if proportional to L(0)f(8). It can also be
maximized by the EM algorithm.

@ The E-step requires
Q(6,61)) = Egy {€c(6) | y} + log £(6)

@ The addition of the log-prior often makes it more difficult to maximize
Q during the M-step.

@ Some methods can be used to facilitate the M-step in difficult
situations (see below).
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EM algorithm EAGEIWEH

Overview

© EM algorithm
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GRaPRis
Why does it work?

@ Ascent: Each M-step increases the log likelihood.

@ Optimization transfer:

0(0) > Q0,00 + £(01)) — Q™) 6(1))

G(6,01))

e The last two terms in G(6,0(*)) do not depend on 6, so Q and G are
maximized at the same 6.

@ Further, G is tangent to £ at O(t), and lies everywhere below . We
say that G is a minorizing function for ¢ (see next slide).

e EM transfers optimization from / to the surrogate function G, which
is more convenient to maximize.
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EM algorithm Analysis

The nature of EM

1(0]x)

21a] g(t+1) g(t+2)
0
One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function 6:} \
=

and each M step maximizes it to provide an uphill step.
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Analysis
Proof

e We have

fz)y:0) = fy,z;0) _ f(x;0)

fly;0)  f(y:0)

o Consequently,

£(0) = log f(y; 0) = log f(x;0) —log f(z | y; 0)

£:(0)

o Taking expectations on both sides wrt the conditional distribution of

X given Y = y and using 8®) for 6:

0(60) = Q(8,0)) —Ey[log f(Z | y: 0) | y]

Thierry Denceux (UTC) EM algorithm
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Analysis
Proof: 6() is a maximizer of H(6,6("))

@ Now, for all 8 € ©,

f(Z|y;0)
H(,00) — HOW 6D) =E ) |log ——L 2
( ) ( ) o) gf(Z]y,B(t)) |y

f(Z]y:0) |y] )
)

<logEge

f(Z]y; 00

f(z|y;0) (1)
I Felyiotiny F(21yi07)dz

< Iog/f(z |y;0)dz=0

| —
1

(*): from the concavity of the log and Jensen's inequality.

o Hence, 6 is a maximizer of H(8,6(")
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Analysis
Proof: ¢(-) dominates G(-,0(*))

Hence, for all 8 € ©,
H(6™,61) > H(0,61)

Q6,6 — ¢(8) > Q(6,6)) — £(8)
0(6) > Q(6,6)) + £(61) — Q(8), 6

G(6,6(0)
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Qabob
Proof: G is tangent to ¢ at o)

o As 8() maximizes H(0,0) = Q(8,0)) — ¢(6), we have
H'(8,6)g_gtr = Q(8,60)|g_gr — £'(6)[g_gt0r = O,

SO

Q'(8,6)]g_gi00 = £(8)]g_gt0-
o Consequently, as G(6,0()) = Q(0,6() + cst,

G'(0,0)| g0 = Q(8,01)] gy = €(8)]g_gio)-
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EM algorithm Analysis

Proof: monotonicity

e From (2),

000D — g0y = Q1Y) 9y — Q1) 91*))
A

— | HOED 9y — H(O®) g(1))

B

e A > 0 because 8(t™1) is a maximizer of Q(O,B(t)), and B<0
because, from (3), 8() is a maximizer of H(8,8(!)).

@ Hence,

E(e(t-f—l)) > Z(e(t))
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Some variants

Overview
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Overview

© Some variants
o Facilitating the E-step

o

Thierry Denceux (UTC) EM algorithm 2022-2023 23 / 42



Faciltating the E-step
Monte Carlo EM (MCEM)

@ Sometimes, the conditional expectation of ¢.(0) given y cannot be
easily computed analytically in the E step.

@ Approach: randomly generate sets of missing values according to the
conditional distribution f(z|y; 8(*)), and replace the expectation by an
average over generated data sets.

R
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Faciltating the E-step
Monte Carlo EM (MCEM)

@ Replace the t-th E step with
© Draw missing datasets Z(lt)7 .. .,qu:()r) i.i.d. from f(z|y; H(t)). Each ZJ(.t)
is a vector of all the missing values needed to complete the observed
dataset, so XJ(.t) =(y, ZJ(-t)) denotes a completed dataset where the

missing values have been replaced by ZJ(-t).

@ Calculate

m(®

@(Hl)( O(t) Z |0g f t

o Then Q(t+1)(9,0()) is a Monte Carlo estimate of Q(6, 8(?).
o The M step is modified to maximize Q(t+1)(6, 8(1)).
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Remarks

@ It is advised to increase m(tA) as iterations progress to reduce the
Monte Carlo variability of Q.

e MCEM will not converge in the same sense as ordinary EM, rather
values of () will bounce around the true maximum, with a precision
that depends on m(?).
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Overview

© Some variants

@ Facilitating the M-step
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Faciltating the M-step
Generalized EM (GEM) algorithm

@ In the original EM algorithm, 0(t*t1) is a maximizer of Q(070(t)), i.e
Q6" 69) > Q(6,6("))

for all 0.

@ However, to ensure convergence, we only need that
Qe 9y > Qo) 0())

o Any algorithm that chooses 8(t*1) at each iteration to guarantee the
above condition (without maximizing Q(0,0("))) is called a
Generalized EM (GEM) algorithm.
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(sl (Ul
EM gradient algorithm

@ Replace the M step with a single step of Newton's method, thereby
approximating the maximum without actually solving for it exactly.

@ Instead of maximizing, choose:

/ (1)
0=0() Q(6.67) 6=0(
(6'9)

p(t+1) — g(t) _ Q;/(Oﬁ(t))q)

— t) _ (t) —1)
0 Q7(0,67) 00

@ Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed up convergence.
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Variance estimation

Overview

© Variance estimation
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Variance of the MLE

Let 8 be the MLE of 6.

As n — 00, the limiting distribution of 8 is (6%, 1(6*)™1), where 6*
is the true value of 6, and

1(6) = Eo[¢'(8)¢'(0) "] = ~Eo[¢"(0)]

is the expected Fisher information matrix (the second equality holds
under some regularity conditions).

~ ~

1(6*) can be estimated by /(8), or by —¢"(8) = I,ps(6) (observed

information matrix).

Standard error estimates can be obtained by computing the square
roots of the diagonal elements of /,,s(8) ",
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Variance estimation

Obtaining variance estimates

@ The EM algorithm allows us to estimate 0, but it does not directly
provide an estimate of /(6).

o Direct computation of /(8) or lops(8) is often difficult.
@ Main methods:
@ Louis’ method

© Supplemented EM (SEM) algorithm
© Bootstrap (to be studied in Chapter 6)

A e =
e
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Overview

© Variance estimation
@ Louis’ method
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Missing information principle

@ We have seen that
f(x;0)

f(z]y:0)= fly 8)

from which we get
() = £c(0) —logf(z | y:0).

o Differentiating twice and negating both sides, then taking expectations
over the conditional distribution of X given y,

_82 logf(z | y;0)

") =Eq [-0"(O —E
iy (0) ix(0) T
where

o 2y(@) is the observed information,
o 7x(0) is the complete information, and
o izy(0) is the missing information.
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Louis’" method
o Computing ix(6) and iz)y (@) is sometimes easier than computing
—0"(0) directly
@ We can show that
iz)v(0) = Var [Sziv(9) | y] .
where the variance is taken w.r.t. Z|y, and

Ologf(Z|Y;0
Sz1v(0) = d (60’ )

is the conditional score.

@ As the expected score is zero at 8, we have

iZ|Y(§) = /SZY(§)52|Y(§)Tf(Z | y;0)dz
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Monte Carlo approximation

o When x(0) and 7zy(0) cannot be computed analytically, they can
sometimes be approximated by Monte Carlo simulation.

® Method: generate simulated datasets x; = (y,z;), j=1,...,N,
where y is the observed dataset, and the z; are imputed missing
datasets drawn from f(z|y; 6).
@ Then,
1 N o2 log f(x;; )
N& 00067

and @z)y (@) is approximated by the sample variance of the values

Olog f(zjly; )
80 f:")ﬂv:?m"';
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Overview

© Variance estimation

e SEM algorithm
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SEM algorithm
EM mapping

Let W denotes the EM mapping, defined by
o+ — w(g(1)

From the convergence of EM, 0 is a fixed point:

6=w(o).

The Jacobian matrix of W is the p x p matrix

wio) - (240,

It can be shown that

3
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W(0)7 = izv(0)ix(6)
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Using W'(0) for variance estimation

@ From the missing information principle,

@ Hence,
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Using W'(0) for variance estimation (continued)

@ From the equality
1-P)'=(1-P+P)1-P) =1+P1-P)}

we get
iy ()7L = ix(6)! {I ()7 [I - w'(a)T} 1} (4)

@ This result is appealing in that it expresses the desired covariance
matrix as the complete-data covariance matrix plus an incremental
matrix that takes account of the uncertainty attributable to the
missing data.
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SEM algerithm
Estimation of W'(8)

o Let r; be the element (/,) of W(6). By definition

o OV;(6)
o0
= lim W"(gl’ 'vaj—laejaajﬂ,...,ap) —\Ui(a)
0;—9; 0; —0;
(7)) — 9
= |Im \Ui(e (./))A 9, ||m r()
t—o0 QJ(t)— ] = Am r

where 6()(j) = (61, .

0 0;21,00,8,11,...,8,), and (61,
t =1,2,...is a sequence of values converging to 6;
@ Method: compute the rEt), t =1,2,... until they stabilize to some ;
values. Then compute iy (6)~! using (4)
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SEbleuiin
SEM algorithm

© Run the EM algorithm to convergence, finding 0.

@ Restart the algorithm from some 0 near 6. For t = 0,1,2,...

@ Take a standard E step and M step to produce 01+ from ).
@ Forj=1...,p
o Define 89 (j) = (b1,...,0;_ 1,9} ),9J+1, ...,0,), and treating it as the
current estimate of 0, run one iteration of EM to obtain W(8()(})).
e Obtain the ratio

fori=1,...,p. (Recall that lll(b\) =6.)

© Stop when all r,-J(.t) have converged

@ The (i,j)th element of W'(8) equals lim;_,o r,( ). Use the final
estimate of W/(6) to get the variance.
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