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Introduction

Purpose of this chapter

This chapter addresses the simulation of random draws X1, . . . ,Xn

from a target distribution f .
The most frequent use of such draws is to estimate the expectation of
a function of a random variable, say E{h(X )}. For instance: E{X k},
P(X ∈ A) = E{I (X ∈ A)}, etc.
Example of applications:

E-step in the EM algorithm (“Monte-carlo EM”)
Calculation of some likelihood functions (“simulated likelihood”)
In Bayesian analyses, approximation of posterior moments, posterior
probabilities, credible intervals, etc.
Estimation of risk, power of tests, etc.
etc.
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Introduction

Monte Carlo integration

Let f denote the density of X , and µ denote the expectation of h(X )
with respect to f .
When an i.i.d. random sample X1, . . . ,Xn is obtained from f , we can
approximate µ by a sample average:

µ̂ =
1
n

n∑
i=1

h(Xi )→
∫

h(x)f (x)dx = µ

as n→∞, by the strong law of large numbers.
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Introduction

Error estimation

Further, let σ2 = E{(h(X )− µ)2} be the variance of h(X ), assuming
that this quantity exists.
The Monte Carlo approach can be used to estimate σ2 by

σ̂2 =
1

n − 1

n∑
i=1

[h(Xi )− µ̂]2 (1)

The Monte Carlo or simulation standard error (sse) of µ̂ is σ/
√
n. It

can be estimated by σ̂/
√
n.

When σ2 exists, the central limit theorem implies that µ̂ has an
approximate normal distribution for large n, so we get the following
approximate confidence bounds for µ with confidence level 1− α:

µ̂± u1−α/2
σ̂√
n

Thierry Denœux (UTC) Classical simulation Fall 2021 5 / 39



Introduction

Non standard distributions

Problem: how to generate draws from a target distribution f ?
When the target distribution comes from a standard parametric family,
abundant software exists to easily generate random deviates.
We focus on what should be done when the target density is not one
easily sampled using the software.
For example, nearly all Bayesian posterior distributions are not
members of standard parametric families. Posteriors obtained when
using conjugate priors in exponential families are exceptions.
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Introduction

Difficulties

There can be additional difficulties beyond the absence of an obvious
method to sample f . In many cases – especially in Bayesian analyses –
the target density may be known only up to a multiplicative
proportionality constant. In such cases, f cannot be sampled and can
only be evaluated up to that constant. Fortunately, there are a variety
of simulation approaches that still work in this setting.
Finally, it may be possible to evaluate f , but computationally
expensive. If each computation of f (x) requires an optimization, an
integration, or other time-consuming computations, we may seek
simulation strategies that avoid direct evaluation of f as much as
possible.
Simulation methods can be categorized by whether they are exact or
approximate.

Thierry Denœux (UTC) Classical simulation Fall 2021 7 / 39



Exact simulation

Overview

1 Introduction

2 Exact simulation
Generating from Standard Parametric Families
Probability integral transform
Rejection Sampling

3 Sampling Importance Resampling

Thierry Denœux (UTC) Classical simulation Fall 2021 8 / 39



Exact simulation Generating from Standard Parametric Families

Overview

1 Introduction

2 Exact simulation
Generating from Standard Parametric Families
Probability integral transform
Rejection Sampling

3 Sampling Importance Resampling

Thierry Denœux (UTC) Classical simulation Fall 2021 9 / 39



Exact simulation Generating from Standard Parametric Families

Standard uniform distribution

At some level, all of code for simulation relies on the generation of
Pseudorandom number generators (PRNGs), which are algorithms that
can automatically create long runs of numbers that are statistically
indistinguishable from independent standard uniform variates.
The series of values generated by such algorithms is generally
determined by a fixed number called a seed X0. One of the most
common PRNG is the linear congruential generator, which uses the
recurrence

Xn+1 = (aXn + b)modm

to generate numbers, where 0 < a < m, 0 ≤ b < m and m > 0 are
large integers, and mod is the remainder of the integer division. The
maximum number of numbers the formula can produce is the
modulus, m.
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Exact simulation Generating from Standard Parametric Families

Example in R

m<-2ˆ32
a<-1664525
b<-1013904223
N<-10000
X<-rep(2ˆ20,N)
for(i in 2:N) X[i]<-(a*X[i-1]+b)%%m
hist(X/m)

Histogram of X/m
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Exact simulation Generating from Standard Parametric Families

Familiar distributions

Methods to draw from some standard parametric distributions. The
methods may be special case of a general method, or may be specific to
the particular parametric family (ex: Student, Chi-square, etc.)
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Exact simulation Probability integral transform

Principle

The methods for the Cauchy and exponential distributions in the
previous table are justified by the inverse cumulative distribution
function or probability integral transform approach, based on the
following proposition:

Proposition

For any continuous univariate distribution function F , if U ∼ Unif(0, 1),
then X = F−1(U) has a cumulative distribution function equal to F .

Proof: P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

If F−1 is available for the target density, then this strategy is probably
the simplest option.
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Exact simulation Probability integral transform

Approximation

If F−1 is not available but F is either available or easily approximated,
then a crude approach can be built upon linear interpolation.
Using a grid of x1, . . . , xm spanning the region of support of f ,
calculate or approximate ui = F (xi ) at each grid point. Then, draw
U ∼ Unif(0, 1) and linearly interpolate between the two nearest grid
points for which ui ≤ U ≤ uj according to

X =
uj − U

uj − ui
xi +

U − ui
uj − ui

xj .
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Exact simulation Probability integral transform

Discussion

This approach is not exact, but its the degree of approximation is
deterministic and can be reduced to any desired level by increasing m
sufficiently.
Compared to the alternatives, this simulation method is not appealing
because

It requires a complete approximation to F regardless of the desired
sample size
It does not generalize to multiple dimensions
It is less efficient than other approaches.
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Exact simulation Rejection Sampling

Basic idea

If f (x) can be calculated, at least up to a proportionality constant,
then we can use rejection sampling to obtain a random draw from
exactly the target distribution.
This strategy relies on sampling candidates from an easier distribution
and then correcting the sampling probability through random rejection
of some candidates.
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Exact simulation Rejection Sampling

Algorithm

Let g denote another density from which we know how to sample and
for which we can easily calculate g(x). Let e(·) denote an envelope,
having the property e(x) = g(x)/α ≥ f (x) for all x for which
f (x) > 0, for a given constant α ≤ 1.
Rejection sampling proceeds as follows:

1 Sample Y ∼ g .
2 Sample U ∼ Unif(0, 1).
3 Reject Y if U > f (Y )/e(Y ). In this case, do not record the value of Y

as an element in the target random sample. Instead, return to step 1.
4 Otherwise, keep the value of Y . Set X = Y , and consider X to be an

element of the target random sample. Return to step 1 until you have
accumulated a sample of the desired size.
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Exact simulation Rejection Sampling

Rejection sampling

The shaded region above f and below e indicates the waste. The draw
Y = y is very likely to be rejected when e(y) is far larger than f (y).
Envelopes that exceed f everywhere by at most a slim margin produce
fewer wasted (i.e., rejected) draws and correspond to α values near 1.
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Exact simulation Rejection Sampling

Property

Proposition
The draws kept using this algorithm constitute an i.i.d. sample from the
target density f ; there is no approximation involved.
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Exact simulation Rejection Sampling

Proof

P[X ≤ y ] =P

[
Y ≤ y | U ≤ f (Y )

e(Y )

]
(2a)

= P

[
Y ≤ y and U ≤ f (Y )

e(Y )

]/
P

[
U ≤ f (Y )

e(Y )

]
(2b)

=

∫ y

−∞

∫ f (z)/e(z)

0
du g(z) dz

/∫ +∞

−∞

∫ f (z)/e(z)

0
du g(z) dz

=

∫ y

−∞

f (z)

e(z)
g(z) dz

/∫ +∞

−∞

f (z)

e(z)
g(z) dz (2c)

=

∫ y
−∞ αf (z) dz

α
=

∫ y

−∞
f (z) dz . (2d)
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Exact simulation Rejection Sampling

Efficiency of the algorithm

We have shown that

P

[
U ≤ f (Y )

e(Y )

]
= α.

Consequently, α can be interpreted as the expected proportion of
candidates that are accepted.
Hence α is a measure of the efficiency of the algorithm.
We may continue the rejection sampling procedure until it yields
exactly the desired number of sampled points, but this requires a
random total number of iterations that will depend on the proportion
of rejections.
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Exact simulation Rejection Sampling

Case where f is known up to a proportionality constant

Suppose now that the target distribution f is only known up to a
proportionality constant c . That is, suppose we are only able to
compute easily q(x) = f (x)/c , where c is unknown.
Such densities arise, for example, in Bayesian inference when f is a
posterior distribution known to equal the product of the prior and the
likelihood scaled by some normalizing constant.
Fortunately, rejection sampling can be applied in such cases. We find
an envelope e such that e(x) ≥ q(x) for all x for which q(x) > 0.
A draw Y = y is rejected when U > q(y)/e(y). The sampling
probability remains correct because the unknown constant c cancels
out in the numerator and denominator of (2c) when f is replaced by
q. The proportion of kept draws is α/c .
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Exact simulation Rejection Sampling

Good rejection sampling envelopes

Good rejection sampling envelopes have three properties:
1 They are easily constructed to exceed the target everywhere
2 They are easy to sample
3 They generate few rejected draws.
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Exact simulation Rejection Sampling

Sampling from a Bayesian posterior

Suppose we want to sample from

f (θ | x) ∝ f (x | θ)f (θ) = L(θ | x)f (θ)

Let q(θ | x) = L(θ | x)f (θ). We have

q(θ | x) ≤ L(θ̂ | x)f (θ) = e(θ)

where θ̂ is the MLE of θ.
The rejection sampling algorithm becomes:

1 Sample θi ∼ f (θ) (the prior)
2 Sample Ui ∼ Unif(0, 1)
3 Keep θi if

Ui <
q(θi | x)
e(θ)

=
L(θi | x)
L(θ̂ | x)
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Exact simulation Rejection Sampling

Example

Suppose 10 independent observations (8, 3, 4, 3, 1, 7, 2, 6, 2, 7) are
collected from the model Xi |λ ∼ P(λ). A lognormal prior distribution
for λ is assumed: log λ ∼ N (log 4, 0.52). We have λ̂ = x = 4.3.
Unnormalized target q(λ | x) (dotted) and envelope e(λ) (solid):

Although not efficient – only about 30% of candidate draws are kept –
this approach is easy and exact.
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Exact simulation Rejection Sampling

Squeezed rejection sampling

When evaluating f is computationally expensive, we can use a
nonnegative squeezing function s such that s(x) ≤ f (x) for all x such
that f (x) > 0.
The algorithm becomes

1 Sample Y ∼ g .
2 Sample U ∼ Unif(0, 1).
3 If U ≤ s(Y )/e(Y ), keep Y and set X = Y .
4 Else if U ≤ f (Y )/e(Y ), keep Y and set X = Y .
5 Otherwise, reject Y and return to step 1.
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Exact simulation Rejection Sampling

Squeezed rejection sampling
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Sampling Importance Resampling
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Sampling Importance Resampling

Need for approximations

Although the methods described above have the appealing feature
that they are exact, there are many cases when an approximate
method is easier or perhaps the only feasible choice.
Approximation is not a critical flaw as long as the degree of
approximation can be controlled by user-specified parameters in the
algorithms.
Many approximate simulation methods are based to some extent on
the Sampling Importance Resampling (SIR) principle.
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Sampling Importance Resampling

Basic idea

The SIR algorithm simulates realizations approximately from some
target distribution.
SIR is based upon the notion of importance sampling.
Briefly, importance sampling proceeds by drawing a sample from an
importance sampling function, g . Informally, we will call g an
envelope.
Each point in the sample is weighted to correct the sampling
probabilities so that the weighted sample can be related to a target
density f .
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Sampling Importance Resampling

SIR algorithm

Let X denotes a random variable or vector with density f (x), and let
g denote the density corresponding to an envelope for the target
density f , such that the support of g includes the entire support of f
(∀x , g(x) = 0⇒ f (x) = 0).
SIR algorithm:

1 Sample candidates Y1, . . . ,Ym i.i.d. from g .
2 Calculate the standardized importance weights, w(Y1), . . . ,w(Ym),

with
w(Yi ) =

f (Yi )/g(Yi )∑m
j=1 f (Yj)/g(Yj)

(3)

3 Resample X1, . . . ,Xn from Y1, . . . ,Ym with replacement with
probabilities w(Y1), . . . ,w(Ym).

Remark: when f = cq for some unknown proportionality constant c ,
the unknown c cancels in the numerator and denominator of (3).
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Sampling Importance Resampling

Property

Proposition
A random variable X drawn with the SIR algorithm has distribution that
converges to f as m→∞.
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Sampling Importance Resampling

Sketch of proof

Let X be a r.v. drawn with the SIR algorithm. Define
w∗(y) = f (y)/g(y), let Y1, . . . ,Ym i.i.d. from g and consider an
event A.

P(X ∈ A | Y1, . . . ,Ym) =
∑

{i |Yi∈A}

w(Yi )

=
m∑
i=1

I (Yi ∈ A)w∗(Yi )

/ m∑
i=1

w∗(Yi )

From the strong law of large numbers,

1
m

m∑
i=1

I (Yi ∈ A)w∗(Yi )→ E {I (Y ∈ A)w∗(Y )} =
∫
A
w∗(y)g(y)dy

and
1
m

m∑
i=1

w∗(Yi )→ E {w∗(Y )} =
∫

w∗(y)g(y)dy = 1
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Sampling Importance Resampling

Sketch of proof (continued)

Consequently,

P(X ∈ A | Y1, . . . ,Ym)→
∫
A
w∗(y)g(y)dy =

∫
A
f (y)dy

Finally, we have

P(X ∈ A) = E {P(X ∈ A | Y1, . . . ,Ym)} →
∫
A
f (y)dy

(by Lebesgue’s dominated convergence theorem)
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Sampling Importance Resampling

Sample sizes

When conducting SIR, it is important to consider the relative sizes of
the initial sample and the resample. These sample sizes are m and n,
respectively.
In principle, we require n/m→ 0 for distributional convergence of the
sample. In the context of asymptotic analysis of Monte Carlo
estimates based on SIR, where n→∞, this condition means that
m→∞ even faster than n→∞.
For fixed n, distributional convergence of the sample occurs as
m→∞, therefore in practice one wants to initiate SIR with the
largest possible m. However, one faces the competing desire to choose
n as large as possible to increase the inferential precision.
Rule of thumb: ensure n/m ≤ 1/10 so long as the resulting resample
does not contain too many replicates of any initial draw.
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Sampling Importance Resampling

Envelope

The SIR algorithm can be sensitive to the choice of g .
First, the support of g must include the entire support.
Further, g should have heavier tails than f , or more generally g should
be chosen to ensure that f (x)/g(x) never grows too large.
If g(x) is nearly zero anywhere where f (x) is positive, then a draw
from this region will happen only extremely rarely, but when it does it
will receive a huge weight. When this problem arises, one or a few
standardized importance weights are enormous compared to the other
weights, and the secondary sample consists nearly entirely of replicated
values of one or a few initial draws.
When the distribution of weights is found to be highly skewed, it is
probably wiser to switch to a different envelope or a different sampling
strategy altogether.
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Sampling Importance Resampling

Application to Bayesian inference

Suppose that we seek a sample from the posterior distribution from a
Bayesian analysis.
Let f (θ) denote the prior, and L(θ | x) the likelihood, so the posterior
is f (θ | x) = c · f (θ)L(θ | x) for some constant c that may be difficult
to determine.
If the prior does not seriously restrict the parameter region favored by
the data via the likelihood function, then the prior can serve as a
useful importance sampling function.
Sample θ1, . . . , θm i.i.d. from f (θ). Since the target density is the
posterior, the i-th unstandardized weight equals c · L(θi | x). Thus the
SIR algorithm has a very simple form: Sample from the prior, weight
by the likelihood, and resample.
Remark: we do not need to know θ̂, in contrast with the rejection
sampling method.
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