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Contents of this chapter

When a target density f can be evaluated but not easily sampled, the
methods from the previous chapter can be applied to obtain an
approximate or exact sample. The primary use of such a sample is to
estimate the expectation of a function of X ∼ f (x).
The Markov chain Monte Carlo (MCMC) methods introduced in this
chapter can also be used to generate a draw from a distribution that
approximates f and estimate expectations of functions of X .
MCMC methods are distinguished from the simulation techniques in
the previous chapter by their iterative nature and the ease with which
they can be customized to very diverse and difficult problems.
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Basic ideas

Let the sequence {X (t)} denote a Markov chain for t = 0, 1, 2, . . .,
where X (t) = (X

(t)
1 , . . . ,X

(t)
p ) and the state space is either continuous

or discrete.
The MCMC sampling strategy is to construct a Markov chain that
converges to a stationary distribution equal to the target distribution f .
For sufficiently large t, a realization X (t) from this chain will have
approximate marginal distribution f .
A very popular application of MCMC methods is to facilitate Bayesian
inference where f is a Bayesian posterior distribution for parameters X .
The art of MCMC lies in the construction of a suitable chain.
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Markov Chains

Notations

Consider a sequence of random variables {X (t)}, t = 0, 1, . . ., where
each X (t) may equal one of a finite or countably infinite number of
possible values, called states.
The notation X (t) = j indicates that the process is in state j at time t.
The state space, S, is the set of possible values of the random variable
X (t).
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Markov Chains

Markov chain

The sequence {X (t)}, t = 0, 1, . . ., is a Markov chain (MC) if

p(x (t) | x (0), . . . , x (t−1)) = p(x (t) | x (t−1))

for all t and all x (0), . . . , x (t).
For a MC, the joint distribution of X (0), . . . ,X (n) for any n can be
expressed in a simple way:

I In general, we have

p(x (0), . . . , x (n)) = p(x (n) | x (0), . . . , x (n−1))

× p(x (n−1) | x (0), . . . , x (n−2))× . . .
× p(x (1) | x (0))p(x (0)). (1)

I For a MC, (1) can be simplified to

p(x (0), . . . , x (n)) = p(x (0))
n∏

t=1

p(x (t) | x (t−1)). (2)
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Markov Chains

Transition probabilities

Let p(t)ij be the probability that the observed state changes from state
i at time t to state j at time t + 1,

p
(t)
ij = P(X (t+1) = j | X (t) = i)

The quantity p
(t)
ij is called the one-step transition probability.

If none of the one-step transition probabilities change with t, then the
MC is called time-homogeneous, and p

(t)
ij = pij . If any of the one-step

transition probabilities change with t, then the MC is called
time-inhomogeneous.
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Markov Chains

Transition probability matrix

A time-homogeneous MC is governed by a transition probability
matrix.
Suppose there are s states in S. Then matrix P = (pij) of size s × s is
called the transition probability matrix.
Each element in P must be between zero and one, and each row of
the matrix must sum to one, as

s∑
j=1

pij = 1.

We say that P is a stochastic matrix.
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Markov Chains

Definitions

A MC is irreducible if any state j can be reached from any state i in a
finite number of steps. In other words, for all i , j and n there must
exist m > 0 such that

P[X (m+n) = j | X (n) = i ] > 0.

A MC is periodic if it can visit certain portions of the state space only
at certain regularly spaced intervals. State j has period d if the
probability of going from state j to state j in n steps is 0 for all n not
divisible by d .
If every state in a MC has period 1, then the chain is called aperiodic.
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Markov Chains

Stationary distribution

Consider a time-homogeneous MC. Let π denote a vector of
probabilities that sum to one, with i-th element πi denoting the
marginal probability that X (t) = i .
Then the marginal distribution of X (t+1) is

P[X (t+1) = j ] =
s∑

i=1

P(X (t+1) = j | X (t) = i)P[X (t) = i ]

=
s∑

i=1

pijπi = [πTP]j .

Any discrete probability distribution π such that πTP = πT is called a
stationary distribution for P, or for the MC having transition
probability matrix P.
If {X (t)} follows a stationary distribution, then the marginal
distributions of X (t) and X (t+1) are identical.
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Markov Chains

Example

Let

P =

(
0.75 0.25
0.125 0.875

)
Does P have a stationary distribution?
Let π = (π1, 1− π1)

T . It is stationary iff πTP = πT . We get the
equation

0.75π1 + 0.125(1− π1) = π1 ⇔ π1 = 1/3.

The unique solution is π = (1/3, 2/3)T .
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Markov Chains

Important result

Theorem
If {X (t)} is an irreducible and aperiodic MC with stationary distribution π,
then

1 X (t) converges in distribution to a r.v. X with the distribution given
by π, and

2 For any function h,

1
n

n∑
t=1

h(X (t))→ Eπ{h(X )}

almost surely as n→∞, provided Eπ{h(X )} exists.
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Markov Chains

Continuous state spaces

Similar results hold for continuous state spaces.
In the continuous case, a time-homogeneous MC is defined by the
transition kernel

f (x ′ | x) = fX (t+1)|X (t)(x ′ | x),

so that

f (x (0), . . . , x (n)) = f (x (0))
n∏

t=1

f (x (t) | x (t−1))

The density π is stationary for the MC with kernel f (x ′ | x) is

π(x ′) =

∫
f (x ′ | x)π(x)dx .
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Markov Chains

Asymptotic result

Theorem
Under similar conditions as in the finite case, we have, for a stationary
density π,

(X (t))
d−→ X ,

where X is a r.v. with density π, and

1
n

n∑
t=1

h(X (t))
a.s.−→ Eπ{h(X )}. (3)
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Metropolis-Hastings algorithm

Metropolis-Hastings (MH) algorithm

A very general method for constructing a MC.
The method begins at t = 0 with the selection of X (0) = x (0) drawn
from some starting distribution g , with the requirement that
f (x (0)) > 0. Given X (t) = x (t), we generate X (t+1) as follows:

1 Sample a candidate value X ∗ from a proposal distribution g(· | x (t)).
2 Compute the MH ratio R(x (t),X ∗) with

R(u, v) =
f (v)g(u | v)
f (u)g(v | u)

3 Sample U ∼ Unif(0, 1) and define X (t+1) as follows:

X (t+1) =

{
X ∗ if U ≤ R(x (t),X ∗)

x (t) otherwise.

4 Increment t and return to step 1.
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Metropolis-Hastings algorithm

Properties

Clearly, a chain constructed via the MH algorithm is Markov since
X (t+1) is only dependent on X (t).
Whether the chain is irreducible and aperiodic depends on the choice
of proposal distribution; the user must check these conditions for any
implementation.
If this check confirms irreducibility and aperiodicity, then the chain
generated by the MH algorithm has a unique limiting stationary
distribution, which is the target distribution f .
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Metropolis-Hastings algorithm

Proof

Suppose X (t) ∼ f (x), and consider two points in the state space of
the chain, say x1 and x2, for which f (x1) > 0 and f (x2) > 0. Without
loss of generality, label these points in the manner such that
f (x2)g(x1 | x2) ≥ f (x1)g(x2 | x1).
The joint density of (X (t),X (t+1)) at (x1, x2) is f (x1)g(x2 | x1)
because if X (t) = x1 and X ∗ = x2, then R(x1, x2) ≥ 1 so X (t+1) = x2.
The joint density of (X (t),X (t+1)) at (x2, x1) is

f (x2)g(x1 | x2)
f (x1)g(x2 | x1)

f (x2)g(x1 | x2)
= f (x1)g(x2 | x1)

because we need to start with X (t) = x2, to propose X ∗ = x1, and
then to set X (t+1) equal to X ∗ with probability R(x2, x1).
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Metropolis-Hastings algorithm

Proof (continued)

Consequently, the joint density of (X (t),X (t+1)) is symmetric:

f(X (t),X (t+1))(x1, x2) = f(X (t),X (t+1))(x2, x1).

Hence X (t) and X (t+1) have the same marginal distributions.
Thus the marginal distribution of X (t+1) is f , and f must be the
stationary distribution of the chain.
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Metropolis-Hastings algorithm

Application

Recall from Equation (3) that we can approximate the expectation of
a function of a random variable by averaging realizations from the
stationary distribution of a MH chain.
The distribution of realizations from the MH chain approximates the
stationary distribution of the chain as t progresses; therefore

E{h(X )} ≈ 1
n

n∑
t=1

h(x (t)).

Some of the useful quantities that can be estimated this way include
means E{h(X )}, variances E[h(X )− E{h(X )}]2, and tail probabilities
E{I (h(X ) ≤ q)} for some constant q.
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Metropolis-Hastings algorithm

Importance of the proposal distribution

A well-chosen proposal distribution produces candidate values that
cover the support of the stationary distribution in a reasonable number
of iterations and produces candidate values that are not accepted or
rejected too frequently:

I If the proposal distribution is too diffuse relative to the target
distribution, the candidate values will be rejected frequently and thus
the chain will require many iterations to adequately explore the space
of the target distribution.

I If the proposal distribution is too focused (e.g., has too small a
variance), then the chain will remain in one small region of the target
distribution for many iterations while other regions of the target
distribution will not be adequately explored.

Next we introduce several MH variants obtained by using different
classes of proposal distributions.
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Overview

1 Markov Chains

2 Metropolis-Hastings algorithm
Independence Chains
Random Walk Chains

3 Gibbs sampling
Basic Gibbs sampler
Variants

4 Implementation
Ensuring Good Mixing and Convergence
Using the results

Thierry Denœux (UTC) MCMC methods January-March 2024 22 / 69



Metropolis-Hastings algorithm Independence Chains

Independence Chains

Suppose that the proposal distribution for the MH algorithm is chosen
such that g(x∗ | x (t)) = g(x∗) for some fixed density g .
This yields an independence chain, where each candidate value is
drawn independently of the past. In this case, the MH ratio is

R(x (t),X ∗) =
f (X ∗)g(x (t))

f (x (t))g(X ∗)
.

The resulting Markov chain is irreducible and aperiodic if g(x) > 0
whenever f (x) > 0.
The proposal distribution g should resemble the target distribution f ,
but should cover f in the tails.
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Metropolis-Hastings algorithm Independence Chains

Bayesian Inference

For Bayesian inference, a very simple strategy is to use the prior as a
proposal distribution in an independence chain.
In our MH notation, f (θ) = p(θ | y) and g(θ∗) = p(θ∗). Conveniently,
this means

R(θ(t), θ∗) =
p(θ∗ | y)p(θ(t))
p(θ(t) | y)p(θ∗)

=
L(θ∗ | y)
L(θ(t) | y)

.

In other words, we propose from the prior, and the MH ratio equals
the likelihood ratio.
By construction, the support of the prior covers the support of the
target posterior, so the stationary distribution of this chain is the
desired posterior.
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Metropolis-Hastings algorithm Independence Chains

Example: Mixture Distribution

Suppose we have observed data y1, y2, . . . , y100 iid from the mixture
distribution

δN(7, 0.52) + (1− δ)N(10, 0.52)

We will use MCMC techniques to construct a chain whose stationary
distribution equals the posterior density of δ. The data were generated
with δ = 0.7, so we should find that the posterior density is
concentrated in this area.
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Metropolis-Hastings algorithm Independence Chains

Proposal distributions

In this example, we try two different independence chains. In the first
case we use a Beta(1, 1) density as the proposal density, and in the
second case we use a Beta(2, 10) density.
The first proposal distribution is equivalent to a Unif(0, 1) distribution,
while the second is skewed right with mean approximately equal to
0.167. In this second case values of δ near 0.7 are unlikely to be
generated from the proposal distribution.
The next figure shows the sample paths for 10,000 iterations of both
chains. A sample path is a plot of the chain realizations δ(t) against
the iteration number t. This plot is useful for investigating the
behavior of the Markov chain and is discussed further in the sequel.
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Metropolis-Hastings algorithm Independence Chains

Sample paths

Sample paths for δ from independence chains with proposal densities
Beta(1, 1) (top) and Beta(2, 10) (bottom).

Thierry Denœux (UTC) MCMC methods January-March 2024 27 / 69



Metropolis-Hastings algorithm Independence Chains

Interpretation

The upper panel shows a Markov chain that moves quickly away from
its starting value and seems easily able to sample values from all
portions of the parameter space supported by the posterior for δ. Such
behavior is called good mixing.
The lower panel corresponds to the chain using a Beta(2, 10) proposal
density. The resulting chain moves slowly from its starting value and
does a poor job of exploring the region of posterior support (i.e., poor
mixing). This chain has clearly not converged to its stationary
distribution since drift is still apparent. Such a plot should make the
MCMC user reconsider the proposal density.
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Metropolis-Hastings algorithm Independence Chains

Estimated posterior distributions

Histograms of δ(t) for iterations 201-10,000 of independence chains with
proposal densities Beta(1, 1) (top) and Beta(2, 10) (bottom).
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Metropolis-Hastings algorithm Random Walk Chains
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Metropolis-Hastings algorithm Random Walk Chains

Random Walk Chains

A random walk chain is another type of Markov chain produced via a
simple variant of the MH algorithm.
Let X ∗ be generated by drawing ε ∼ h(ε) for some density h and then
setting X ∗ = x (t) + ε. This yields a random walk chain. In this case,
g(x∗ | x (t)) = h(x∗ − x (t)).
Common choices for h include a uniform distribution over a ball
centered at the origin, a scaled standard normal distribution or a
scaled Student’s t distribution.
If the support region of f is connected and h is positive in a
neighborhood of 0, the resulting chain is irreducible and aperiodic.
If h(−ε) = h(ε), the MH ratio becomes simply

R(x (t),X ∗) =
f (X ∗)

f (x (t))
.
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Metropolis-Hastings algorithm Random Walk Chains

Random Walk Chain Example

Hypothetical random walk chain for sampling a two-dimensional target
distribution (dotted contours) using proposed increments sampled
uniformly from a disk centered at the current value.
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Metropolis-Hastings algorithm Random Walk Chains

Example

Assume we want to construct a random walk MH sampler to generate
a sample of 10,000 observations from the Laplace distribution,

f (x) =
1
2
e−|x |, −∞ < x < +∞.

We use a random-walk chain with ε ∼ N (0, σ2) to generate proposals
X ∗ = x (t) + ε.
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Metropolis-Hastings algorithm Random Walk Chains

Results
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Metropolis-Hastings algorithm Random Walk Chains

Results (continued)
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Histogram of simulated values from t = 200 to t = 10, 000, obtained with
σ = 10.
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Gibbs sampling

Simulation of multidimensional distributions

Thus far we have treated X (t) with little regard to its dimensionality.
The Gibbs sampler is specifically adapted for multidimensional target
distributions.
The goal is to construct a Markov chain whose stationary distribution
– or some marginalization thereof – equals the target distribution f .
The Gibbs sampler does this by sequentially sampling from univariate
conditional distributions, which are often available in closed form.
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Gibbs sampling Basic Gibbs sampler
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Gibbs sampling Basic Gibbs sampler

Notations and basic assumption

Recall X = (X1, . . . ,Xp)
T , and denote

X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xp)
T .

Suppose that the univariate conditional density of Xi | X−i = x−i ,
denoted as f (xi | x−i ), is easily sampled for i = 1, . . . , p.
A general Gibbs sampling procedure can be described as follows.
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Gibbs sampling Basic Gibbs sampler

Basic Gibbs sampler

1 Select starting values x (0), and set t = 0.
2 Generate, in turn,

X
(t+1)
1 | · ∼ f (x1 | x (t)2 , . . . , x

(t)
p )

X
(t+1)
2 | · ∼ f (x2 | x (t+1)

1 , x
(t)
3 , . . . , x

(t)
p )

...

X
(t+1)
p−1 | · ∼ f (xp−1 | x (t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
p−2 , x

(t)
p )

X
(t+1)
p | · ∼ f (xp | x (t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
p−1 )

where | · denotes conditioning on the most recent updates to all other
elements of X .

3 Increment t and go to step 2.
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Gibbs sampling Basic Gibbs sampler

Bayesian inference

The Gibbs sampler is particularly useful for Bayesian applications when
the goal is to make inference based on the posterior distribution of
multiple parameters.
Bayesian inference is based on the posterior distribution
f (θ | y) = cf (θ)L(θ | y), where c is an unknown constant. When the
requisite univariate conditional densities are easily sampled, the Gibbs
sampler can be applied and does not require evaluation of the
constant c .
In this case the i-th step in a cycle of the Gibbs sampler at iteration t
is given by draws from

θ
(t+1)
i | (θ(t)−i , y) ∼ f (θi | θ

(t)
−i , y),

where θ(t)−i = (θ
(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
p ).
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Gibbs sampling Basic Gibbs sampler

Example

Let Y1, . . . ,Yn iid from N (µ, h−1), where h = 1/σ2 is the precision.
Assume the priors µ ∼ N (µ0, h

−1
0 ) and h ∼ G (α0/2, δ0/2), where G

denotes the Gamma distribution,

f (h) ∝ hα0/2−1 exp(−δ0h/2).

The posterior density is

f (µ, h | y) ∝ hn/2 exp

(
−h

2

n∑
i=1

(yi − µ)2
)

︸ ︷︷ ︸
L(µ,h|y)

×

exp
(
−h0

2
(µ− µ0)

2
)

︸ ︷︷ ︸
f (µ)

hα0/2−1 exp
(
−δ0h

2

)
︸ ︷︷ ︸

f (h)

.
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Gibbs sampling Basic Gibbs sampler

Example (continued)

We can compute the conditional posterior distribution of h as

f (h | µ, y) ∝ L(µ, h | y)f (h)

∝ h(α0+n)/2−1 exp

{
−h

2

(
δ0 +

n∑
i=1

(yi − µ)2
)}

∼ G

(
α0 + n

2
,
δ0 +

∑n
i=1(yi − µ)2

2

)
Now

f (µ | h, y) ∝ L(µ, h | y)f (µ) ∝ exp

{
−h0 + hn

2

(
µ− h0µ0 + hny

h0 + hn

)2
}

∼ N
(
h0µ0 + hny

h0 + hn
, (h0 + hn)−1

)
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Gibbs sampling Basic Gibbs sampler

Properties of the Gibbs sampler

Clearly the chain produced by a Gibbs sampler is Markov.
Under rather mild conditions, it can be shown that the stationary
distribution of the Gibbs sampler chain is f .

It also follows that the limiting marginal distribution of X (t)
i equals the

univariate marginalization of the target distribution along the i-th
coordinate.
As with the MH algorithm, we can use realizations from the chain to
estimate the expectation of any function of X .
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Gibbs sampling Basic Gibbs sampler

Relation with the MH algorithm

The Gibbs sampler can be seen as a special case of the MH algorithm,
where

I The proposal distribution varies over time;
I The proposal is always accepted.

Each Gibbs cycle consists of p MH steps.
To see this, consider for simplicity and without loss of generality the
case p = 2.

Thierry Denœux (UTC) MCMC methods January-March 2024 45 / 69



Gibbs sampling Basic Gibbs sampler

Relation with the MH algorithm (continued)

In the first step of the Gibbs cycle we propose X ∗ = (X ∗1 , x
(t)
2 ) given

x (t) = (x
(t)
1 , x

(t)
2 ) from the proposal distribution

g1(x
∗ | x (t)) =

{
f (x∗1 | x

(t)
2 ) if x∗2 = x

(t)
2 ,

0 otherwise.

The MH ratio is

R(x (t), x∗) =
f (x∗)g1(x

(t) | x∗)
f (x (t))g1(x∗ | x (t))

=
f (x∗)f (x (t))/f (x

(t)
2 )

f (x (t))f (x∗)/f (x
(t)
2 )

= 1.

So, the proposal is accepted and we set x (t+1)
1 = x∗1 .
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Gibbs sampling Basic Gibbs sampler

Relation with the MH algorithm (continued)

Similarly, in the second step, we propose X ∗ = (x
(t+1)
1 , x∗2 ) given

x (t+
1
2 ) = (x

(t+1)
1 , x

(t)
2 ) from the proposal distribution

g2(x
∗ | x (t+

1
2 )) =

{
f (x∗2 | x

(t+1)
1 ) if x∗1 = x

(t+1)
1 ,

0 otherwise.

The MH ratio is

R(x (t+
1
2 ), x∗) =

f (x∗)g2(x
(t+ 1

2 ) | x∗)
f (x (t))g2(x∗ | x (t+

1
2 ))

=
f (x∗)f (x (t+

1
2 ))/f (x

(t+1)
1 )

f (x (t+
1
2 ))f (x∗)/f (x

(t+1)
1 )

= 1.

Again, the proposal is accepted and we set x (t+1)
2 = x∗2 .
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Gibbs sampling Variants
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Gibbs sampling Variants

Variants of the Gibbs sampler

The “Gibbs sampler” is actually a generic name for a rich family of
very adaptable algorithms.
We will now see some strategies that have been developed to improve
the performance of the general algorithm just described.
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Gibbs sampling Variants

Update ordering

The ordering of updates made to the components of X in the basic
Gibbs sampler can change from one cycle to the next. This is called
random scan Gibbs sampling.
Randomly ordering each cycle can be effective when parameters are
highly correlated. The random scan Gibbs sampling approach can yield
faster convergence rates than the deterministic update ordering.
In practice, it may be a good strategy to try both deterministic and
random scan Gibbs sampling when parameters are found to be highly
correlated.
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Gibbs sampling Variants

Blocking

Another modification to the Gibbs sampler is called blocking or
grouping. In the Gibbs algorithm it is not necessary to treat each
element of X individually.
In the basic Gibbs sampler with p = 4, for example, it would be
allowable for each cycle to proceed with the following sequence of
updates:

X
(t+1)
1 | · ∼ f (x1 | x (t)2 , x

(t)
3 , x

(t)
4 )

X
(t+1)
2 ,X

(t+1)
3 | · ∼ f (x2, x3 | x (t+1)

1 , x
(t)
4 )

X
(t+1)
4 | · ∼ f (x4 | x (t+1)

1 , x
(t+1)
2 , x

(t+1)
3 )

Blocking is typically useful when elements of X are correlated, with the
algorithm constructed so that more correlated elements are sampled
together in one block.

Thierry Denœux (UTC) MCMC methods January-March 2024 51 / 69



Gibbs sampling Variants

Hybrid Gibbs sampling

For many problems the conditional distributions for one or more
elements of X are not easily sampled.
In this case, a hybrid MCMC algorithm can be developed where at a
given step in the Gibbs sampler, the MH algorithm is used to sample
from the appropriate conditional distribution.

Thierry Denœux (UTC) MCMC methods January-March 2024 52 / 69



Gibbs sampling Variants

Hybrid Gibbs sampling: example

For example, for p = 5, a hybrid MCMC algorithm might proceed with the
following sequence of updates:

1 Update X
(t+1)
1 | (x (t)2 , x

(t)
3 , x

(t)
4 , x

(t)
5 ) with a Gibbs step because this

conditional distribution is easily sampled.
2 Update (X

(t+1)
2 ,X

(t+1)
3 ) | (x (t+1)

1 , x
(t)
4 , x

(t)
5 ) with a MH step because

this joint conditional distribution is difficult to sample from. Here,
blocking X2 and X3 might be recommended because these elements
are highly correlated.

3 Update X
(t+1)
4 | (x (t+1)

1 , x
(t+1)
2 , x

(t+1)
3 , x

(t)
5 ) with a step from a

random walk chain because this conditional distribution is not easily
sampled.

4 Update X
(t+1)
5 | (x (t+1)

1 , x
(t+1)
2 , x

(t+1)
3 , x

(t+1)
4 ) with a Gibbs step.
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Implementation

Implementation issues

All of the MCMC methods described so far have the correct limiting
stationary distribution. In practice, however, it is necessary to
determine when the chain has run sufficiently long so that the output
adequately represents the target distribution and can be used reliably
for estimation.
Unfortunately, MCMC methods can sometimes be quite slow to
converge, requiring extremely long runs, especially if the
dimensionality of X is large.
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Implementation

Questions

In this section, we examine questions about the long-run behavior of the
chain, such as:

Has the chain run long enough?
Has the chain traversed all portions of the region of support of f ?
Are the sampled values approximate draws from f ?
How shall the chain output be used to produce estimates and assess
their precision?

Thierry Denœux (UTC) MCMC methods January-March 2024 56 / 69



Implementation Ensuring Good Mixing and Convergence

Overview

1 Markov Chains

2 Metropolis-Hastings algorithm
Independence Chains
Random Walk Chains

3 Gibbs sampling
Basic Gibbs sampler
Variants

4 Implementation
Ensuring Good Mixing and Convergence
Using the results

Thierry Denœux (UTC) MCMC methods January-March 2024 57 / 69



Implementation Ensuring Good Mixing and Convergence

Necessity of diagnostic tools

Two main issues:
1 Mixing: how quickly the chain forgets its starting value, how quickly

the chain fully explores the support of the target distribution, how far
apart in a sequence observations need to be before they can be
considered to be approximately independent.

2 Convergence: Has the chain approximately reached its stationary
distribution?

There is substantial overlap between the goals of diagnosing
convergence to the stationary distribution and investigating the mixing
properties of the chain. The same diagnostics can be used to
investigate both mixing and convergence.
It is recommended to use a variety of diagnostic techniques.
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Implementation Ensuring Good Mixing and Convergence

Simple Graphical Diagnostics

Two main graphics:
1 The sample path is a plot of the iteration number t versus the

realizations of X (t). If a chain is mixing poorly, it will remain at or
near the same value for many iterations. A chain that is mixing well
will quickly move away from its starting value and the sample path will
wiggle about vigorously in the region supported by f .

2 The autocorrelation plot summarizes the correlation in the sequence of
X (t) at different iteration lags. The autocorrelation at lag k is the
correlation between iterates that are k iterations apart. A chain that
has poor mixing properties will exhibit slow decay of the
autocorrelation as the lag between iterations increases.
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Implementation Ensuring Good Mixing and Convergence

Example of sample paths

Sample paths for δ from independence chains for the mixture example with
proposal densities Beta(1, 1) (top) and Beta(2, 10) (bottom).
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Implementation Ensuring Good Mixing and Convergence

Example of autocorrelation plot

Autocorrelation function plots for the independence chain with proposal
densities Beta(1,1) (top) and Beta(2,10) (bottom).
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Implementation Ensuring Good Mixing and Convergence

Burn-in

Key considerations in the diagnosis of convergence are the burn-in
period and run length.
Recall that it is only in the limit that an MCMC algorithm yields
X (t) ∼ f .
For any implementation, the iterates will not have exactly the correct
marginal distribution, and the dependence on the initial point (or
distribution) from which the chain was started may remain strong.
To reduce the severity of this problem, the first D values from the
chain may be discarded as a burn-in period. Typically D is fixed to a
few hundred or thousand values.
Burn-in is not needed if we start the chain in a region of high density.
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Implementation Ensuring Good Mixing and Convergence

Choice of proposal

Mixing is strongly affected by features of the proposal distribution,
especially its spread. Further, advice on desirable features of a proposal
distribution depends on the type of MCMC algorithm employed.
For a general MH chain such as an independence chain, it seems
intuitively clear that we wish the proposal distribution g to
approximate the target distribution f very well, which in turn suggests
that a very high rate of accepting proposals is desirable.
Although we would like g to resemble f , the tail behavior of g is more
important than its resemblance to f in regions of high density. In
particular, if f /g is bounded, the convergence of the Markov chain to
its stationary distribution is faster overall. Thus, it is wiser to aim for
a proposal distribution that is somewhat more diffuse than f .
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Implementation Ensuring Good Mixing and Convergence

Effective Sample Size

If MCMC realizations are highly correlated, then the information
gained from each iteration of the MCMC algorithm will be much less
than suggested by the run length.
The effective sample size is the size of an iid sample that would
contain the same quantity of information.
To estimate the effective sample size, we first compute the
autocorrelation time defined as

τ = 1+ 2
∞∑
k=1

ρ(k),

where ρ(k) is the autocorrelation with lag k .
A common approach to estimate τ is to truncate the summation when
ρ̂(k) < 0.1.
Then the effective sample size for an MCMC run with L iterations
after burn-in can be estimated using L/τ̂ .
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Implementation Ensuring Good Mixing and Convergence

Comparing chains

Effective sample size can be used to compare the efficiency of
competing MCMC samplers for a given problem.
For a fixed number of iterations, an MCMC algorithm with a larger
effective sample size is likely to converge more quickly.
For example, we may be interested in the gains achieved from blocking
in a Gibbs sampler. If the blocked Gibbs sampler has a much higher
effective sample size than the unblocked version, this suggests that the
blocking has improved the efficiency of the MCMC algorithm.
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Implementation Using the results

Standard one-number summary statistics

Standard one-number summary statistics such as means and variances
are commonly desired.
The most commonly used estimator is based on an empirical average.
Discard the burn-in; then calculate the desired statistic by taking

µ̂ =
1
L

D+L−1∑
t=D

h(X (t))

as the estimator of µ = E{h(X )}, where L denotes the length of each
chain after discarding D burn-in iterates. This estimator is consistent
even though the X (t) are serially correlated.
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Implementation Using the results

Simulation standard error

The Monte Carlo, or simulation, standard error (sse) of an estimator is
also of interest. This is an estimate of the variability in the estimator
if the MCMC algorithm were to be run repeatedly.
The naive estimate of the standard error for an estimator like µ is the
sample standard deviation of the L realizations after burn-in divided by√
L.

However, MCMC realizations are typically positively correlated, so this
procedure can underestimate the standard error.
A simple estimator of the standard error is the batch means method.
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Implementation Using the results

Batch means method

By examining the empirical autocorrelations, determine a lag k0 such
that the autocorrelation is small enough to be neglected, e.g.,
ρ̂(k0) ≤ 0.05.
Then divide the L observations after burn-in into L/k0 = B batches.
Let µ̂b be the mean of h(X (t)) in batch b. The sample variance of the
means is

S2 =
1

B − 1

B∑
b=1

(µ̂b − µ̂)2

and the estimated simulation standard error is

ŝse(µ̂) =
√

S2/B.
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