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The bootstrap

The bootstrap is a flexible and powerful statistical tool that can be
used to quantify the uncertainty associated with a given estimator.
Main applications:

Estimate the bias and standard error of an estimator
Compute a confidence interval for a parameter
Test a hypothesis about a parameter
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Origin of the term “bootstrap”

The use of the term bootstrap derives from
the phrase “to pull oneself up by one’s
bootstraps”, widely thought to be based on
the 18th century book “The Surprising
Adventures of Baron Munchausen” by
Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it looked
like all was lost, he thought to pick himself up by his own bootstraps.

Thierry Denœux (UTC) Bootstrapping 2022-2023 3 / 59



Notations

Let θ = T (F ) be an interesting feature of a distribution function, F ,
expressed as a functional of F . For example, T (F ) =

∫
xdF (x) is

the mean of the distribution.
Let x1, . . . , xn be data observed as a realization of the random
variables X1, . . . ,Xn ∼ i.i.d. F . In this chapter, we use X ∼ F to
denote that X is distributed with density function f having
corresponding cumulative distribution function F .
Let X = {X1, . . . ,Xn} denote the entire dataset.
If F̂ is the empirical distribution function of the observed data, then
an estimate of θ is θ̂ = T (F̂ ). For example, when θ is a univariate
population mean, the estimator is the sample mean,
θ̂ =

∫
xdF̂ (x) =

∑n
i=1 Xi/n.
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Problem statement

Statistical inference questions are usually posed in terms of T (F ) or
some R(X ,F ), a statistical function of the data and their unknown
distribution function F .
For example, R(X ,F ) might be

R(X ,F ) = θ̂ − θ.

The expectation of R(X ,F ) is then the bias of θ̂, and its standard
deviation is the standard error of θ̂.
Other example:

R(X ,F ) =
θ̂ − θ
ŝe

,

where ŝe is an estimate of the standard error of θ̂. (If pivotal or
approximately pivotal, this statistic can be used to construct an
approximate confidence interval on θ).
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Bootstrap principle

The distribution of the random variable R(X ,F ) may be intractable
or altogether unknown. This distribution also may depend on the
unknown distribution F .
The bootstrap provides an approximation to the distribution of
R(X ,F ) derived from the empirical distribution function F̂ of the
observed data (itself an estimate of F ).
A bootstrap sample (pseudo-dataset) is a sample X ∗ = (X ∗1 , . . . ,X

∗
n )

obtained by drawing n values from X with replacement. It is an i.i.d.
sample from F̂ .
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Bootstrap principle (continued)

Definition (Bootstrap principle)

Approximate the distribution of R(X ,F ) by that of R(X ∗, F̂ ). “The
population is to the sample as the sample is to the bootstrap sample”.

Real world

Population 
Random 
sampling Sample

Bootstrap world

Sample 
Random 
sampling

Bootstrap
Sample 

<latexit sha1_base64="EOOEXjIdyqE8NP+s/kHbXaEkLvQ="></latexit>

F
<latexit sha1_base64="+HxoYirgHdTQKVqDq1cDkG6s7/4="></latexit>X

<latexit sha1_base64="CTYm2M/4UZXW1psVaK97oeyjwhE="></latexit>

R(X , F )
<latexit sha1_base64="02AZiYD6b4/gUXX7WSJlu/qiuwY="></latexit>

R(X ⇤, bF )

<latexit sha1_base64="Q1quVmtJjAuQNd5xyaxvjkzpapY="></latexit>X ⇤<latexit sha1_base64="FPU71eJXtB2iOrzKo/fxyDLlNDg="></latexit>

bF
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Example

Suppose n = 3 univariate data points, namely
X = {x1, x2, x3} = {1, 2, 6}, are observed as an i.i.d. sample from a
distribution F that has mean θ.
At each observed data value, F̂ places mass 1/3. Suppose the
estimator to be bootstrapped is the sample mean θ̂, which we may
write as T (F̂ ) or R(X ,F ), where R does not depend on F in this
case.
Let X ∗ = {X ∗1 ,X ∗2 ,X ∗3 } consist of elements drawn i.i.d. from F̂ .
There are 33 = 27 possible outcomes for X ∗. Let F̂ ∗ denote the
empirical distribution function of such a sample, with corresponding
estimate θ̂∗ = T (F̂ ∗). Since θ̂∗ does not depend on the ordering of
the data, it has only 10 distinct possible outcomes, listed in the
following table.
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Example

The bootstrap principle is to equate the distributions of R(X ,F ) and
R(X ∗, F̂ ). Here, we base inference on the distribution of θ̂∗.
For example, a simple bootstrap 25/27 (roughly 93%) confidence
interval for θ is [4/3, 14/3] using quantiles of the distribution of θ̂∗.
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Basic methods Nonparametric vs. parametric Bootstrap

Nonparametric bootstrap

For realistic sample sizes the number of potential bootstrap samples
is very large, so complete enumeration of the possibilities is not
tractable.
Instead, B independent random bootstrap pseudo-datasets are drawn
from the empirical distribution function of the observed data, namely
F̂ . Denote these X ∗b = {X∗b1, . . . ,X

∗
bn} for b = 1, . . . ,B .

The empirical distribution of the R(X ∗b , F̂ ) for b = 1, . . . ,B is used
to approximate the distribution of R(X ,F ), allowing inference.
The simulation error introduced by avoiding complete enumeration of
all possible pseudo-datasets can be made arbitrarily small by
increasing B .
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Basic methods Nonparametric vs. parametric Bootstrap

Advantages and conditions of use

Using the nonparametric bootstrap frees the analyst from making
parametric assumptions to carry out inference, and provides answers
to problems for which analytic solutions are impossible.
A fundamental requirement of bootstrapping is that the data to be
resampled must have originated as an i.i.d. sample. If the sample is
not i.i.d., the distributional approximation of R(X ,F ) by R(X ∗, F̂ )
will not hold.
Methods for bootstrapping with dependent data will be described
later.
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Basic methods Nonparametric vs. parametric Bootstrap

Parametric bootstrap

The ordinary nonparametric bootstrap described above generates
each pseudo-dataset X ∗ by drawing X∗1, . . . ,X

∗
n i.i.d. from F̂ .

When the data are modeled to originate from a parametric
distribution, so X1, . . . ,Xn ∼ i.i.d. F (x; θ), another estimate of F
may be employed.
Suppose that the observed data are used to estimate θ by θ̂. Then
each parametric bootstrap pseudo-dataset X ∗ can be generated by
drawing X∗1, . . . ,X

∗
n ∼ i.i.d. F (x; θ̂).

When the model is a good representation of reality, the parametric
bootstrap can be a powerful tool. But if the model is not a good fit
to the mechanism generating the data, the parametric bootstrap can
lead inference to wrong conclusions.
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Basic methods Bootstrap bias correction and standard error estimation
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Basic methods Bootstrap bias correction and standard error estimation

Bootstrap bias correction

A particularly interesting choice for bootstrap analysis when
T (F ) = θ is the quantity R(X ,F ) = T (F̂ )− T (F ) = θ̂ − θ.
The mean of R(X ,F ) is the bias of θ̂: bias = EF [θ̂− θ] = EF (θ̂)− θ.
The bootstrap estimate of the bias is E

F̂
[θ̂∗ − θ̂] = E

F̂
(θ̂∗)− θ̂,

which can be estimated by drawing B bootstrap samples:

b̂ias =
1
B

B∑

b=1

θ̂∗b − θ̂ = θ
∗ − θ̂,

where θ̂∗b = T (F̂ ∗b ) is the estimate of θ obtained from the b-th
bootstrap sample, and θ∗ is the mean of these estimates.

Bias-corrected estimate: θ̂ − b̂ias.
Empirically, it is sufficient to take B in the range 20-50.

Thierry Denœux (UTC) Bootstrapping 2022-2023 16 / 59



Basic methods Bootstrap bias correction and standard error estimation

Standard error estimation

Problem: estimate the standard error (s.e.) of θ̂ = T (F̂ ):

se(F ) =

√
EF

[(
θ̂ − EF (θ̂)

)2
]
.

Theoretical bootstrap estimate: se(F̂ ∗) =
√

E
F̂

[(θ̂∗ − E
F̂

(θ̂∗))2].

Simulated bootstrap estimate:

ŝeB =

√√√√ 1
B − 1

B∑

b=1

(θ̂∗b − θ
∗
)2.

B = 50 is often good enough. Very rarely do we need B > 200.
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Confidence intervals Bootstrap t-interval
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Confidence intervals Bootstrap t-interval

Confidence intervals from normal approximation

Under many circumstances, the distribution of a statistic θ̂ = T (F̂ )
becomes more and more normal for large n, with mean θ = T (F )
and standard deviation se(F ).
Let ŝe = se(F̂ ) be an estimate of se(F ). Usually, we have
approximately

R(X ,F ) =
θ̂ − θ
ŝe
∼ N (0, 1).

We can then write

P

[
uα/2 ≤

θ̂ − θ
ŝe
≤ u1−α/2

]
≈ 1− α,

where uα is the α-quantile of the standard normal distribution, from
which we get the approximate CI: θ̂ ± u1−α/2 ŝe.
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Confidence intervals Bootstrap t-interval

Confidence intervals from normal approximation (cont.)

For n < 30, we have the better approximation

θ̂ − θ
ŝe
∼ Tn−1,

where Tn−1 is the Student t distribution with n − 1 d.f., from which
we get the CI: θ̂ ± tn−1;1−α/2 ŝe, where tn−1;α is the α percentile of
Tn−1.
However, the use of the t-distribution does not adjust for skewness of
the underlying population or other errors.
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Confidence intervals Bootstrap t-interval

Bootstrap t intervals

Bootstrap approach: instead of assuming R(X ,F ) ∼ N (0, 1) or
R(X ,F ) ∼ Tn−1, approximate the distribution of R(X ,F ) (assumed
to be approximately pivotal) by that of R(X ∗, F̂ ).
Let

Z ∗ = R(X ∗, F̂ ) =
θ̂∗ − θ̂
ŝe∗

,

where θ̂∗ and ŝe∗ are the estimates of θ and the standard error of θ̂
computed from bootstrap sample X ∗.
The α-th percentile of Z ∗ can be estimated by drawing B

realizations z∗1 , . . . , z
∗
B and computing z

∗(α)
B such that

1
B

#{z∗b ≤ z
∗(α)
B } = α.

We then have the approximate CI:
[
θ̂ − z

∗(1−α/2)
B ŝe , θ̂ + z

∗(α/2)
B ŝe

]
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Confidence intervals Bootstrap t-interval

Applicability of the method

The method is particularly applicable to location parameters (such
that a shift in the distribution results in the same shift for the
parameter), e.g., the mean, the median, the trimmed mean, or a
sample percentile.
To determine ŝe and ŝe∗, we need either

An analytical formula for se(F ): we take ŝe = se(F̂ ) and
ŝe∗b = se(F̂ ∗b ), or
To use the bootstrap: in that case, ŝe is estimated as explained
before (slide 17), and we need two nested bootstrap loops to
compute ŝe∗: for each X ∗b , generate B ′ bootstrap samples X ∗∗b,b′ ,
b′ = 1, . . . ,B ′ and compute ŝe∗b as

ŝe∗b =

√√√√ 1
B ′ − 1

B′∑

b′=1

(θ̂∗∗b,b′ − θ∗∗b )2
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Confidence intervals Bootstrap t-interval

Limits of the method

Since we use the tails of the distribution of R(X ∗, F̂ ), we need to
take B very large, B ≥ 1000. If we estimate ŝe(θ̂) by the bootstrap
with B ′ = 20, we need ≥ 20, 000 bootstrap samples.
The method can produce poor results when applied to a parameter
that is not a location parameter. The next method is more general
and more reliable.
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Confidence intervals Percentile method

Overview

Basic methods
Nonparametric vs. parametric Bootstrap
Bootstrap bias correction and standard error estimation

Confidence intervals
Bootstrap t-interval
Percentile method
Accelerated Bias-Corrected Percentile Method

Bootstrapping non i.i.d. data
Bootstrapping regression
Bootstrapping dependent data

Bootstrap performance
Independent Data Case
Dependent Data Case

Thierry Denœux (UTC) Bootstrapping 2022-2023 25 / 59



Confidence intervals Percentile method

Principle

The simplest method for drawing inference about a univariate
parameter θ using bootstrap simulations is to construct a confidence
interval using the percentile method.
This amounts to reading percentiles off the histogram of θ̂∗b values,
b = 1, . . . ,B produced by bootstrapping.

If θ̂∗(α)B denotes the α percentile of the bootstrap estimates, the CI
at level 1− α is [

θ̂
∗(α/2)
B , θ̂

∗(1−α/2)
B

]

It is intuitive, but why does it work?
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Confidence intervals Percentile method

Justification of the bootstrap percentile method

Assume there exists a monotonically increasing transformation ϕ
that perfectly normalizes the distribution of θ̂:

ϕ(θ̂) ∼ N (ϕ(θ), 1)

Then,
P
[
−u1−α/2 ≤ ϕ(θ̂)− ϕ(θ) ≤ u1−α/2

]
= 1− α (1a)

P
[
ϕ(θ̂)− u1−α/2 ≤ ϕ(θ) ≤ ϕ(θ̂) + u1−α/2

]
= 1− α (1b)

P
[
ϕ−1

(
ϕ(θ̂)− u1−α/2

)
≤ θ ≤ ϕ−1

(
ϕ(θ̂) + u1−α/2

)]
= 1− α

(1c)
Now let us apply the bootstrap principle to (1a).
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Confidence intervals Percentile method

Justification of the bootstrap percentile method (continued)

We have

P∗
[
−u1−α/2 ≤ ϕ(θ̂∗)− ϕ(θ̂) ≤ u1−α/2

]
= 1− α (2a)

P∗
[
ϕ(θ̂)− u1−α/2 ≤ ϕ(θ̂∗) ≤ ϕ(θ̂) + u1−α/2

]
= 1− α (2b)

P∗


ϕ
−1
(
ϕ(θ̂)− u1−α/2

)

︸ ︷︷ ︸
≈θ̂∗(α/2)B

≤ θ̂∗ ≤ ϕ−1
(
ϕ(θ̂) + u1−α/2

)

︸ ︷︷ ︸
≈θ̂∗(1−α/2)B


 = 1− α

(2c)
The bounds of (2c) are identical to those of (1c). Hence we may
simply read off the quantiles for θ̂∗ from the bootstrap distribution
and use these as the confidence limits for θ.
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Confidence intervals Percentile method

Remarks

Note that the percentile method is equivariant to monotone
transformations: the percentile method confidence interval for a
monotone transformation of θ is the same as the transformation of
the interval for θ itself.
Although the justification is based on a normalizing transformation
ϕ, this transformation is implicit (it need not be specified).
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Confidence intervals Accelerated Bias-Corrected Percentile Method
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Principle

The accelerated bias-corrected percentile method (BCa), usually
offers substantial improvement over the simple percentile approach.
For the basic percentile method to work well, it is necessary for the
transformed estimator ϕ(θ) to be unbiased with variance that does
not depend on θ.
BCa augments ϕ with two parameters to better meet these
conditions, thereby ensuring an approximate pivot.
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Assumptions

Assume there exists a monotonically increasing function ϕ and
constants a and b such that

U =
ϕ(θ̂)− ϕ(θ)

1 + aϕ(θ)
+ b ∼ N (0, 1),

with 1 + aϕ(θ) > 0. Note that if a = b = 0, this transformation
leads us back to the simple percentile method.
By the bootstrap principle,

U∗ =
ϕ(θ̂∗)− ϕ(θ̂)

1 + aϕ(θ̂)
+ b

has approximately a standard normal distribution.
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Derivation

For any quantile of a standard normal distribution, say uα,

α ≈ P∗(U∗ ≤ uα) (3a)

= P∗
[
θ̂∗ ≤ ϕ−1

(
ϕ(θ̂) + (uα − b)[1 + aϕ(θ̂)]

)]
(3b)

The α quantile of the empirical distribution of θ̂∗, denoted θ̂∗(α)B , is
observable from the bootstrap distribution. Therefore

ϕ−1
(
ϕ(θ̂) + (uα − b)[1 + aϕ(θ̂)]

)
≈ θ̂∗(α)B . (4)
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Derivation (continued)

In order to use (4), consider U itself:

1− α = P(U > uα) (5a)

= P
[
θ ≤ ϕ−1

(
ϕ(θ̂) + v(a, b, α)[1 + aϕ(θ̂)]

)]
(5b)

with
v(a, b, α) =

b − uα
1− a(b − uα)

.

Notice the similarity between (3b) and (5b). Thus, if we can find a β
such that v(a, b, α) = uβ − b, then the bootstrap principle can be
applied to conclude that θ < θ̂

∗(β)
B will approximate a 1− α upper

confidence limit.
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Derivation (continued)

Solving the equation v(a, b, α) = uβ − b, we get

β = Φ(b + v(a, b, α)) = Φ

(
b +

b + u1−α
1− a(b + u1−α)

)

where Φ is the standard normal c.d.f.
Thus, if we knew suitable a and b, then to find a 1− α upper
confidence limit we would first compute β and then find the β-th
quantile of the empirical distribution of θ̂∗, namely θ̂∗(β)B , using the
bootstrap pseudo-datasets.
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Two-sided confidence intervals

For a two-sided 1− α confidence interval, this approach yields

P
(
θ̂
∗(β1)
B ≤ θ ≤ θ̂∗(β2)B

)
≈ 1− α

with

β1 = Φ

(
b +

b + uα/2
1− a(b + uα/2)

)

β2 = Φ

(
b +

b + u1−α/2

1− a(b + u1−α/2)

)

As with the percentile method, the beauty of the above justification
for BCa is that explicit specification of the transformation ϕ is not
necessary.
Further, the BCa shares the equivariance property of the simple
percentile method.
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Estimation of a and b

The remaining question is the choice of a and b.
The simplest nonparametric choices are

b = Φ−1
(
F̂ ∗(θ∗)

)

and

a =
1
6

∑n
i=1 ψ

3
i(∑n

i=1 ψ
3
i

)3/2

where ψi = θ̂(·) − θ̂(−i), with θ̂(−i) denoting the statistic computed
omitting the i-th observation, and θ̂(·) = (1/n)

∑n
i=1 θ̂(−i).
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Confidence intervals Accelerated Bias-Corrected Percentile Method

Percentile and BCa CI in R

library(boot)

# data generation using the exponential distribution
x<-rexp(20,rate=2)

# CI on the median

fct.median<-function(data,ii) return(median(data[ii]))
boot.out<-boot(data=x,statistic=fct.median,R=1000,sim="ordinary")
CI<-boot.ci(boot.out,conf=0.95,type=c("perc","bca"))
print(CI)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Intervals:
Level Percentile BCa
95% ( 0.0729, 0.5506 ) ( 0.0722, 0.4896 )
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Bootstrapping non i.i.d. data Bootstrapping regression
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Bootstrapping non i.i.d. data Bootstrapping regression

Model

Consider the ordinary multiple regression model,

Yi = xTi β + εi , i = 1, . . . , n,

where the εi are assumed to be i.i.d. random variables with zero
mean and constant variance.
Here, the Yi are not i.i.d.: we cannot bootstrap the yi values.
To determine the correct bootstrap approach, we must determine
which data are i.i.d.
Two main approaches:

1 Bootstrapping the residuals
2 Bootstrapping the cases
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Bootstrapping non i.i.d. data Bootstrapping regression

Bootstrapping the residuals

If the xi are considered to be fixed, then a suitable approach is to
bootstrap the residuals.
We know that the errors ε1, . . . , εn are i.i.d. These variables are not
observed, but we can replace them by the residuals ε̂1, . . . , ε̂n with

ε̂i = yi − xTi β̂.

Let ε̂∗1, . . . , ε̂
∗
n be a bootstrap set of residuals. We can construct a

bootstrap set of pseudo-responses by

y∗i = xTi β̂ + ε∗i , i = 1, . . . , n.

Regressing y∗i on xi yields a bootstrap estimate β̂∗. By repeating the
process B times, we get an empirical distribution β̂∗1 , . . . , β̂

∗
B .

Thierry Denœux (UTC) Bootstrapping 2022-2023 42 / 59



Bootstrapping non i.i.d. data Bootstrapping regression

Remarks

This approach is most appropriate for designed experiments or other
data where the xi values are fixed in advance.
The strategy of bootstrapping residuals is at the core of simple
bootstrapping methods for other models such as autoregressive
models, nonparametric regression, and generalized linear models.
Bootstrapping the residuals is reliant on the chosen model providing
an appropriate fit to the observed data, and on the assumption that
the residuals have constant variance. Without confidence that these
conditions hold, the next bootstrapping method is probably more
appropriate.
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Bootstrapping non i.i.d. data Bootstrapping regression

Bootstrapping the cases

If the pairs (xi , yi ) are observed for n individuals taken at random
from a population, then the n observations (x1, y1), . . . , (xn, yn) are a
realization from an i.i.d. sample (X1,Y1), . . . , (Xn,Yn).
We may then construct bootstrap samples

(x∗1 , y
∗
1 ), . . . , (x∗n , y

∗
n ),

from which we can estimate β̂∗.
This approach is more robust to violations of the regression
assumptions than the “bootstrapping the residuals” approach.
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Stationary data

Assume that data x1, . . . , xn are a partial realization from a
stationary time series of random variables X1, . . . ,Xn, . . .

For a time series (X1, . . . ,Xn, . . .), stationarity means that the joint
distribution of {Xt ,Xt+1, . . . ,Xt+k} does not depend on t for any
k ≥ 0.
Let X = (X1, . . . ,Xn) denote the time series we wish to bootstrap.
Since the elements of X are dependent, it is inappropriate to apply
the ordinary bootstrap for i.i.d. data.
Several bootstrap methods have been developed for dependent data.
Bootstrap theory and methods for dependent data are more complex
than for the i.i.d. case. We give only some basic ideas here.

Thierry Denœux (UTC) Bootstrapping 2022-2023 46 / 59
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Model-based approach

As in the case of regression, one method is to postulate a model and
bootstrap the residuals.
For instance, assume an AR(1) model

xt = βxt−1 + εt ,

where |β| < 1 and the εt are i.i.d. with zero mean and constant
variance.
After using the standard method to estimate β, we compute the
estimated innovations

êt = xt − β̂xt−1, t = 2, . . . , n.

We can then recenter the êt to obtain the estimated residuals

ε̂t = êt −
1

n − 1

n∑

i=2

êi .
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Model-based approach (continued)

Bootstrap iterations should then resample n + 1 values in the set
{ε̂2, . . . , ε̂n}, to obtain n + 1 innovations {ε̂∗0, . . . , ε̂∗n}.
We then get the pseudo time series as

x∗0 = ε̂∗0

x∗t = β̂x∗t−1 + ε̂∗t , t = 1, . . . , n

It can be shown that the data generated in that way are not
stationary. One remedy is to sample a larger number of
pseudo-innovations and start generating the series earlier:

x∗−k , x
∗
−k+1, . . . , x

∗
0︸ ︷︷ ︸

burn-in period

, x∗1 , . . . , x
∗
n

As in the case of regression, this method can only yield sensible
results if the model fits the data.
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Block-bootstrap approach

The block-bootstrap method works by splitting the time series
X = (x1, . . . , xn) into N non-overlapping blocks B1, . . . ,BN of size `
such that N` = n.
We then sample N blocks B∗1, . . . ,B∗N from {B1, . . . ,BN} with
replacement to get a pseudo time series X ∗ = (B∗1, . . . ,B∗N).

Each bootstrap estimate θ̂∗b is then computed from X ∗b ,
b = 1, . . . ,B .
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Choice of block size

The idea is to choose a block size ` large enough so that
observations more than ` time steps apart will be nearly independent,
while retaining the correlation present in the observations less than `
time steps apart.
The block-bootstrap approach has the advantage of being less
model-dependent than the model-based approach. However, the
choice of block size ` can be critical and effective methods to make
this choice have still to be developed.
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Moving-block bootstrap

Within this approach, all blocks of size ` are considered, regardless of
whether the blocks overlap.
We thus have n − `+ 1 blocks of size `:

Bk = (xk , . . . , xk+`−1), k = 1, . . . , n − `+ 1.

N blocks are resampled with replacement, yielding B∗1, . . . ,B∗N (we
assume again that N` = n). We then get the pseudo time series
X ∗ = (B∗1, . . . ,B∗N).

As before, each bootstrap estimate θ̂∗b is then computed from X ∗b ,
b = 1, . . . ,B .
The moving-block bootstrap approach is considered to be superior to
the non-moving block bootstrap.
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Bootstrap performance Independent Data Case

Limitation of the bootstrap

All the bootstrap methods described in this chapter rely on the
principle that the bootstrap distribution should approximate the true
distribution for a quantity of interest.
We have already discussed one situation where the i.i.d. bootstrap
approximation fails: for dependent data. The bootstrap also fails for
estimation of extremes. For example, bootstrapping the sample
maximum can be catastrophic.
Finally, the bootstrap can fail for heavy-tailed distributions. In these
circumstances, the bootstrap samples outliers too frequently.
There is a substantial asymptotic theory for the consistency and rate
of convergence of bootstrap methods. These results are mostly
beyond the scope of this course, but we mention a few main ideas
hereafter.
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Consistency of the bootstrap

First, the i.i.d. bootstrap is consistent under suitable conditions.
Under some fairly general conditions,

P∗
[
| P[R(X ∗, F̂ ) ≤ q]− P[R(X ,F ) ≤ q] |> ε

]
→ 0

for any ε > 0 and any q as n→∞.
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Rate of convergence

Suppose that R(X ,F ) is standardized and asymptotically pivotal.
Then the usual rate of convergence for the bootstrap is given by

P∗[R(X ∗, F̂ ) ≤ q]− P[R(X ,F )] = OP(n−1)

Without pivoting, the rate is typically only OP(n−1/2).
In other words, coverage probabilities for confidence intervals are
O(n−1/2) accurate for the basic, unpivoted percentile method, but
O(n−1) accurate for BCa and the bootstrap t.
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Bootstrap performance Dependent Data Case

Consistency

Under suitable conditions, the dependent data bootstrap methods
discussed here are also consistent.
The convergence performance of these methods depends on whether
block length ` is the correct order (e.g., ` ∝ n1/3 for bias and
variance estimation).
In general, performance of block bootstrap methods is superior to
what is achieved by normal approximation via the central limit
theorem, but not as good as the performance of the bootstrap for
i.i.d. data.
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Moving block vs. block bootstrap

Not all dependent data bootstrap methods are equally effective. The
moving block bootstrap is superior to the nonmoving block approach
in terms of mean squared error.
Suppose that bootstrapping is focused on estimating the bias or
variance of an underlying estimator. Then the asymptotic mean
squared error (AMSE) is approximately 30% larger for the nonmoving
blocks bootstrap than for the moving blocks method when the
asymptotically optimal block sizes are used for each approach.
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