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EM Algorithm

An iterative optimization strategy motivated by a notion of
missingness and by consideration of the conditional distribution of
what is missing given what is observed.
Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
Difficult likelihoods often arise when data are missing. EM simplifies
such problems. In fact, the ‘missing data’ may not truly be missing:
they may be only a conceptual ploy to exploit the EM simplification!
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Notation

Y : Observed variables.
Z : Missing or latent variables.
X : Complete data X = (Y,Z).
θ : Unknown parameter.

L(θ) : observed-data likelihood, short for L(θ; y) = f (y;θ)
Lc(θ) : complete-data likelihood, short for L(θ; x) = f (x;θ)

`(θ), `c(θ) : observed and complete-data log-likelihoods.
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Notation

Suppose we seek to maximize L(θ) with respect to θ.
Define Q(θ|θ(t)) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y = y. Namely

Q(θ,θ(t)) =Eθ(t)

{
`c(θ)

∣∣ y
}

=Eθ(t)

{
log fX(X;θ)

∣∣ y,θ(t)
}

=

∫ [
log fX(x)

]
fZ|Y(z|y) dz

where the last equation emphasizes that Z is the only random part of
X once we are given Y = y.
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The EM Algorithm

Start with θ(0). Then
1 E step: Compute Q(θ,θ(t)).
2 M step: Maximize Q(θ,θ(t)) with respect to θ. Set θ(t+1) equal to

the maximizer of Q.
3 Return to the E step unless a stopping criterion has been met; e.g.,

L(θ(t+1))− L(θ(t)) ≤ ε
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Convergence of the EM Algorithm

It can be proved that L(θ) increases after each EM iteration, i.e.,
L(θ(t+1)) ≥ L(θ(t)) for t = 0, 1, . . ..
Consequently, the algorithm converges to a local maximum of L(θ) if
the likelihood function is bounded above.
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Trival example

Y ,Z iid from E(θ) with y = 5 observed but z missing.
The complete-data log likelihood function is

`c(θ) = log{fX(x; θ)} = 2 log(θ)− θy − θz .

Thus
Q(θ, θ(t)) = 2 log(θ)− 5θ − θ/θ(t)

since Eθ(t){Z |y} = Eθ(t){Z} = 1/θ(t) follows from independence.
The maximizer of Q(θ, θ(t)) is the root of 2/θ − 5− 1/θ(t) = 0.
Thus θ(t+1) = 2θ(t)

5θ(t)+1 . Converges quickly to θ̂ = 0.2.

This example is not realistic. Easy analytic solution. Taking the
required expectation is tricker in real applications because one needs
to know the conditional distribution of the complete data given the
missing data.
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The nature of EM

Ascent: Each M-step increases the log likelihood.
Convergence: is linear (slow!). Rate is inversely related to the
proportion of missing data.
Optimization transfer:

`(θ|y) ≥ Q(θ, θ(t)) + `(θ(t)|y)− Q(θ(t),θ(t)) = G (θ,θ(t)).

The last two terms in G (θ,θ(t)) are constant with respect to θ, so
Q and G are maximized at the same θ.
Further, G is tangent to ` at θ(t), and lies everywhere below `. We
say that G is a minorizing function for l .
EM transfers optimization from ` to the surrogate function G , which
is more convenient to maximize.
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The nature of EM

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function
G , and each M step maximizes it to provide an uphill step.
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Bayesian posterior mode

Consider a Bayesian estimation problem with likelihood L(θ) and
priori f (θ).
The posterior density if proportional to L(θ)f (θ). It can also be
maximized by the EM algorithm.
The E-step requires

Q(θ,θ(t)) = Eθ(t)

{
`c(θ)

∣∣ y
}
+ log f (θ)

The addition of the log-prior often makes it more difficult to
maximize Q during the M-step.
Some methods can be used to facilitate the M-step in difficult
situations (see below).
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Monte Carlo EM (MCEM)

Replace the tth E step with
1 Draw missing datasets Z(t)

1 , . . . ,Z(t)

m(t) i.i.d. from fZ|Y(z|y;θ(t)). Each

Z(t)
j is a vector of all the missing values needed to complete the

observed dataset, so X(t)
j = (y,Z(t)

j ) denotes a completed dataset

where the missing values have been replaced by Z(t)
j .

2 Calculate Q̂(t+1)(θ,θ(t)) = 1
m(t)

∑m(t)

j=1 log fX(X
(t)
j |θ).

Then Q̂(t+1)(θ,θ(t)) is a Monte Carlo estimate of Q(θ,θ(t)).
The M step is modified to maximize Q̂(t+1)(θ,θ(t)).
Increase m(t) as iterations progress to reduce the Monte Carlo
variability of Q̂. MCEM will not converge in the same sense as
ordinary EM, rather values of θ(t) will bounce around the true
maximum, with a precision that depends on m(t).
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ECM algorithm

Replaces the M step with a series of computationally simpler
conditional maximization (CM) steps.
Call the collection of simpler CM steps after the tth E step a CM
cycle. Thus, the tth iteration of ECM is comprised of the tth E step
and the tth CM cycle. r
Let S denote the total number of CM steps in each CM cycle.
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ECM algorithm (continued)

For s = 1, . . . ,S , the sth CM step in the tth cycle requires the
maximization of Q(θ,θ(t)) subject to (or conditional on) a
constraint, say

gs(θ) = gs(θ
(t+(s−1)/S))

where θ(t+(s−1)/S) is the maximizer found in the (s − 1)th CM step
of the current cycle.
When the entire cycle of S steps of CM has been completed, we set
θ(t+1) = θ(t+S/S) and proceed to the E step for the (t + 1)th
iteration.
The art of constructing an effective ECM algorithm lies in choosing
the constraints cleverly.
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Choice 1: Iterated Conditional Modes / Gauss-Seidel

Partition θ into S subvectors, θ = (θ1, . . . ,θS).
In the sth CM step, maximize Q with respect to θs while holding all
other components of θ fixed.
This amounts to the constraint induced by the function

gs(θ) = (θ1, . . . ,θs−1,θs+1, . . . ,θS).
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Choice 2

At the sth CM step, maximize Q with respect to all other
components of θ while holding θs fixed.
Then gs(θ) = θs .
Additional systems of constraints can be imagined, depending on the
particular problem context.
A variant of ECM inserts an E step between each pair of CM steps,
thereby updating Q at every stage of the CM cycle.
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EM gradient algorithm

Replace the M step with a single step of Newton’s method, thereby
approximating the maximum without actually solving for it exactly.
Instead of maximizing, choose:

θ(t+1) = θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

Q′(θ,θ(t))
∣∣∣
θ=θ(t)

= θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

`′(θ(t))

Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed convergence.
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