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EM Algorithm

An iterative optimization strategy motivated by a notion of
missingness and by consideration of the conditional distribution of
what is missing given what is observed.
Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
Difficult likelihoods often arise when data are missing. EM simplifies
such problems. In fact, the ‘missing data’ may not truly be missing:
they may be only a conceptual ploy to exploit the EM simplification!
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Notation

Y : Observed variables.
Z : Missing or latent variables.
X : Complete data X = (Y,Z).
θ : Unknown parameter.

L(θ) : observed-data likelihood, short for L(θ; y) = f (y ;θ)

Lc(θ) : complete-data likelihood, short for L(θ; x) = f (x ;θ)

`(θ), `c(θ) : observed and complete-data log-likelihoods.
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Notation

Suppose we seek to maximize L(θ) with respect to θ.
Define Q(θ|θ(t)) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y = y. Namely

Q(θ,θ(t)) =Eθ(t)

{
`c(θ)

∣∣ y
}

=Eθ(t)

{
log f (X;θ)

∣∣ y
}

=

∫ [
log f (x;θ)

]
f (z|y;θ(t)) dz

where the last equation emphasizes that Z is the only random part of
X once we are given Y = y.
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The EM Algorithm

Start with θ(0). Then
1 E step: Compute Q(θ,θ(t)).
2 M step: Maximize Q(θ,θ(t)) with respect to θ. Set θ(t+1) equal to

the maximizer of Q.
3 Return to the E step unless a stopping criterion has been met; e.g.,

`(θ(t+1))− `(θ(t)) ≤ ε
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Convergence of the EM Algorithm

It can be proved that L(θ) increases after each EM iteration, i.e.,
L(θ(t+1)) ≥ L(θ(t)) for t = 0, 1, . . ..
Consequently, the algorithm converges to a local maximum of L(θ) if
the likelihood function is bounded above.
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Trivial example

Y ,Z iid from E(θ) with y = 5 observed but z missing.
The complete-data log likelihood function is

`c(θ) = log{fX(x; θ)} = 2 log(θ)− θy − θz .

Thus
Q(θ, θ(t)) = 2 log(θ)− 5θ − θ/θ(t)

since Eθ(t){Z |y} = Eθ(t){Z} = 1/θ(t) follows from independence.
The maximizer of Q(θ, θ(t)) is the root of 2/θ − 5− 1/θ(t) = 0.
Thus θ(t+1) = 2θ(t)

5θ(t)+1 . Converges quickly to θ̂ = 0.2.

This example is not realistic. Easy analytic solution. Taking the
required expectation is tricker in real applications because one needs
to know the conditional distribution of the complete data given the
missing data.
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Mixture of normal and uniform distributions

Let Y = (Y1, . . . ,Yn) be an i.i.d. sample from a mixture of a normal
distribution N (µ, σ) and a uniform distribution U([−a, a]), with pdf

f (y ; θ) = πφ(y ;µ, σ) + (1− π)c , (1)

where φ(·;µ, σ) is the normal pdf, c = (2a)−1, π is the proportion of
the normal distribution in the mixture and θ = (µ, σ, π)T is the
vector of parameters.
Typically, the uniform distribution corresponds to outliers in the data.
The proportion of outliers in the population is then 1− π.
We want to estimate θ.
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Observed and complete-data likelihoods

Let Zi = 1 if observation i is not an outlier, Zi = 0 otherwise. We
have Zi ∼ B(π).
The vector Z = (Z1, . . . ,Zn) is the missing data.
Observed-data likelihood:

L(θ) =
n∏

i=1

f (yi ;θ) =
n∏

i=1

[πφ(yi ;µ, σ) + (1− π)c]

Complete-data likelihood:

Lc(θ) =
n∏

i=1

f (yi , zi ;θ) =
n∏

i=1

f (yi |zi ;µ, σ)f (zi |π)

=
n∏

i=1

[
φ(yi ;µ, σ)zi c1−ziπzi (1− π)1−zi

]
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Derivation of function Q

Complete-data log-likelihood:

`c(θ) =
n∑

i=1

zi log φ(yi ;µ, σ) + π

(
n −

n∑
i=1

zi

)
+

n∑
i=1

(zi log π + (1− zi ) log(1− π))

It is linear in the zi . Consequently, the Q function is simply

Q(θ,θ(t)) =
n∑

i=1

z
(t)
i log φ(yi ;µ, σ) + π

(
n −

n∑
i=1

z
(t)
i

)
+

n∑
i=1

(
z

(t)
i log π + (1− z

(t)
i ) log(1− π)

)
with z

(t)
i = Eθ(t) [Zi |yi ].
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EM algorithm

E-step: compute

z
(t)
i = Eθ(t) [Zi |yi ] = Pθ(t) [Zi = 1|yi ]

=
φ(yi ;µ

(t), σ(t))π(t)

φ(yi ;µ(t), σ(t))π(t) + c(1− π(t))

M-step: Maximize Q(θ,θ(t)) We get

π(t+1) =
n∑

i=1

z
(t)
i , µ(t+1) =

∑n
i=1 z

(t)
i yi∑n

i=1 z
(t)
i

σ(t+1) =

√√√√∑n
i=1 z

(t)
i (yi − µ(t+1))2∑n

i=1 z
(t)
i
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The nature of EM

Ascent: Each M-step increases the log likelihood.
Convergence: is linear (slow!). Rate is inversely related to the
proportion of missing data.
Optimization transfer:

`(θ) ≥ Q(θ, θ(t)) + `(θ(t))− Q(θ(t),θ(t)) = G (θ,θ(t)).

The last two terms in G (θ,θ(t)) are constant with respect to θ, so
Q and G are maximized at the same θ.
Further, G is tangent to ` at θ(t), and lies everywhere below `. We
say that G is a minorizing function for l .
EM transfers optimization from ` to the surrogate function G , which
is more convenient to maximize.
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The nature of EM

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function
G , and each M step maximizes it to provide an uphill step.



EM algorithm Some variants Variance estimation

Bayesian posterior mode

Consider a Bayesian estimation problem with likelihood L(θ) and
priori f (θ).
The posterior density if proportional to L(θ)f (θ). It can also be
maximized by the EM algorithm.
The E-step requires

Q(θ,θ(t)) = Eθ(t)

{
`c(θ)

∣∣ y
}

+ log f (θ)

The addition of the log-prior often makes it more difficult to
maximize Q during the M-step.
Some methods can be used to facilitate the M-step in difficult
situations (see below).
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Monte Carlo EM (MCEM)

Replace the tth E step with
1 Draw missing datasets Z(t)

1 , . . . ,Z(t)

m(t) i.i.d. from f (z|y;θ(t)). Each

Z(t)
j is a vector of all the missing values needed to complete the

observed dataset, so X(t)
j = (y,Z(t)

j ) denotes a completed dataset

where the missing values have been replaced by Z(t)
j .

2 Calculate Q̂(t+1)(θ,θ(t)) = 1
m(t)

∑m(t)

j=1 log f (X(t)
j |θ).

Then Q̂(t+1)(θ,θ(t)) is a Monte Carlo estimate of Q(θ,θ(t)).
The M step is modified to maximize Q̂(t+1)(θ,θ(t)).
Increase m(t) as iterations progress to reduce the Monte Carlo
variability of Q̂. MCEM will not converge in the same sense as
ordinary EM, rather values of θ(t) will bounce around the true
maximum, with a precision that depends on m(t).
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Generalized EM (GEM) algorithm

In the original EM algorithm, θ(t+1) is a maximizer of Q(θ,θ(t)), i.e.,

Q(θ(t+1),θ(t)) ≥ Q(θ,θ(t))

for all θ.
However, to ensure convergence, we only need that

Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t))

Any algorithm that chooses θ(t+1) at each iteration to guarantee the
above condition (without maximizing Q(θ,θ(t))) is called a
Generalized EM (GEM) algorithm.
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EM gradient algorithm

Replace the M step with a single step of Newton’s method, thereby
approximating the maximum without actually solving for it exactly.
Instead of maximizing, choose:

θ(t+1) = θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

Q′(θ,θ(t))
∣∣∣
θ=θ(t)

= θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

`′(θ(t))

Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed convergence.
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ECM algorithm

Replaces the M step with a series of computationally simpler
conditional maximization (CM) steps.
Call the collection of simpler CM steps after the tth E step a CM
cycle. Thus, the tth iteration of ECM is comprised of the tth E step
and the tth CM cycle.
Let S denote the total number of CM steps in each CM cycle.
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ECM algorithm (continued)

For s = 1, . . . ,S , the sth CM step in the tth cycle requires the
maximization of Q(θ,θ(t)) subject to (or conditional on) a
constraint, say

gs(θ) = gs(θ(t+(s−1)/S))

where θ(t+(s−1)/S) is the maximizer found in the (s − 1)th CM step
of the current cycle.
When the entire cycle of S steps of CM has been completed, we set
θ(t+1) = θ(t+S/S) and proceed to the E step for the (t + 1)th
iteration.
ECM is a GEM algorithm, since each CM step increases Q.
The art of constructing an effective ECM algorithm lies in choosing
the constraints cleverly.
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Choice 1: Iterated Conditional Modes / Gauss-Seidel

Partition θ into S subvectors, θ = (θ1, . . . ,θS).
In the sth CM step, maximize Q with respect to θs while holding all
other components of θ fixed.
This amounts to the constraint induced by the function

gs(θ) = (θ1, . . . ,θs−1,θs+1, . . . ,θS).
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Choice 2

At the sth CM step, maximize Q with respect to all other
components of θ while holding θs fixed.
Then gs(θ) = θs .
Additional systems of constraints can be imagined, depending on the
particular problem context.
A variant of ECM inserts an E step between each pair of CM steps,
thereby updating Q at every stage of the CM cycle.
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Variance of the MLE

Let θ̂ be the MLE of θ.
As n→∞, the limiting distribution of θ̂ is N (θ∗, I (θ∗)−1), where
θ∗ is the true value of θ, and

I (θ) = E[`′(θ)`′(θ)T ] = −E[`′′(θ)]

is the expected Fisher information matrix (the second equality holds
under some regularity conditions).
I (θ∗) can be estimated by I (θ̂), or by −`′′(θ̂) = Iobs(θ̂) (observed
information matrix).
Standard error estimates can be obtained by computing the square
roots of the diagonal elements of Iobs(θ̂)−1.
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Obtaining variance estimates

The EM algorithms allows us to estimate θ̂, but it does not directly
provide an estimate of I (θ∗).
Direct computation of I (θ̂) or Iobs(θ̂) is often difficult.
Main methods:

1 Louis’ method
2 SEM algorithm
3 Bootstrap
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Missing information principle

We have seen that
f (z |y ;θ) =

f (x ;θ)

f (y ;θ)
,

from which we get

`(θ) = `c(θ)− log f (z |y ;θ).

Differentiating twice and negating both sides, then taking
expectations over the conditional distribution of X given y ,

−`′′(θ) = E
[
−`′′c (θ)|y

]
− E

[
−∂

2 log f (z |y ;θ)

∂θ∂θT
|y
]

ı̂Y(θ) = ı̂X(θ)− ı̂Z|Y(θ)

where
ı̂Y(θ) is the observed information,
ı̂X(θ) is the complete information, and
ı̂Z|Y(θ) is the missing information.
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Louis’ method

Computing ı̂X(θ) and ı̂Z|Y(θ) is sometimes easier than computing
−`′′(θ) directly
We can show that

ı̂Z|Y(θ) = Var[SZ|Y(θ)],

where the variance is taken w.r.t. Z |y , and

SZ|Y(θ) =
∂f (z |y ;θ)

∂θ

is the conditional score.
As the expected score is zero at θ̂, we have

ı̂Z|Y(θ̂) =

∫
SZ|Y(θ̂)SZ|Y(θ̂)T f (z |y ; θ̂)dz
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Monte Carlo approximation

When they cannot be computed analytically, ı̂X(θ) and ı̂Z|Y(θ) can
sometimes be approximated by Monte Carlo simulation.
Method: generate simulated datasets x j = (y , z j), j = 1, . . . ,N,
where y is the observed dataset, and the z j are imputed missing
datasets drawn from f (z |y ;θ)

Then,

ı̂X(θ) ≈ 1
N

N∑
j=1

−
∂2 log f (x j ;θ)

∂θ∂θT

and ı̂Z|Y(θ) is approximated by the sample variance of the values

∂f (z j |y ;θ)

∂θ
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Supplemented EM (SEM) algorithm

Let Ψ denotes the EM mapping, defined by

θ(t+1) = Ψ(θ(t))

having fixed point θ̂ and Jacobian matrix Ψ′(θ) with (i , j)th element
equaling ∂Ψi (θ)

∂θj
.

It can be shown that

Ψ′(θ̂)T = ı̂Z|Y(θ̂)ı̂X(θ̂)−1

Further use of the missing information principle leads to

ı̂Y (θ̂)−1 = ı̂X(θ̂)−1
(
I + Ψ′(θ̂)T (I−Ψ′(θ̂)T )−1

)
.

SEM is numerically stable and requires little extra work.
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Estimation of Ψ′(θ̂)

Ler rij be the element (i , j) of Ψ′(θ̂). By definition,

rij =
∂Ψi (θ̂)

∂θj

= lim
θj→θ̂j

Ψi (θ̂1, . . . , θ̂j−1, θj , θ̂j+1, . . . , θ̂p)−Ψi (θ̂)

θj − θ̂j

= lim
t→∞

Ψi (θ
(t)(j))−Ψi (θ̂)

θ
(t)
j − θ̂j

= lim
t→∞

r
(t)
ij

where θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ
(t)
j , θ̂j+1, . . . , θ̂p), and (θ

(t)
j ),

t = 1, 2, . . . is a sequence of values converging to θ̂j .

Method: compute the r
(t)
ij , t = 1, 2, . . . until they stabilize to some

values. Then compute ı̂Y (θ̂)−1 using the previous formula.
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SEM algorithm

1 Run the EM algorithm to convergence, finding θ̂.
2 Restart the algorithm from some θ(0) near θ̂. For t = 0, 1, 2, . . .

1 Take a standard E step and M step to produce θ(t+1) from θ(t).
2 For j = 1, . . . , p, define θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ

(t)
j , θ̂j+1, . . . , θ̂p) and

r
(t)
ij =

Ψi (θ
(t)(j))− θ̂i
θ

(t)
j − θ̂j

for i = 1, . . . , p. (Recall that Ψ(θ̂) = θ̂.)
3 Stop when all r (t)

ij have converged

3 The (i , j)th element of Ψ′(θ̂) equals limt→∞ r
(t)
ij . Use the final

estimate of Ψ′(θ̂) to get the variance.
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Principle

Consider the case of iid data y = (w1, . . . ,wn)

If we knew the distribution of the W i , we could
generate many samples y1, . . . , yn,
compute the ML estimate θ̂j of θ from each sample y j , and
estimate the variance of θ̂ by the sample variance of the estimates
θ̂1, . . . , θ̂N .

Bootstrap principle: use the empirical distribution in place of the
true distribution of the W i
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Algorithm

1 Calculate θ̂EM using a suitable EM approach applied to
y = (w1, . . . ,wn). Let j = 1 and set θ̂

∗
j = θ̂EM .

2 Increment j . Sample pseudo-data y∗j = (w∗j1, . . . ,w
∗
jn) at random

from (w1, . . . ,wn) with replacement.
3 Calculate θ̂

∗
j by applying the same EM approach to the pseudo-data

y∗j
4 Stop if j = B (typically, B ≥ 1000); otherwise return to step 2.

The collection of parameter estimates θ̂
∗
1, . . . , θ̂

∗
B can be used to estimate

the variance of θ̂,

V̂ar(θ̂) =
1
B

B∑
j=1

(θ̂
∗
j − θ̂

∗
)(θ̂
∗
j − θ̂

∗
)T ,

where θ̂
∗
is the sample mean of θ̂

∗
1, . . . , θ̂

∗
B .
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Pros and cons of the bootstrap

1 Advantages:
The method is very general, complex analytical derivations are
avoided.
Allows the estimation of other aspects of the sampling distribution of
θ̂, such as expectation (bias), quantiles, etc.

2 Drawback: bootstrap embeds the EM loop in a second loop of B
iterations. May be computationally burdensome when the EM
algorithm is slow (because, e.g., of a high proportion of missing data,
or high dimensionality)
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