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EM Algorithm

An iterative optimization strategy motivated by a notion of
missingness and by consideration of the conditional distribution of
what is missing given what is observed.
Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.
Difficult likelihoods often arise when data are missing. EM simplifies
such problems. In fact, the ‘missing data’ may not truly be missing:
they may be only a conceptual ploy to exploit the EM simplification!
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EM algorithm

Notation

Y : Observed variables.
Z : Missing or latent variables.
X : Complete data X = (Y,Z).
θ : Unknown parameter.

L(θ) : observed-data likelihood, short for L(θ; y) = f (y ;θ)

Lc(θ) : complete-data likelihood, short for L(θ; x) = f (x ;θ)

`(θ), `c(θ) : observed and complete-data log-likelihoods.
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EM algorithm

Notation

Suppose we seek to maximize L(θ) with respect to θ.
Define Q(θ|θ(t)) to be the expectation of the complete-data
log-likelihood, conditional on the observed data Y = y. Namely

Q(θ,θ(t)) =Eθ(t)

{
`c(θ)

∣∣ y
}

=Eθ(t)

{
log f (X;θ)

∣∣ y
}

=

∫ [
log f (x;θ)

]
f (z|y;θ(t)) dz

where the last equation emphasizes that Z is the only random part of
X once we are given Y = y.
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EM algorithm

The EM Algorithm

Start with θ(0). Then
1 E step: Compute Q(θ,θ(t)).
2 M step: Maximize Q(θ,θ(t)) with respect to θ. Set θ(t+1) equal to

the maximizer of Q.
3 Return to the E step unless a stopping criterion has been met; e.g.,

`(θ(t+1))− `(θ(t)) ≤ ε
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EM algorithm

Convergence of the EM Algorithm

It can be proved that L(θ) increases after each EM iteration, i.e.,
L(θ(t+1)) ≥ L(θ(t)) for t = 0, 1, . . ..
Consequently, the algorithm converges to a local maximum of L(θ) if
the likelihood function is bounded above.
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EM algorithm

Mixture of normal and uniform distributions

Let Y = (Y1, . . . ,Yn) be an i.i.d. sample from a mixture of a normal
distribution N (µ, σ) and a uniform distribution U([−a, a]), with pdf

f (y ; θ) = πφ(y ;µ, σ) + (1− π)c , (1)

where φ(·;µ, σ) is the normal pdf, c = (2a)−1, π is the proportion of
the normal distribution in the mixture and θ = (µ, σ, π)T is the
vector of parameters.
Typically, the uniform distribution corresponds to outliers in the data.
The proportion of outliers in the population is then 1− π.
We want to estimate θ.
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EM algorithm

Observed and complete-data likelihoods

Let Zi = 1 if observation i is not an outlier, Zi = 0 otherwise. We
have Zi ∼ B(π).
The vector Z = (Z1, . . . ,Zn) is the missing data.
Observed-data likelihood:

L(θ) =
n∏

i=1

f (yi ;θ) =
n∏

i=1

[πφ(yi ;µ, σ) + (1− π)c]

Complete-data likelihood:

Lc(θ) =
n∏

i=1

f (yi , zi ;θ) =
n∏

i=1

f (yi |zi ;µ, σ)f (zi |π)

=
n∏

i=1

[
φ(yi ;µ, σ)zi c1−ziπzi (1− π)1−zi

]
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EM algorithm

Derivation of function Q

Complete-data log-likelihood:

`c(θ) =
n∑

i=1

zi log φ(yi ;µ, σ) + π

(
n −

n∑
i=1

zi

)
+

n∑
i=1

(zi log π + (1− zi ) log(1− π))

It is linear in the zi . Consequently, the Q function is simply

Q(θ,θ(t)) =
n∑

i=1

z
(t)
i log φ(yi ;µ, σ) + π

(
n −

n∑
i=1

z
(t)
i

)
+

n∑
i=1

(
z

(t)
i log π + (1− z

(t)
i ) log(1− π)

)
with z

(t)
i = Eθ(t) [Zi |yi ].
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EM algorithm

EM algorithm

E-step: compute

z
(t)
i = Eθ(t) [Zi |yi ] = Pθ(t) [Zi = 1|yi ]

=
φ(yi ;µ

(t), σ(t))π(t)

φ(yi ;µ(t), σ(t))π(t) + c(1− π(t))

M-step: Maximize Q(θ,θ(t)) We get

π(t+1) =
n∑

i=1

z
(t)
i , µ(t+1) =

∑n
i=1 z

(t)
i yi∑n

i=1 z
(t)
i

σ(t+1) =

√√√√∑n
i=1 z

(t)
i (yi − µ(t+1))2∑n

i=1 z
(t)
i
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EM algorithm

Remark

As mentioned before, the EM algorithm finds only a local maximum
of `(θ).
It is easy to find a global maximum: if µ is equal to some yi and
σ = 0, then φ(yi ;µ, σ) =∞ and, consequently, `(θ) = +∞.
We are not interested in these global maxima, because they
correspond to degenerate solutions!
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EM algorithm

Why does it work?

Ascent: Each M-step increases the log likelihood.
Optimization transfer:

`(θ) ≥ Q(θ, θ(t)) + `(θ(t))− Q(θ(t), θ(t)) = G (θ, θ(t)).

The last two terms in G (θ, θ(t)) are constant with respect to θ, so Q
and G are maximized at the same θ.
Further, G is tangent to ` at θ(t), and lies everywhere below `. We
say that G is a minorizing function for `.
EM transfers optimization from ` to the surrogate function G , which
is more convenient to maximize.
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EM algorithm

The nature of EM

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function
G , and each M step maximizes it to provide an uphill step.
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EM algorithm

Proof

We have

p(z |y ; θ) =
p(x ; θ)

p(y ; θ)
⇒ p(y ; θ) =

p(x ; θ)

p(z |y ; θ)

Consequently,

`(θ) = log p(y ; θ) = log p(x ; θ)︸ ︷︷ ︸
`c (θ)

− log p(z |y ; θ)

Taking expectations on both sides wrt the conditional distribution of
X given Y = y and using θ(t) for θ:

`(θ) = Q(θ, θ(t))− Eθ(t) [log p(Z |y ; θ)|y ]︸ ︷︷ ︸
H(θ,θ(t))

(2)
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EM algorithm

Proof - the minorizing function

Now, for all θ ∈ Θ,

H(θ, θ(t))− H(θ(t), θ(t)) = Eθ(t)

[
log

p(Z |y ; θ)

p(Z |y ; θ(t))
|y
]

(3a)

≤ logEθ(t)

[
p(Z |y ; θ)

p(Z |y ; θ(t))
|y
]

(∗) (3b)

= log
∫

p(z |y ; θ)dz = 0 (3c)

(*): from the concavity of the log and Jensen’s inequality.
Hence, for all θ ∈ Θ,

H(θ, θ(t)) ≤ H(θ(t), θ(t)) = Q(θ(t), θ(t))− `(θ(t)), or

`(θ) ≥ Q(θ, θ(t)) + `(θ(t))− Q(θ(t), θ(t)) = G (θ, θ(t)) (4)
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EM algorithm

Proof - G is tangent to ` at θ(t)

From (4), `(θ(t)) = G (θ(t), θ(t)).
Now, we can rewrite (4) as

Q(θ(t), θ(t))− `(θ(t)) ≥ Q(θ, θ(t))− `(θ), ∀θ

Consequently, θ(t) maximizes Q(θ, θ(t))− `(θ), hence

Q ′(θ, θ(t))|θ=θ(t) − `′(θ)|θ=θ(t) = 0

and
G ′(θ, θ(t))|θ=θ(t) = Q ′(θ, θ(t))|θ=θ(t) = `′(θ)|θ=θ(t) .

Thierry Denœux Computational statistics February-March 2017 17 / 69



EM algorithm

Proof - monotonicity

From (2),

`(θ(t+1))− `(θ(t)) = Q(θ(t+1), θ(t))− Q(θ(t), θ(t))︸ ︷︷ ︸
A

−

H(θ(t+1), θ(t))− H(θ(t), θ(t))︸ ︷︷ ︸
B


A ≥ 0 because θ(t+1) is a maximizer of Q(θ, θ(t)), and B ≤ 0
because, from (3), θ(t) is a maximizer of H(θ, θ(t)).
Hence,

`(θ(t+1)) ≥ `(θ(t))
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EM algorithm

Bayesian posterior mode

Consider a Bayesian estimation problem with likelihood L(θ) and
priori f (θ).
The posterior density if proportional to L(θ)f (θ). It can also be
maximized by the EM algorithm.
The E-step requires

Q(θ,θ(t)) = Eθ(t)

{
`c(θ)

∣∣ y
}

+ log f (θ)

The addition of the log-prior often makes it more difficult to
maximize Q during the M-step.
Some methods can be used to facilitate the M-step in difficult
situations (see below).
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Some variants Facilitating the E-step
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Some variants Facilitating the E-step

Monte Carlo EM (MCEM)

Replace the tth E step with
1 Draw missing datasets Z(t)

1 , . . . ,Z(t)

m(t) i.i.d. from f (z|y;θ(t)). Each

Z(t)
j is a vector of all the missing values needed to complete the

observed dataset, so X(t)
j = (y,Z(t)

j ) denotes a completed dataset

where the missing values have been replaced by Z(t)
j .

2 Calculate Q̂(t+1)(θ,θ(t)) = 1
m(t)

∑m(t)

j=1 log f (X(t)
j |θ).

Then Q̂(t+1)(θ,θ(t)) is a Monte Carlo estimate of Q(θ,θ(t)).
The M step is modified to maximize Q̂(t+1)(θ,θ(t)).
Increase m(t) as iterations progress to reduce the Monte Carlo
variability of Q̂. MCEM will not converge in the same sense as
ordinary EM, rather values of θ(t) will bounce around the true
maximum, with a precision that depends on m(t).
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Some variants Facilitating the M-step
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Some variants Facilitating the M-step

Generalized EM (GEM) algorithm

In the original EM algorithm, θ(t+1) is a maximizer of Q(θ,θ(t)), i.e.,

Q(θ(t+1),θ(t)) ≥ Q(θ,θ(t))

for all θ.
However, to ensure convergence, we only need that

Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t))

Any algorithm that chooses θ(t+1) at each iteration to guarantee the
above condition (without maximizing Q(θ,θ(t))) is called a
Generalized EM (GEM) algorithm.
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Some variants Facilitating the M-step

EM gradient algorithm

Replace the M step with a single step of Newton’s method, thereby
approximating the maximum without actually solving for it exactly.
Instead of maximizing, choose:

θ(t+1) = θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

Q′(θ,θ(t))
∣∣∣
θ=θ(t)

= θ(t) − Q′′(θ,θ(t))−1
∣∣∣
θ=θ(t)

`′(θ(t))

Ascent is ensured for canonical parameters in exponential families.
Backtracking can ensure ascent in other cases; inflating steps can
speed convergence.
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Some variants Facilitating the M-step

ECM algorithm

Replaces the M step with a series of computationally simpler
conditional maximization (CM) steps.
Call the collection of simpler CM steps after the tth E step a CM
cycle. Thus, the tth iteration of ECM is comprised of the tth E step
and the tth CM cycle.
Let S denote the total number of CM steps in each CM cycle.
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Some variants Facilitating the M-step

ECM algorithm (continued)

For s = 1, . . . ,S , the sth CM step in the tth cycle requires the
maximization of Q(θ,θ(t)) subject to (or conditional on) a
constraint, say

gs(θ) = gs(θ(t+(s−1)/S))

where θ(t+(s−1)/S) is the maximizer found in the (s − 1)th CM step
of the current cycle.
When the entire cycle of S steps of CM has been completed, we set
θ(t+1) = θ(t+S/S) and proceed to the E step for the (t + 1)th
iteration.
ECM is a GEM algorithm, since each CM step increases Q.
The art of constructing an effective ECM algorithm lies in choosing
the constraints cleverly.
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Some variants Facilitating the M-step

Choice 1: Iterated Conditional Modes / Gauss-Seidel

Partition θ into S subvectors, θ = (θ1, . . . ,θS).
In the sth CM step, maximize Q with respect to θs while holding all
other components of θ fixed.
This amounts to the constraint induced by the function

gs(θ) = (θ1, . . . ,θs−1,θs+1, . . . ,θS).
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Some variants Facilitating the M-step

Choice 2

At the sth CM step, maximize Q with respect to all other
components of θ while holding θs fixed.
Then gs(θ) = θs .
Additional systems of constraints can be imagined, depending on the
particular problem context.
A variant of ECM inserts an E step between each pair of CM steps,
thereby updating Q at every stage of the CM cycle.
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Variance estimation

Variance of the MLE

Let θ̂ be the MLE of θ.
As n→∞, the limiting distribution of θ̂ is N (θ∗, I (θ∗)−1), where
θ∗ is the true value of θ, and

I (θ) = E[`′(θ)`′(θ)T ] = −E[`′′(θ)]

is the expected Fisher information matrix (the second equality holds
under some regularity conditions).
I (θ∗) can be estimated by I (θ̂), or by −`′′(θ̂) = Iobs(θ̂) (observed
information matrix).
Standard error estimates can be obtained by computing the square
roots of the diagonal elements of Iobs(θ̂)−1.
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Variance estimation

Obtaining variance estimates

The EM algorithms allows us to estimate θ̂, but it does not directly
provide an estimate of I (θ∗).
Direct computation of I (θ̂) or Iobs(θ̂) is often difficult.
Main methods:

1 Louis’ method
2 SEM algorithm
3 Bootstrap
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Variance estimation Louis’ method
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Variance estimation Louis’ method

Missing information principle

We have seen that
f (z |y ;θ) =

f (x ;θ)

f (y ;θ)
,

from which we get

`(θ) = `c(θ)− log f (z |y ;θ).

Differentiating twice and negating both sides, then taking
expectations over the conditional distribution of X given y ,

−`′′(θ) = E
[
−`′′c (θ)|y

]
− E

[
−∂

2 log f (z |y ;θ)

∂θ∂θT
|y
]

ı̂Y(θ) = ı̂X(θ)− ı̂Z|Y(θ)

where
ı̂Y(θ) is the observed information,
ı̂X(θ) is the complete information, and
ı̂Z|Y(θ) is the missing information.
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Variance estimation Louis’ method

Louis’ method

Computing ı̂X(θ) and ı̂Z|Y(θ) is sometimes easier than computing
−`′′(θ) directly
We can show that

ı̂Z|Y(θ) = Var[SZ|Y(θ)],

where the variance is taken w.r.t. Z |y , and

SZ|Y(θ) =
∂f (z |y ;θ)

∂θ

is the conditional score.
As the expected score is zero at θ̂, we have

ı̂Z|Y(θ̂) =

∫
SZ|Y(θ̂)SZ|Y(θ̂)T f (z |y ; θ̂)dz
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Variance estimation Louis’ method

Monte Carlo approximation

When they cannot be computed analytically, ı̂X(θ) and ı̂Z|Y(θ) can
sometimes be approximated by Monte Carlo simulation.
Method: generate simulated datasets x j = (y , z j), j = 1, . . . ,N,
where y is the observed dataset, and the z j are imputed missing
datasets drawn from f (z |y ;θ)

Then,

ı̂X(θ) ≈ 1
N

N∑
j=1

−
∂2 log f (x j ;θ)

∂θ∂θT

and ı̂Z|Y(θ) is approximated by the sample variance of the values

∂f (z j |y ;θ)

∂θ
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Variance estimation SEM algorithm
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Variance estimation SEM algorithm

Supplemented EM (SEM) algorithm

Let Ψ denotes the EM mapping, defined by

θ(t+1) = Ψ(θ(t))

having fixed point θ̂ and Jacobian matrix Ψ′(θ) with (i , j)th element
equaling ∂Ψi (θ)

∂θj
.

It can be shown that

Ψ′(θ̂)T = ı̂Z|Y(θ̂)ı̂X(θ̂)−1

Further use of the missing information principle leads to

ı̂Y (θ̂)−1 = ı̂X(θ̂)−1
(
I + Ψ′(θ̂)T (I−Ψ′(θ̂)T )−1

)
.

SEM is numerically stable and requires little extra work.
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Variance estimation SEM algorithm

Estimation of Ψ′(θ̂)

Ler rij be the element (i , j) of Ψ′(θ̂). By definition,

rij =
∂Ψi (θ̂)

∂θj

= lim
θj→θ̂j

Ψi (θ̂1, . . . , θ̂j−1, θj , θ̂j+1, . . . , θ̂p)−Ψi (θ̂)

θj − θ̂j

= lim
t→∞

Ψi (θ
(t)(j))−Ψi (θ̂)

θ
(t)
j − θ̂j

= lim
t→∞

r
(t)
ij

where θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ
(t)
j , θ̂j+1, . . . , θ̂p), and (θ

(t)
j ),

t = 1, 2, . . . is a sequence of values converging to θ̂j .

Method: compute the r
(t)
ij , t = 1, 2, . . . until they stabilize to some

values. Then compute ı̂Y (θ̂)−1 using the previous formula.
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Variance estimation SEM algorithm

SEM algorithm

1 Run the EM algorithm to convergence, finding θ̂.
2 Restart the algorithm from some θ(0) near θ̂. For t = 0, 1, 2, . . .

1 Take a standard E step and M step to produce θ(t+1) from θ(t).
2 For j = 1, . . . , p, define θ(t)(j) = (θ̂1, . . . , θ̂j−1, θ

(t)
j , θ̂j+1, . . . , θ̂p) and

r
(t)
ij =

Ψi (θ
(t)(j))− θ̂i
θ

(t)
j − θ̂j

for i = 1, . . . , p. (Recall that Ψ(θ̂) = θ̂.)
3 Stop when all r (t)

ij have converged

3 The (i , j)th element of Ψ′(θ̂) equals limt→∞ r
(t)
ij . Use the final

estimate of Ψ′(θ̂) to get the variance.
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Variance estimation Bootstrap
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Variance estimation Bootstrap

Principle

Consider the case of iid data y = (w1, . . . ,wn)

If we knew the distribution of the W i , we could
generate many samples y1, . . . , yn,
compute the ML estimate θ̂j of θ from each sample y j , and
estimate the variance of θ̂ by the sample variance of the estimates
θ̂1, . . . , θ̂N .

Bootstrap principle: use the empirical distribution in place of the
true distribution of the W i
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Variance estimation Bootstrap

Algorithm

1 Calculate θ̂EM using a suitable EM approach applied to
y = (w1, . . . ,wn). Let j = 1 and set θ̂

∗
j = θ̂EM .

2 Increment j . Sample pseudo-data y∗j = (w∗j1, . . . ,w
∗
jn) at random

from (w1, . . . ,wn) with replacement.
3 Calculate θ̂

∗
j by applying the same EM approach to the pseudo-data

y∗j
4 Stop if j = B (typically, B ≥ 1000); otherwise return to step 2.

The collection of parameter estimates θ̂
∗
1, . . . , θ̂

∗
B can be used to estimate

the variance of θ̂,

V̂ar(θ̂) =
1
B

B∑
j=1

(θ̂
∗
j − θ̂

∗
)(θ̂
∗
j − θ̂

∗
)T ,

where θ̂
∗
is the sample mean of θ̂

∗
1, . . . , θ̂

∗
B .
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Variance estimation Bootstrap

Pros and cons of the bootstrap

1 Advantages:
The method is very general, complex analytical derivations are
avoided.
Allows the estimation of other aspects of the sampling distribution of
θ̂, such as expectation (bias), quantiles, etc.

2 Drawback: bootstrap embeds the EM loop in a second loop of B
iterations. May be computationally burdensome when the EM
algorithm is slow (because, e.g., of a high proportion of missing data,
or high dimensionality)
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Overview

EM algorithm

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation
Louis’ method
SEM algorithm
Bootstrap

Application to Regression models
Mixture of regressions
Mixture of experts

Thierry Denœux Computational statistics February-March 2017 45 / 69



Application to Regression models Mixture of regressions
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Application to Regression models Mixture of regressions

Introductory example
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Application to Regression models Mixture of regressions

Introductory example (continued)

The data in the previous slide do not show any clear linear trend.
However, there seem to be several groups for which a linear model
would be a reasonable approximation.
How to identify those groups and the corresponding linear models?
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Application to Regression models Mixture of regressions

Model

Model: the response variable Y depends on the input variable X in
different ways, depending on a latent variable Z . (Beware: we have
switched back to the classical notation for regression models!)
This model is called mixture of regressions or switching regressions.
It has been widely studied in the econometrics literature.
Model:

Y =


βT1 X + ε1, ε1 ∼ N (0, σ1) if Z = 1,
...
βTKX + εK , εK ∼ N (0, σK ) if Z = K .

with X = (1,X1, . . . ,Xp), so

p(y |X = x) =
K∑

k=1

πkφ(y ;βT x , σk)
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Application to Regression models Mixture of regressions

Observed and complete-data likelihoods

Observed-data likelihood:

L(θ) =
N∏
i=1

p(yi ; θ) =
N∏
i=1

K∑
k=1

πkφ(yi ;β
T
k xi , σk)

Complete-data likelihood:

Lc(θ) =
N∏
i=1

p(yi , zi ; θ) =
N∏
i=1

p(yi |zi ; θ)p(zi |π)

=
N∏
i=1

K∏
k=1

φ(yi ;β
T
k xi , σk)zikπzikk ,

with zik = 1 if zi = k and zik = 0 otherwise.
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Application to Regression models Mixture of regressions

Derivation of function Q

Complete-data log-likelihood:

`c(θ) =
N∑
i=1

K∑
k=1

zik log φ(yi ;β
T
k xi , σk) +

N∑
i=1

K∑
k=1

zik log πk

It is linear in the zik . Consequently, the Q function is simply

Q(θ, θ(t)) =
N∑
i=1

K∑
k=1

z
(t)
ik log φ(yi ;β

T
k xi , σk) +

N∑
i=1

K∑
k=1

z
(t)
ik log πk

with z
(t)
ik = Eθ(t) [Zik |yi ] = Pθ(t) [Zi = k |yi ].
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Application to Regression models Mixture of regressions

EM algorithm

E-step: compute

z
(t)
ik = Pθ(t) [Zi = k|yi ]

=
φ(yi ;β

(t)T
k xi , σ

(t)
k )π

(t)
k∑K

`=1 φ(yi ;β
(t)T
` xi , σ

(t)
` )π

(t)
`

M-step: Maximize Q(θ, θ(t)). As before, we get

π
(t+1)
k =

N
(t)
k

N
,

with N
(t)
k =

∑N
i=1 z

(t)
ik .
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Application to Regression models Mixture of regressions

M-step: update of the βk and σk

In Q(θ, θ(t)), the term depending on βk is

SSk =
N∑
i=1

z
(t)
ik (yi − βTk xi )

2.

Minimizing SSk w.r.t. βk is a weighted least-squares (WLS) problem.
In matrix form,

SSk = (y − Xβk)TW k(y − Xβk)

with W k = diag(z
(t)
i1 , . . . , z

(t)
iK ).
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Application to Regression models Mixture of regressions

M-step: update of the βk and σk (continued)

The solution is the WLS estimate of βk :

β
(t+1)
k = (XTW kX )−1XTW ky

The value of σk minimizing Q(θ, θ(t)) is the weighted average of the
residuals,

σ
2(t+1)
k =

1

N
(t)
k

N∑
i=1

z
(t)
ik (yi − β

(t+1)T
k xi )

2

=
1

N
(t)
k

(y − Xβ(t+1)
k )TW k(y − Xβ(t+1)

k )
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Application to Regression models Mixture of regressions

Mixture of regressions using mixtools

library(mixtools)
data(CO2data)
attach(CO2data)

CO2reg <- regmixEM(CO2, GNP)
summary(CO2reg)

ii1<-CO2reg$posterior>0.5
ii2<-CO2reg$posterior<=0.5
text(GNP[ii1],CO2[ii1],country[ii1],col=’red’)
text(GNP[Cii2],CO2[ii2],country[ii2],col=’blue’)
abline(CO2reg$beta[,1],col=’red’)
abline(CO2reg$beta[,2],col=’blue’)
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Application to Regression models Mixture of regressions

Best solution in 10 runs
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Application to Regression models Mixture of regressions

Increase of log-likelihood
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Application to Regression models Mixture of regressions

Another solution (with lower log-likelihood)
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Application to Regression models Mixture of regressions

Increase of log-likelihood
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Application to Regression models Mixture of experts

Overview

EM algorithm

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation
Louis’ method
SEM algorithm
Bootstrap

Application to Regression models
Mixture of regressions
Mixture of experts
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Application to Regression models Mixture of experts

Making the mixing proportions predictor-dependent

An interesting extension of the previous model is to assume the
proportions πk to be partially explained by a vector of concomitant
variables W .
If W = X , we can approximate the regression function by different
linear functions in different regions of the predictor space.
In ML, this method is referred to as the mixture of experts methods.
A useful parametric form for πk that ensures πk ≥ 0 and∑K

k=1 πk = 1 is the multinomial logit model

πk(w , α) =
exp(αT

k w)∑K
`=1 exp(αT

` w)

with α = (α1, . . . , αK ) and α1 = 0.
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Application to Regression models Mixture of experts

EM algorithm

The Q function is the same as before, except that the πk now
depend on the wi and parameter α:

Q(θ, θ(t)) =
N∑
i=1

K∑
k=1

z
(t)
ik log φ(yi ;β

T
k xi , σk)+

N∑
i=1

K∑
k=1

z
(t)
ik log πk(wi , α)

In the M-step, the update formula for βk and σk are unchanged.
The last term of Q(θ, θ(t)) can be maximized w.r.t. α using an
iterative algorithm, such as the Newton-Raphson procedure. (See
remark on next slide)
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Application to Regression models Mixture of experts

Generalized EM algorithm

To ensure convergence of EM, we only need to increase (but not
necessarily maximize) Q(θ, θ(t)) at each step.
Any algorithm that chooses θ(t+1) at each iteration to guarantee the
above condition (without maximizing Q(θ, θ(t))) is called a
Generalized EM (GEM) algorithm.
Here, we can perform a single step of the Newton-Raphson algorithm
to maximize

N∑
i=1

K∑
k=1

z
(t)
ik log πk(wi , α)

with respect to α.
Backtracking can be used to ensure ascent.
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Application to Regression models Mixture of experts

Example: motorcycle data
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library(’MASS’)
x<-mcycle$times
y<-mcycle$accel
plot(x,y)
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Application to Regression models Mixture of experts

Mixture of experts using flexmix

library(flexmix)

K<-5
res<-flexmix(y ˜ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula=˜x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef
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Application to Regression models Mixture of experts

Plotting the posterior probabilities

xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)
for(k in 1:K) pit[,k]<-exp(alpha[1,k]+alpha[2,k]*xt)
pit<-pit/rowSums(pit)

plot(xt,pit[,1],type="l",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)
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Application to Regression models Mixture of experts

Posterior probabilities
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Application to Regression models Mixture of experts

Plotting the predictions

yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[1,k]+beta[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],lty=2)
lines(xt,yhat,col=’red’,lwd=2)

Thierry Denœux Computational statistics February-March 2017 68 / 69



Application to Regression models Mixture of experts

Regression lines and predictions
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