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EM Algorithm

An iterative optimization strategy useful when maximizing the
likelihood is difficult, but:

I There are missing (non-observed) data
I If the missing data were observed, maximizing the likelihood would be

easy.

Many applications in statistics and econometrics.
Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
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EM algorithm Description

Notation

Y : Observed variables
Z : Missing or latent variables
X : Complete data X = (Y,Z)

θ : Unknown parameter
L(θ) : observed-data likelihood, short for L(θ; y) = f (y;θ)

Lc(θ) : complete-data likelihood, short for L(θ; x) = f (x;θ)

`(θ), `c(θ) : observed and complete-data log-likelihoods
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EM algorithm Description

Q function

Suppose we seek to maximize L(θ) with respect to θ.
Define Q(θ,θ(t)) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y = y. Namely

Q(θ,θ(t)) =Eθ(t) {`c(θ) | y}
=Eθ(t) {log f (X;θ) | y}

=

∫ [
log f (x;θ)

]
f (z | y;θ(t)) dz

(f (x | y; θ(t)) = f (z | y; θ(t)) because Z is the only random part of X
once we are given Y = y)
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EM algorithm Description

The EM Algorithm

Start with θ(0). Then
1 E step: Compute Q(θ,θ(t)).
2 M step: Maximize Q(θ,θ(t)) with respect to θ. Set θ(t+1) equal to

the maximizer of Q.
3 Increment t and return to the E step unless a stopping criterion has

been met; e.g.,
`(θ(t+1))− `(θ(t)) ≤ ε

or
‖θ(t+1) − θ(t)‖ ≤ ε
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EM algorithm Description

Convergence of the EM Algorithm

It can be proved that L(θ) increases after each EM iteration, i.e.,
L(θ(t+1)) ≥ L(θ(t)) for t = 0, 1, . . ..
Consequently, the algorithm converges to a local maximum of L(θ) if
the likelihood function is bounded above.
Typically, we run the algorithm several times with random initial
conditions, and we keep the results of the best run.
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EM algorithm Description

Example: mixture of normal and uniform distributions

Let Y = (Y1, . . . ,Yn) be an i.i.d. sample from a mixture of a normal
distribution N (µ, σ) and a uniform distribution U([−a, a]), with pdf

f (y ;θ) = πφ(y ;µ, σ) + (1− π)c , (1)

where φ(·;µ, σ) is the normal pdf, c = (2a)−1 is a known constant, π
is the proportion of the normal distribution in the mixture and
θ = (µ, σ, π)T is the vector of parameters.
Typically, the uniform distribution corresponds to outliers in the data.
The proportion of outliers in the population is then 1− π.
We want to estimate θ.
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EM algorithm Description

Observed and complete-data likelihoods

Let Zi = 1 if observation i is not an outlier, Zi = 0 otherwise. We
have Zi ∼ B(π).
The vector Z = (Z1, . . . ,Zn) is the missing data.
Observed-data likelihood:

L(θ) =
n∏

i=1

f (yi ;θ) =
n∏

i=1

[πφ(yi ;µ, σ) + (1− π)c]

Complete-data likelihood:

Lc(θ) =
n∏

i=1

f (yi , zi ;θ) =
n∏

i=1

f (yi | zi ;µ, σ)f (zi ;π)

=
n∏

i=1

[
φ(yi ;µ, σ)zi c1−ziπzi (1− π)1−zi

]
Thierry Denœux (UTC) EM algorithm January-March 2024 10 / 42



EM algorithm Description

Derivation of function Q

Complete-data log-likelihood:

`c(θ) =
n∑

i=1

zi log φ(yi ;µ, σ) +

(
n −

n∑
i=1

zi

)
log c+

n∑
i=1

(zi log π + (1− zi ) log(1− π))

It is linear in the zi . Consequently, the Q function is simply

Q(θ,θ(t)) =
n∑

i=1

z
(t)
i log φ(yi ;µ, σ) +

(
n −

n∑
i=1

z
(t)
i

)
log c+

n∑
i=1

(
z
(t)
i log π + (1− z

(t)
i ) log(1− π)

)
with z

(t)
i = Eθ(t) [Zi |yi ].
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EM algorithm Description

EM algorithm

E-step: compute

z
(t)
i = Eθ(t) [Zi | yi ] = Pθ(t) [Zi = 1 | yi ]

=
φ(yi ;µ

(t), σ(t))π(t)

φ(yi ;µ(t), σ(t))π(t) + c(1− π(t))

M-step: Maximize Q(θ,θ(t)). We get

π(t+1) =
1
n

n∑
i=1

z
(t)
i , µ(t+1) =

∑n
i=1 z

(t)
i yi∑n

i=1 z
(t)
i

σ(t+1) =

√√√√∑n
i=1 z

(t)
i (yi − µ(t+1))2∑n

i=1 z
(t)
i
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EM algorithm Description

Bayesian posterior mode

Consider a Bayesian estimation problem with likelihood L(θ) and prior
f (θ).
The posterior density if proportional to L(θ)f (θ). It can also be
maximized by the EM algorithm.
The E-step requires

Q(θ,θ(t)) = Eθ(t) {`c(θ) | y}+ log f (θ)

The addition of the log-prior often makes it more difficult to maximize
Q during the M-step.
Some methods can be used to facilitate the M-step in difficult
situations (see below).
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EM algorithm Analysis
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EM algorithm Analysis

Why does it work?

Ascent: Each M-step increases the log likelihood.
Optimization transfer:

`(θ) ≥ Q(θ,θ(t)) + `(θ(t))− Q(θ(t),θ(t))︸ ︷︷ ︸
G(θ,θ(t))

The last two terms in G (θ,θ(t)) do not depend on θ, so Q and G are
maximized at the same θ.
Further, G is tangent to ` at θ(t), and lies everywhere below `. We
say that G is a minorizing function for ` (see next slide).
EM transfers optimization from ` to the surrogate function G , which
is more convenient to maximize.
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EM algorithm Analysis

The nature of EM

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function G ,
and each M step maximizes it to provide an uphill step.
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EM algorithm Analysis

Proof

We have

f (z | y;θ) =
f (y, z;θ)

f (y;θ)
=

f (x;θ)

f (y;θ)
⇒ f (y;θ) =

f (x;θ)

f (z | y;θ)

Consequently,

`(θ) = log f (y;θ) = log f (x;θ)︸ ︷︷ ︸
`c (θ)

− log f (z | y;θ)

Taking expectations on both sides wrt the conditional distribution of
X given Y = y and using θ(t) for θ:

`(θ) = Q(θ,θ(t))− Eθ(t) [log f (Z | y;θ) | y]︸ ︷︷ ︸
H(θ,θ(t))

(2)

Thierry Denœux (UTC) EM algorithm January-March 2024 17 / 42



EM algorithm Analysis

Proof: θ(t) is a maximizer of H(θ, θ(t))

Now, for all θ ∈ Θ,

H(θ,θ(t))− H(θ(t),θ(t)) = Eθ(t)

[
log

f (Z | y;θ)

f (Z | y;θ(t))
| y

]
(3a)

≤ logEθ(t)

[
f (Z | y;θ)

f (Z | y;θ(t))
| y

]
︸ ︷︷ ︸∫ f (z|y;θ)

f (z|y;θ(t))
f (z|y;θ(t))dz

(∗) (3b)

≤ log
∫

f (z | y;θ)dz︸ ︷︷ ︸
1

= 0 (3c)

(*): from the concavity of the log and Jensen’s inequality.
Hence, θ(t) is a maximizer of H(θ,θ(t))
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EM algorithm Analysis

Proof: `(·) dominates G (·, θ(t))

Hence, for all θ ∈ Θ,

H(θ(t),θ(t)) ≥ H(θ,θ(t))

Q(θ(t),θ(t))− `(θ(t)) ≥ Q(θ,θ(t))− `(θ)

`(θ) ≥ Q(θ,θ(t)) + `(θ(t))− Q(θ(t),θ(t))︸ ︷︷ ︸
G(θ,θ(t))
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EM algorithm Analysis

Proof: G is tangent to ` at θ(t)

As θ(t) maximizes H(θ,θ(t)) = Q(θ,θ(t))− `(θ), we have

H ′(θ,θ(t))|θ=θ(t) = Q ′(θ,θ(t))|θ=θ(t) − `
′(θ)|θ=θ(t) = 0,

so
Q ′(θ,θ(t))|θ=θ(t) = `′(θ)|θ=θ(t) .

Consequently, as G (θ,θ(t)) = Q(θ,θ(t)) + cst,

G ′(θ,θ(t))|θ=θ(t) = Q ′(θ,θ(t))|θ=θ(t) = `′(θ)|θ=θ(t) .
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EM algorithm Analysis

Proof: monotonicity

From (2),

`(θ(t+1))− `(θ(t)) = Q(θ(t+1),θ(t))− Q(θ(t),θ(t))︸ ︷︷ ︸
A

−

H(θ(t+1),θ(t))− H(θ(t),θ(t))︸ ︷︷ ︸
B


A ≥ 0 because θ(t+1) is a maximizer of Q(θ,θ(t)), and B ≤ 0
because, from (3), θ(t) is a maximizer of H(θ,θ(t)).
Hence,

`(θ(t+1)) ≥ `(θ(t))
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Some variants Facilitating the E-step
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Some variants Facilitating the E-step

Monte Carlo EM (MCEM)

Sometimes, the conditional expectation of `c(θ) given y cannot be
easily computed analytically in the E step.
Approach: randomly generate sets of missing values according to the
conditional distribution f (z|y;θ(t)), and replace the expectation by an
average over generated data sets.
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Some variants Facilitating the E-step

Monte Carlo EM (MCEM)

Replace the t-th E step with
1 Draw missing datasets Z(t)

1 , . . . ,Z(t)

m(t) i.i.d. from f (z|y;θ(t)). Each Z(t)
j

is a vector of all the missing values needed to complete the observed
dataset, so X(t)

j = (y,Z(t)
j ) denotes a completed dataset where the

missing values have been replaced by Z(t)
j .

2 Calculate

Q̂(t+1)(θ,θ(t)) =
1

m(t)

m(t)∑
j=1

log f (X(t)
j ;θ).

Then Q̂(t+1)(θ,θ(t)) is a Monte Carlo estimate of Q(θ,θ(t)).
The M step is modified to maximize Q̂(t+1)(θ,θ(t)).
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Some variants Facilitating the E-step

Remarks

It is advised to increase m(t) as iterations progress to reduce the
Monte Carlo variability of Q̂.
MCEM will not converge in the same sense as ordinary EM, rather
values of θ(t) will bounce around the true maximum, with a precision
that depends on m(t).
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Some variants Facilitating the M-step
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Some variants Facilitating the M-step

Generalized EM (GEM) algorithm

In the original EM algorithm, θ(t+1) is a maximizer of Q(θ,θ(t)), i.e.,

Q(θ(t+1),θ(t)) ≥ Q(θ,θ(t))

for all θ.
However, to ensure convergence, we only need that

Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t))

Any algorithm that chooses θ(t+1) at each iteration to guarantee the
above condition (without maximizing Q(θ,θ(t))) is called a
Generalized EM (GEM) algorithm.
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Some variants Facilitating the M-step

EM gradient algorithm

Replace the M step with a single step of Newton’s method, thereby
approximating the maximum without actually solving for it exactly.
Instead of maximizing, choose:

θ(t+1) = θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

Q′(θ,θ(t))
∣∣∣
θ=θ(t)

= θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

`′(θ(t))

Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed up convergence.
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Variance estimation

Variance of the MLE

Let θ̂ be the MLE of θ.
As n→∞, the limiting distribution of θ̂ is N (θ∗, I (θ∗)−1), where θ∗

is the true value of θ, and

I (θ) = Eθ[`′(θ)`′(θ)T ] = −Eθ[`′′(θ)]

is the expected Fisher information matrix (the second equality holds
under some regularity conditions).
I (θ∗) can be estimated by I (θ̂), or by −`′′(θ̂) = Iobs(θ̂) (observed
information matrix).
Standard error estimates can be obtained by computing the square
roots of the diagonal elements of Iobs(θ̂)−1.
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Variance estimation

Obtaining variance estimates

The EM algorithm allows us to estimate θ̂, but it does not directly
provide an estimate of I (θ∗).
Direct computation of I (θ̂) or Iobs(θ̂) is often difficult.
Main methods:

1 Louis’ method
2 Supplemented EM (SEM) algorithm
3 Bootstrap (to be studied in Chapter 6)
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Variance estimation Louis’ method
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Variance estimation Louis’ method

Missing information principle

We have seen that
f (z | y;θ) =

f (x;θ)

f (y;θ)
,

from which we get

`(θ) = `c(θ)− log f (z | y;θ).

Differentiating twice and negating both sides, then taking expectations
over the conditional distribution of X given y,

−`′′(θ)︸ ︷︷ ︸
ı̂Y(θ)

= Eθ
[
−`′′c (θ) | y

]︸ ︷︷ ︸
ı̂X(θ)

−Eθ
[
−∂

2 log f (z | y;θ)

∂θ∂θT
| y
]

︸ ︷︷ ︸
ı̂Z|Y(θ)

where
I ı̂Y(θ) is the observed information,
I ı̂X(θ) is the complete information, and
I ı̂Z|Y(θ) is the missing information.
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Variance estimation Louis’ method

Louis’ method

Computing ı̂X(θ) and ı̂Z|Y(θ) is sometimes easier than computing
−`′′(θ) directly
We can show that

ı̂Z|Y(θ) = Var
[
SZ|Y(θ) | y

]
,

where the variance is taken w.r.t. Z|y, and

SZ|Y(θ) =
∂ log f (Z | Y;θ)

∂θ

is the conditional score.
As the expected score is zero at θ̂, we have

ı̂Z|Y(θ̂) =

∫
SZ|Y(θ̂)SZ|Y(θ̂)T f (z | y; θ̂)dz
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Variance estimation Louis’ method

Monte Carlo approximation

When ı̂X(θ) and ı̂Z|Y(θ) cannot be computed analytically, they can
sometimes be approximated by Monte Carlo simulation.
Method: generate simulated datasets xj = (y, zj), j = 1, . . . ,N, where
y is the observed dataset, and the zj are imputed missing datasets
drawn from f (z|y;θ).
Then,

ı̂X(θ) ≈ 1
N

N∑
j=1

−
∂2 log f (xj ;θ)

∂θ∂θT

and ı̂Z|Y(θ) is approximated by the sample variance of the values

∂ log f (zj |y;θ)

∂θ
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Variance estimation SEM algorithm
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Variance estimation SEM algorithm

EM mapping

Let Ψ denotes the EM mapping, defined by

θ(t+1) = Ψ(θ(t))

From the convergence of EM, θ̂ is a fixed point:

θ̂ = Ψ(θ̂).

The Jacobian matrix of Ψ is the p × p matrix

Ψ′(θ) =

(
∂Ψi (θ)

∂θj

)
.

It can be shown that

Ψ′(θ̂)T = ı̂Z|Y(θ̂)ı̂X(θ̂)−1
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Variance estimation SEM algorithm

Using Ψ′(θ) for variance estimation

From the missing information principle,

ı̂Y(θ̂) = ı̂X(θ̂)− ı̂Z|Y(θ̂)

=
[
I− ı̂Z|Y(θ̂)ı̂X(θ̂)−1

]
ı̂X(θ̂)

=
[
I−Ψ′(θ̂)T

]
ı̂X(θ̂).

Hence,

ı̂Y(θ̂)−1 = ı̂X(θ̂)−1
[
I−Ψ′(θ̂)T

]−1
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Variance estimation SEM algorithm

Using Ψ′(θ) for variance estimation (continued)

From the equality

(I− P)−1 = (I− P + P)(I− P)−1 = I + P(I− P)−1,

we get

ı̂Y(θ̂)−1 = ı̂X(θ̂)−1
{

I + Ψ′(θ̂)T
[
I−Ψ′(θ̂)T

]−1
}

(4)

This result is appealing in that it expresses the desired covariance
matrix as the complete-data covariance matrix plus an incremental
matrix that takes account of the uncertainty attributable to the
missing data.
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Variance estimation SEM algorithm

Estimation of Ψ′(θ̂)

Let rij be the element (i , j) of Ψ′(θ̂). By definition,

rij =
∂Ψi (θ̂)

∂θj

= lim
θj→θ̂j

Ψi (θ̂1, . . . , θ̂j−1, θj , θ̂j+1, . . . , θ̂p)−Ψi (θ̂)

θj − θ̂j

= lim
t→∞

Ψi (θ
(t)(j))− θ̂i
θ
(t)
j − θ̂j

= lim
t→∞

r
(t)
ij

where θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ
(t)
j , θ̂j+1, . . . , θ̂p), and (θ

(t)
j ),

t = 1, 2, . . . is a sequence of values converging to θ̂j .

Method: compute the r
(t)
ij , t = 1, 2, . . . until they stabilize to some

values. Then compute ı̂Y(θ̂)−1 using (4).
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Variance estimation SEM algorithm

SEM algorithm

1 Run the EM algorithm to convergence, finding θ̂.
2 Restart the algorithm from some θ(0) near θ̂. For t = 0, 1, 2, . . .

1 Take a standard E step and M step to produce θ(t+1) from θ(t).
2 For j = 1, . . . , p:

Define θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ
(t)
j , θ̂j+1, . . . , θ̂p), and treating it as the

current estimate of θ, run one iteration of EM to obtain Ψ(θ(t)(j)).
Obtain the ratio

r
(t)
ij =

Ψi (θ
(t)(j)) − θ̂i

θ
(t)
j − θ̂j

for i = 1, . . . , p. (Recall that Ψ(θ̂) = θ̂.)

3 Stop when all r (t)ij have converged

3 The (i , j)th element of Ψ′(θ̂) equals limt→∞ r
(t)
ij . Use the final

estimate of Ψ′(θ̂) to get the variance.
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