Computational statistics

EM algorithm

Thierry Denœux

February-March 2017

EM Algorithm

- An iterative optimization strategy motivated by a notion of missingness and by consideration of the conditional distribution of what is missing given what is observed.
- Can be very simple to implement. Can reliably find an optimum through stable, uphill steps.
- Difficult likelihoods often arise when data are missing. EM simplifies such problems. In fact, the 'missing data' may not truly be missing: they may be only a conceptual ploy to exploit the EM simplification!

Overview

EM algorithm

Description
Analysis

Some variants

Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Overview

EM algorithm
 Description

Analysis
Some variants
Facilitating the E-step
Facilitating the M-step
Variance estimation
Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Notation

Y: Observed variables.
Z : Missing or latent variables.
\mathbf{X} : Complete data $\mathbf{X}=(\mathbf{Y}, \mathbf{Z})$.
θ : Unknown parameter.
$L(\boldsymbol{\theta})$: observed-data likelihood, short for $L(\boldsymbol{\theta} ; \boldsymbol{y})=f(\boldsymbol{y} ; \boldsymbol{\theta})$
$L_{c}(\boldsymbol{\theta})$: complete-data likelihood, short for $L(\boldsymbol{\theta} ; \boldsymbol{x})=f(\boldsymbol{x} ; \boldsymbol{\theta})$
$\ell(\theta), \ell_{c}(\theta)$: observed and complete-data log-likelihoods.

Notation

- Suppose we seek to maximize $L(\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$.
- Define $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$ to be the expectation of the complete-data log-likelihood, conditional on the observed data $\mathbf{Y}=\mathbf{y}$. Namely

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\mathbb{E}_{\boldsymbol{\theta}^{(t)}}\left\{\ell_{c}(\boldsymbol{\theta}) \mid \mathbf{y}\right\} \\
& =\mathbb{E}_{\boldsymbol{\theta}^{(t)}}\{\log f(\mathbf{X} ; \boldsymbol{\theta}) \mid \mathbf{y}\} \\
& =\int[\log f(\mathbf{x} ; \boldsymbol{\theta})] f\left(\mathbf{z} \mid \mathbf{y} ; \boldsymbol{\theta}^{(t)}\right) d \mathbf{z}
\end{aligned}
$$

where the last equation emphasizes that \mathbf{Z} is the only random part of \mathbf{X} once we are given $\mathbf{Y}=\mathbf{y}$.

The EM Algorithm

Start with $\boldsymbol{\theta}^{(0)}$. Then
(1) E step: Compute $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$.
(2) M step: Maximize $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$ with respect to $\boldsymbol{\theta}$. Set $\boldsymbol{\theta}^{(t+1)}$ equal to the maximizer of Q.
(3) Return to the E step unless a stopping criterion has been met; e.g.,

$$
\ell\left(\boldsymbol{\theta}^{(t+1)}\right)-\ell\left(\boldsymbol{\theta}^{(t)}\right) \leq \epsilon
$$

Convergence of the EM Algorithm

- It can be proved that $L(\boldsymbol{\theta})$ increases after each EM iteration, i.e., $L\left(\boldsymbol{\theta}^{(t+1)}\right) \geq L\left(\boldsymbol{\theta}^{(t)}\right)$ for $t=0,1, \ldots$
- Consequently, the algorithm converges to a local maximum of $L(\boldsymbol{\theta})$ if the likelihood function is bounded above.

Mixture of normal and uniform distributions

- Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be an i.i.d. sample from a mixture of a normal distribution $\mathcal{N}(\mu, \sigma)$ and a uniform distribution $\mathcal{U}([-a, a])$, with pdf

$$
\begin{equation*}
f(y ; \theta)=\pi \phi(y ; \mu, \sigma)+(1-\pi) c \tag{1}
\end{equation*}
$$

where $\phi(\cdot ; \mu, \sigma)$ is the normal pdf, $c=(2 a)^{-1}, \pi$ is the proportion of the normal distribution in the mixture and $\boldsymbol{\theta}=(\mu, \sigma, \pi)^{T}$ is the vector of parameters.

- Typically, the uniform distribution corresponds to outliers in the data. The proportion of outliers in the population is then $1-\pi$.
- We want to estimate $\boldsymbol{\theta}$.

Observed and complete-data likelihoods

- Let $Z_{i}=1$ if observation i is not an outlier, $Z_{i}=0$ otherwise. We have $Z_{i} \sim \mathcal{B}(\pi)$.
- The vector $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ is the missing data.
- Observed-data likelihood:

$$
L(\boldsymbol{\theta})=\prod_{i=1}^{n} f\left(y_{i} ; \boldsymbol{\theta}\right)=\prod_{i=1}^{n}\left[\pi \phi\left(y_{i} ; \mu, \sigma\right)+(1-\pi) c\right]
$$

- Complete-data likelihood:

$$
\begin{aligned}
L_{c}(\boldsymbol{\theta}) & =\prod_{i=1}^{n} f\left(y_{i}, z_{i} ; \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid z_{i} ; \mu, \sigma\right) f\left(z_{i} \mid \pi\right) \\
& =\prod_{i=1}^{n}\left[\phi\left(y_{i} ; \mu, \sigma\right)^{z_{i}} c^{1-z_{i}} \pi^{z_{i}}(1-\pi)^{1-z_{i}}\right]
\end{aligned}
$$

Derivation of function Q

- Complete-data log-likelihood:

$$
\begin{aligned}
\ell_{c}(\boldsymbol{\theta})=\sum_{i=1}^{n} z_{i} \log \phi\left(y_{i} ; \mu, \sigma\right)+ & \left(n-\sum_{i=1}^{n} z_{i}\right) \log c+ \\
& \sum_{i=1}^{n}\left(z_{i} \log \pi+\left(1-z_{i}\right) \log (1-\pi)\right)
\end{aligned}
$$

- It is linear in the z_{i}. Consequently, the Q function is simply

$$
\begin{aligned}
& Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)=\sum_{i=1}^{n} z_{i}^{(t)} \log \phi\left(y_{i} ; \mu, \sigma\right)+\left(n-\sum_{i=1}^{n} z_{i}^{(t)}\right) \log c+ \\
& \sum_{i=1}^{n}\left(z_{i}^{(t)} \log \pi+\left(1-z_{i}^{(t)}\right) \log (1-\pi)\right)
\end{aligned}
$$

with $z_{i}^{(t)}=\mathbb{E}_{\boldsymbol{\theta}^{(t)}}\left[Z_{i} \mid y_{i}\right]$.

EM algorithm

E-step: compute

$$
\begin{aligned}
z_{i}^{(t)} & =\mathbb{E}_{\boldsymbol{\theta}^{(t)}}\left[Z_{i} \mid y_{i}\right]=\mathbb{P}_{\boldsymbol{\theta}^{(t)}}\left[Z_{i}=1 \mid y_{i}\right] \\
& =\frac{\phi\left(y_{i} ; \mu^{(t)}, \sigma^{(t)}\right) \pi^{(t)}}{\phi\left(y_{i} ; \mu^{(t)}, \sigma^{(t)}\right) \pi^{(t)}+c\left(1-\pi^{(t)}\right)}
\end{aligned}
$$

M-step: Maximize $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$ We get

$$
\begin{gathered}
\pi^{(t+1)}=\frac{1}{n} \sum_{i=1}^{n} z_{i}^{(t)}, \quad \mu^{(t+1)}=\frac{\sum_{i=1}^{n} z_{i}^{(t)} y_{i}}{\sum_{i=1}^{n} z_{i}^{(t)}} \\
\sigma^{(t+1)}=\sqrt{\frac{\sum_{i=1}^{n} z_{i}^{(t)}\left(y_{i}-\mu^{(t+1)}\right)^{2}}{\sum_{i=1}^{n} z_{i}^{(t)}}}
\end{gathered}
$$

Remark

- As mentioned before, the EM algorithm finds only a local maximum of $\ell(\theta)$.
- It is easy to find a global maximum: if μ is equal to some y_{i} and $\sigma=0$, then $\phi\left(y_{i} ; \mu, \sigma\right)=\infty$ and, consequently, $\ell(\theta)=+\infty$.
- We are not interested in these global maxima, because they correspond to degenerate solutions!

Bayesian posterior mode

- Consider a Bayesian estimation problem with likelihood $L(\theta)$ and priori $f(\theta)$.
- The posterior density if proportional to $L(\theta) f(\theta)$. It can also be maximized by the EM algorithm.
- The E-step requires

$$
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)=\mathbb{E}_{\boldsymbol{\theta}^{(t)}}\left\{\ell_{c}(\boldsymbol{\theta}) \mid \mathbf{y}\right\}+\log f(\theta)
$$

- The addition of the log-prior often makes it more difficult to maximize Q during the M -step.
- Some methods can be used to facilitate the M-step in difficult situations (see below).

Overview

EM algorithm

Description
Analysis

Some variants

Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Why does it work?

- Ascent: Each M-step increases the log likelihood.
- Optimization transfer:

$$
\ell(\theta) \geq Q\left(\theta, \theta^{(t)}\right)+\ell\left(\theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)=G\left(\theta, \theta^{(t)}\right)
$$

- The last two terms in $G\left(\theta, \theta^{(t)}\right)$ are constant with respect to θ, so Q and G are maximized at the same θ.
- Further, G is tangent to ℓ at $\theta^{(t)}$, and lies everywhere below ℓ. We say that G is a minorizing function for ℓ.
- EM transfers optimization from ℓ to the surrogate function G, which is more convenient to maximize.

The nature of EM

One-dimensional illustration of EM algorithm as a minorization or optimization transfer strategy. Each E step forms a minorizing function G, and each M step maximizes it to provide an uphill step.

Proof

- We have

$$
f(z \mid y ; \theta)=\frac{f(x ; \theta)}{f(y ; \theta)} \Rightarrow f(y ; \theta)=\frac{f(x ; \theta)}{f(z \mid y ; \theta)}
$$

- Consequently,

$$
\ell(\theta)=\log f(y ; \theta)=\underbrace{\log f(x ; \theta)}_{\ell_{c}(\theta)}-\log f(z \mid y ; \theta)
$$

- Taking expectations on both sides wrt the conditional distribution of X given $Y=y$ and using $\theta^{(t)}$ for θ :

$$
\begin{equation*}
\ell(\theta)=Q\left(\theta, \theta^{(t)}\right)-\underbrace{\mathbb{E}_{\theta^{(t)}}[\log f(Z \mid y ; \theta) \mid y]}_{H\left(\theta, \theta^{(t)}\right)} \tag{2}
\end{equation*}
$$

Proof - the minorizing function

- Now, for all $\theta \in \Theta$,

$$
\begin{align*}
H\left(\theta, \theta^{(t)}\right)-H\left(\theta^{(t)}, \theta^{(t)}\right) & =\mathbb{E}_{\theta^{(t)}}\left[\left.\log \frac{f(Z \mid y ; \theta)}{f\left(Z \mid y ; \theta^{(t)}\right)} \right\rvert\, y\right] \tag{3a}\\
& \leq \log \mathbb{E}_{\theta^{(t)}}\left[\left.\frac{f(Z \mid y ; \theta)}{f\left(Z \mid y ; \theta^{(t)}\right)} \right\rvert\, y\right](*) \tag{3b}\\
& =\log \int f(z \mid y ; \theta) d z=0 \tag{3c}
\end{align*}
$$

$\left(^{*}\right)$: from the concavity of the log and Jensen's inequality.

- Hence, for all $\theta \in \Theta$,

$$
\begin{align*}
& H\left(\theta, \theta^{(t)}\right) \leq H\left(\theta^{(t)}, \theta^{(t)}\right)=Q\left(\theta^{(t)}, \theta^{(t)}\right)-\ell\left(\theta^{(t)}\right), \text { or } \\
& \ell(\theta) \geq Q\left(\theta, \theta^{(t)}\right)+\ell\left(\theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)=G\left(\theta, \theta^{(t)}\right) \tag{4}
\end{align*}
$$

Proof - G is tangent to ℓ at $\theta^{(t)}$

- From (4), $\ell\left(\theta^{(t)}\right)=G\left(\theta^{(t)}, \theta^{(t)}\right)$.
- Now, we can rewrite (4) as

$$
Q\left(\theta^{(t)}, \theta^{(t)}\right)-\ell\left(\theta^{(t)}\right) \geq Q\left(\theta, \theta^{(t)}\right)-\ell(\theta), \quad \forall \theta
$$

Consequently, $\theta^{(t)}$ maximizes $Q\left(\theta, \theta^{(t)}\right)-\ell(\theta)$, hence

$$
\left.Q^{\prime}\left(\theta, \theta^{(t)}\right)\right|_{\theta=\theta^{(t)}}-\left.\ell^{\prime}(\theta)\right|_{\theta=\theta^{(t)}}=0
$$

and

$$
\left.G^{\prime}\left(\theta, \theta^{(t)}\right)\right|_{\theta=\theta^{(t)}}=\left.Q^{\prime}\left(\theta, \theta^{(t)}\right)\right|_{\theta=\theta^{(t)}}=\left.\ell^{\prime}(\theta)\right|_{\theta=\theta^{(t)}} .
$$

Proof - monotonicity

- From (2),

$$
\begin{aligned}
\ell\left(\theta^{(t+1)}\right)-\ell\left(\theta^{(t)}\right)= & \underbrace{Q\left(\theta^{(t+1)}, \theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)}_{A} \\
& -[\underbrace{H\left(\theta^{(t+1)}, \theta^{(t)}\right)-H\left(\theta^{(t)}, \theta^{(t)}\right)}_{B}]
\end{aligned}
$$

- $A \geq 0$ because $\theta^{(t+1)}$ is a maximizer of $Q\left(\theta, \theta^{(t)}\right)$, and $B \leq 0$ because, from (3), $\theta^{(t)}$ is a maximizer of $H\left(\theta, \theta^{(t)}\right)$.
- Hence,

$$
\ell\left(\theta^{(t+1)}\right) \geq \ell\left(\theta^{(t)}\right)
$$

Overview

EM algorithm
 Description
 Analysis

Some variants

Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Overview

EM algorithm Description Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Monte Carlo EM (MCEM)

- Replace the t th E step with
(1) Draw missing datasets $\mathbf{Z}_{1}^{(t)}, \ldots, \mathbf{Z}_{m^{(t)}}^{(t)}$ i.i.d. from $f\left(\mathbf{z} \mid \mathbf{y} ; \boldsymbol{\theta}^{(t)}\right)$. Each $\mathbf{Z}_{j}^{(t)}$ is a vector of all the missing values needed to complete the observed dataset, so $\mathbf{X}_{j}^{(t)}=\left(\mathbf{y}, \mathbf{Z}_{j}^{(t)}\right)$ denotes a completed dataset where the missing values have been replaced by $\mathbf{Z}_{j}^{(t)}$.
(2) Calculate $\hat{Q}^{(t+1)}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)=\frac{1}{m^{(t)}} \sum_{j=1}^{m^{(t)}} \log f\left(\mathbf{X}_{j}^{(t)} ; \boldsymbol{\theta}\right)$.
- Then $\hat{Q}^{(t+1)}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$ is a Monte Carlo estimate of $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$.
- The M step is modified to maximize $\hat{Q}^{(t+1)}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$.
- Increase $m^{(t)}$ as iterations progress to reduce the Monte Carlo variability of \hat{Q}. MCEM will not converge in the same sense as ordinary EM, rather values of $\boldsymbol{\theta}^{(t)}$ will bounce around the true maximum, with a precision that depends on $m^{(t)}$.

Overview

EM algorithm
 Description
 Analysis

Some variants

Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Generalized EM (GEM) algorithm

- In the original EM algorithm, $\boldsymbol{\theta}^{(t+1)}$ is a maximizer of $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$, i.e.,

$$
Q\left(\boldsymbol{\theta}^{(t+1)}, \boldsymbol{\theta}^{(t)}\right) \geq Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)
$$

for all θ.

- However, to ensure convergence, we only need that

$$
Q\left(\boldsymbol{\theta}^{(t+1)}, \boldsymbol{\theta}^{(t)}\right) \geq Q\left(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}\right)
$$

- Any algorithm that chooses $\boldsymbol{\theta}^{(t+1)}$ at each iteration to guarantee the above condition (without maximizing $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$) is called a Generalized EM (GEM) algorithm.

EM gradient algorithm

- Replace the M step with a single step of Newton's method, thereby approximating the maximum without actually solving for it exactly.
- Instead of maximizing, choose:

$$
\begin{aligned}
\boldsymbol{\theta}^{(t+1)} & =\boldsymbol{\theta}^{(t)}-\left.\left.\mathbf{Q}^{\prime \prime}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)^{-1}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{(t)}} \mathbf{Q}^{\prime}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{(t)}} \\
& =\boldsymbol{\theta}^{(t)}-\left.\mathbf{Q}^{\prime \prime}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)^{-1}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{(t)}} \ell^{\prime}\left(\boldsymbol{\theta}^{(t)}\right)
\end{aligned}
$$

- Ascent is ensured for canonical parameters in exponential families. Backtracking can ensure ascent in other cases; inflating steps can speed convergence.

ECM algorithm

- Replaces the M step with a series of computationally simpler conditional maximization (CM) steps.
- Call the collection of simpler CM steps after the t th E step a CM cycle. Thus, the t th iteration of ECM is comprised of the t th E step and the t th CM cycle.
- Let S denote the total number of CM steps in each CM cycle.

ECM algorithm (continued)

- For $s=1, \ldots, S$, the s th CM step in the t th cycle requires the maximization of $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)$ subject to (or conditional on) a constraint, say

$$
\mathbf{g}_{s}(\boldsymbol{\theta})=\mathbf{g}_{s}\left(\boldsymbol{\theta}^{(t+(s-1) / S)}\right)
$$

where $\boldsymbol{\theta}^{(t+(s-1) / S)}$ is the maximizer found in the $(s-1)$ th CM step of the current cycle.

- When the entire cycle of S steps of CM has been completed, we set $\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t+S / S)}$ and proceed to the E step for the $(t+1)$ th iteration.
- ECM is a GEM algorithm, since each CM step increases Q.
- The art of constructing an effective ECM algorithm lies in choosing the constraints cleverly.

Choice 1: Iterated Conditional Modes / Gauss-Seidel

- Partition $\boldsymbol{\theta}$ into S subvectors, $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{S}\right)$.
- In the sth CM step, maximize Q with respect to $\boldsymbol{\theta}_{s}$ while holding all other components of $\boldsymbol{\theta}$ fixed.
- This amounts to the constraint induced by the function

$$
g_{s}(\boldsymbol{\theta})=\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{s-1}, \boldsymbol{\theta}_{s+1}, \ldots, \boldsymbol{\theta}_{s}\right)
$$

Choice 2

- At the sth CM step, maximize Q with respect to all other components of $\boldsymbol{\theta}$ while holding $\boldsymbol{\theta}_{s}$ fixed.
- Then $g_{s}(\boldsymbol{\theta})=\boldsymbol{\theta}_{s}$.
- Additional systems of constraints can be imagined, depending on the particular problem context.
- A variant of ECM inserts an E step between each pair of CM steps, thereby updating Q at every stage of the CM cycle.

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Variance of the MLE

- Let $\widehat{\boldsymbol{\theta}}$ be the MLE of $\boldsymbol{\theta}$.
- As $n \rightarrow \infty$, the limiting distribution of $\widehat{\boldsymbol{\theta}}$ is $\mathcal{N}\left(\boldsymbol{\theta}^{*}, I\left(\boldsymbol{\theta}^{*}\right)^{-1}\right)$, where $\boldsymbol{\theta}^{*}$ is the true value of $\boldsymbol{\theta}$, and

$$
I(\boldsymbol{\theta})=\mathbb{E}\left[\ell^{\prime}(\boldsymbol{\theta}) \ell^{\prime}(\boldsymbol{\theta})^{T}\right]=-\mathbb{E}\left[\ell^{\prime \prime}(\boldsymbol{\theta})\right]
$$

is the expected Fisher information matrix (the second equality holds under some regularity conditions).

- $I\left(\boldsymbol{\theta}^{*}\right)$ can be estimated by $I(\widehat{\boldsymbol{\theta}})$, or by $-\ell^{\prime \prime}(\widehat{\boldsymbol{\theta}})=I_{\text {obs }}(\widehat{\boldsymbol{\theta}})$ (observed information matrix).
- Standard error estimates can be obtained by computing the square roots of the diagonal elements of $I_{o b s}(\widehat{\boldsymbol{\theta}})^{-1}$.

Obtaining variance estimates

- The EM algorithms allows us to estimate $\widehat{\boldsymbol{\theta}}$, but it does not directly provide an estimate of $I\left(\boldsymbol{\theta}^{*}\right)$.
- Direct computation of $I(\widehat{\boldsymbol{\theta}})$ or $I_{\text {obs }}(\widehat{\boldsymbol{\theta}})$ is often difficult.
- Main methods:
(1) Louis' method
(2) Supplement EM (SEM) algorithm
(3) Bootstrap

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Missing information principle

- We have seen that

$$
f(\boldsymbol{z} \mid \boldsymbol{y} ; \boldsymbol{\theta})=\frac{f(\boldsymbol{x} ; \boldsymbol{\theta})}{f(\boldsymbol{y} ; \boldsymbol{\theta})},
$$

from which we get

$$
\ell(\boldsymbol{\theta})=\ell_{c}(\boldsymbol{\theta})-\log f(\boldsymbol{z} \mid \boldsymbol{y} ; \boldsymbol{\theta}) .
$$

- Differentiating twice and negating both sides, then taking expectations over the conditional distribution of \boldsymbol{X} given \boldsymbol{y},

$$
\underbrace{-\ell^{\prime \prime}(\boldsymbol{\theta})}_{\hat{\imath}_{\mathbf{Y}}(\boldsymbol{\theta})}=\underbrace{\mathbb{E}\left[-\ell_{c}^{\prime \prime}(\boldsymbol{\theta}) \mid \boldsymbol{y}\right]}_{\hat{\imath}_{\mathbf{X}}(\boldsymbol{\theta})}-\underbrace{\mathbb{E}\left[\left.-\frac{\partial^{2} \log f(\boldsymbol{z} \mid \boldsymbol{y} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \right\rvert\, \boldsymbol{y}\right]}_{\hat{\imath}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})}
$$

where

- $\hat{\imath}_{Y}(\theta)$ is the observed information,
- $\hat{\imath}_{\mathbf{X}}(\theta)$ is the complete information, and
- $\hat{\mathbf{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})$ is the missing information.

Louis' method

- Computing $\hat{\boldsymbol{\imath}}_{\mathbf{X}}(\boldsymbol{\theta})$ and $\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})$ is sometimes easier than computing $-\ell^{\prime \prime}(\theta)$ directly
- We can show that

$$
\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})=\operatorname{Var}\left[S_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})\right],
$$

where the variance is taken w.r.t. $\boldsymbol{Z} \mid \boldsymbol{y}$, and

$$
S_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})=\frac{\partial f(\boldsymbol{z} \mid \boldsymbol{y} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
$$

is the conditional score.

- As the expected score is zero at $\widehat{\boldsymbol{\theta}}$, we have

$$
\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}})=\int S_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}}) S_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}})^{T} f(\boldsymbol{z} \mid \boldsymbol{y} ; \widehat{\boldsymbol{\theta}}) d \boldsymbol{z}
$$

Monte Carlo approximation

- When they cannot be computed analytically, $\hat{\boldsymbol{x}}_{\mathbf{X}}(\boldsymbol{\theta})$ and $\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})$ can sometimes be approximated by Monte Carlo simulation.
- Method: generate simulated datasets $\boldsymbol{x}_{j}=\left(\boldsymbol{y}, \boldsymbol{z}_{j}\right), j=1, \ldots, N$, where \boldsymbol{y} is the observed dataset, and the $\boldsymbol{z}_{\boldsymbol{j}}$ are imputed missing datasets drawn from $f(\boldsymbol{z} \mid \boldsymbol{y} ; \boldsymbol{\theta})$
- Then,

$$
\hat{\boldsymbol{\imath}}_{\mathbf{X}}(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{j=1}^{N}-\frac{\partial^{2} \log f\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}
$$

and $\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\boldsymbol{\theta})$ is approximated by the sample variance of the values

$$
\frac{\partial f\left(\boldsymbol{z}_{j} \mid \boldsymbol{y} ; \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

EM mapping

- Let $\boldsymbol{\Psi}$ denotes the EM mapping, defined by

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\Psi}\left(\boldsymbol{\theta}^{(t)}\right)
$$

- From the convergence of EM, $\widehat{\boldsymbol{\theta}}$ is a fixed point:

$$
\widehat{\boldsymbol{\theta}}=\boldsymbol{\Psi}(\widehat{\boldsymbol{\theta}})
$$

- The Jacobian matrix of $\boldsymbol{\Psi}$ is the $p \times p$ matrix

$$
\boldsymbol{\Psi}^{\prime}(\boldsymbol{\theta})=\left(\frac{\partial \Psi_{i}(\boldsymbol{\theta})}{\partial \theta_{j}}\right)
$$

- It can be shown that

$$
\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})^{T}=\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}}) \hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})^{-1}
$$

Using $\boldsymbol{\Psi}^{\prime}(\boldsymbol{\theta})$ for variance estimation

- From the missing information principle,

$$
\begin{aligned}
\hat{\boldsymbol{\imath}}_{\boldsymbol{Y}}(\widehat{\boldsymbol{\theta}}) & =\hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})-\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}}) \\
& =\left[\mathbf{I}-\hat{\boldsymbol{\imath}}_{\mathbf{Z} \mid \mathbf{Y}}(\widehat{\boldsymbol{\theta}}) \hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})^{-1}\right] \hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}}) \\
& =\left[\mathbf{I}-\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})^{T}\right] \hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}}) .
\end{aligned}
$$

Hence,

$$
\hat{\boldsymbol{\imath}}_{\boldsymbol{Y}}(\widehat{\boldsymbol{\theta}})^{-1}=\hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})^{-1}\left[\mathbf{I}-\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})^{T}\right]^{-1}
$$

- From the equality

$$
(\mathbf{I}-\mathbf{P})^{-1}=(\mathbf{I}-\mathbf{P}+\mathbf{P})(\mathbf{I}-\mathbf{P})^{-1}=\mathbf{I}+\mathbf{P}(\mathbf{I}-\mathbf{P})^{-1}
$$

we get

$$
\begin{equation*}
\hat{\boldsymbol{\imath}}_{\boldsymbol{Y}}(\widehat{\boldsymbol{\theta}})^{-1}=\hat{\boldsymbol{\imath}}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})^{-1}\left\{\mathbf{I}+\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})^{T}\left[\mathbf{I}-\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})^{T}\right]^{-1}\right\} \tag{5}
\end{equation*}
$$

Estimation of $\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})$

- Ler $r_{i j}$ be the element (i, j) of $\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})$. By definition,

$$
\begin{aligned}
r_{i j} & =\frac{\partial \Psi_{i}(\widehat{\boldsymbol{\theta}})}{\partial \theta_{j}} \\
& =\lim _{\theta_{j} \rightarrow \widehat{\theta}_{j}} \frac{\Psi_{i}\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{j-1}, \theta_{j}, \widehat{\theta}_{j+1}, \ldots, \widehat{\theta}_{p}\right)-\Psi_{i}(\widehat{\boldsymbol{\theta}})}{\theta_{j}-\widehat{\theta}_{j}} \\
& =\lim _{t \rightarrow \infty} \frac{\Psi_{i}\left(\boldsymbol{\theta}^{(t)}(j)\right)-\Psi_{i}(\widehat{\boldsymbol{\theta}})}{\theta_{j}^{(t)}-\widehat{\theta}_{j}}=\lim _{t \rightarrow \infty} r_{i j}^{(t)}
\end{aligned}
$$

where $\boldsymbol{\theta}^{(t)}(j)=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{j-1}, \theta_{j}^{(t)}, \widehat{\theta}_{j+1}, \ldots, \widehat{\theta}_{p}\right)$, and $\left(\theta_{j}^{(t)}\right)$, $t=1,2, \ldots$ is a sequence of values converging to $\widehat{\theta}_{j}$.

- Method: compute the $r_{i j}^{(t)}, t=1,2, \ldots$ until they stabilize to some values. Then compute $\hat{\boldsymbol{\imath}}_{\boldsymbol{Y}}(\widehat{\boldsymbol{\theta}})^{-1}$ using (5).

SEM algorithm

(1) Run the EM algorithm to convergence, finding $\widehat{\boldsymbol{\theta}}$.
(2) Restart the algorithm from some $\boldsymbol{\theta}^{(0)}$ near $\widehat{\boldsymbol{\theta}}$. For $t=0,1,2, \ldots$
(1) Take a standard E step and M step to produce $\boldsymbol{\theta}^{(t+1)}$ from $\boldsymbol{\theta}^{(t)}$.
(2) For $j=1, \ldots, p$, define $\boldsymbol{\theta}^{(t)}(j)=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{j-1}, \theta_{j}^{(t)}, \hat{\theta}_{j+1}, \ldots, \hat{\theta}_{p}\right)$ and

$$
r_{i j}^{(t)}=\frac{\Psi_{i}\left(\boldsymbol{\theta}^{(t)}(j)\right)-\hat{\theta}_{i}}{\theta_{j}^{(t)}-\hat{\theta}_{j}}
$$

$$
\text { for } i=1, \ldots, p \text {. (Recall that } \boldsymbol{\Psi}(\widehat{\boldsymbol{\theta}})=\widehat{\boldsymbol{\theta}} .)
$$

(3) Stop when all $r_{i j}^{(t)}$ have converged
(3) The (i, j) th element of $\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})$ equals $\lim _{t \rightarrow \infty} r_{i j}^{(t)}$. Use the final estimate of $\boldsymbol{\Psi}^{\prime}(\widehat{\boldsymbol{\theta}})$ to get the variance.
(9) SEM is numerically stable and requires little extra work.

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method
SEM algorithm

Bootstrap

Application to Regression models
Mixture of regressions
Mixture of experts

Principle

- Consider the case of iid data $\boldsymbol{y}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right)$
- If we knew the distribution of the \boldsymbol{W}_{i}, we could
- generate many samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$,
- compute the ML estimate $\widehat{\boldsymbol{\theta}}_{j}$ of $\boldsymbol{\theta}$ from each sample \boldsymbol{y}_{j}, and
- estimate the variance of $\widehat{\boldsymbol{\theta}}$ by the sample variance of the estimates $\widehat{\boldsymbol{\theta}}_{1}, \ldots, \widehat{\boldsymbol{\theta}}_{N}$.
- Bootstrap principle: use the empirical distribution in place of the true distribution of the \boldsymbol{W}_{i}

Algorithm

(1) Calculate $\widehat{\boldsymbol{\theta}}_{E M}$ using a suitable EM approach applied to

$$
\boldsymbol{y}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right) . \text { Let } j=1 \text { and set } \widehat{\boldsymbol{\theta}}_{j}^{*}=\widehat{\boldsymbol{\theta}}_{E M}
$$

(2) Increment j. Sample pseudo-data $\boldsymbol{y}_{j}^{*}=\left(\boldsymbol{w}_{j 1}^{*}, \ldots, \boldsymbol{w}_{j n}^{*}\right)$ at random from $\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right)$ with replacement.
(3) Calculate $\widehat{\boldsymbol{\theta}}_{j}^{*}$ by applying the same EM approach to the pseudo-data \boldsymbol{y}_{j}^{*}
(9) Stop if $j=B$ (typically, $B \geq 1000$); otherwise return to step 2 .

The collection of parameter estimates $\widehat{\boldsymbol{\theta}}_{1}^{*}, \ldots, \widehat{\boldsymbol{\theta}}_{B}^{*}$ can be used to estimate the variance of $\widehat{\boldsymbol{\theta}}$,

$$
\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\theta}})=\frac{1}{B} \sum_{j=1}^{B}\left(\widehat{\boldsymbol{\theta}}_{j}^{*}-\overline{\widehat{\boldsymbol{\theta}}^{*}}\right)\left(\widehat{\boldsymbol{\theta}}_{j}^{*}-\overline{\widehat{\boldsymbol{\theta}}^{*}}\right)^{T}
$$

where $\overline{\widehat{\boldsymbol{\theta}}^{*}}$ is the sample mean of $\widehat{\boldsymbol{\theta}}_{1}^{*}, \ldots, \widehat{\boldsymbol{\theta}}_{B}^{*}$.

Pros and cons of the bootstrap

(1) Advantages:

- The method is very general, complex analytical derivations are avoided.
- Allows the estimation of other aspects of the sampling distribution of $\widehat{\boldsymbol{\theta}}$, such as expectation (bias), quantiles, etc.
(2) Drawback: bootstrap embeds the EM loop in a second loop of B iterations. May be computationally burdensome when the EM algorithm is slow (because, e.g., of a high proportion of missing data, or high dimensionality).

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step
Variance estimation
Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step
Variance estimation
Louis' method
SEM algorithm
Bootstrap
Application to Regression models Mixture of regressions

Mixture of experts

Introductory example

Introductory example (continued)

- The data in the previous slide do not show any clear linear trend.
- However, there seem to be several groups for which a linear model would be a reasonable approximation.
- How to identify those groups and the corresponding linear models?

Model

- Model: the response variable Y depends on the input variable X in different ways, depending on a latent variable Z. (Beware: we have switched back to the classical notation for regression models!)
- This model is called mixture of regressions or switching regressions. It has been widely studied in the econometrics literature.
- Model:

$$
Y= \begin{cases}\beta_{1}^{T} X+\epsilon_{1}, \epsilon_{1} \sim \mathcal{N}\left(0, \sigma_{1}\right) & \text { if } Z=1 \\ \vdots & \\ \beta_{K}^{T} X+\epsilon_{K}, \epsilon_{K} \sim \mathcal{N}\left(0, \sigma_{K}\right) & \text { if } Z=K\end{cases}
$$

with $X=\left(1, X_{1}, \ldots, X_{p}\right)$, so

$$
p(y \mid X=x)=\sum_{k=1}^{K} \pi_{k} \phi\left(y ; \beta^{T} x, \sigma_{k}\right)
$$

Observed and complete-data likelihoods

- Observed-data likelihood:

$$
L(\theta)=\prod_{i=1}^{N} p\left(y_{i} ; \theta\right)=\prod_{i=1}^{N} \sum_{k=1}^{K} \pi_{k} \phi\left(y_{i} ; \beta_{k}^{T} x_{i}, \sigma_{k}\right)
$$

- Complete-data likelihood:

$$
\begin{aligned}
L_{c}(\theta) & =\prod_{i=1}^{N} p\left(y_{i}, z_{i} ; \theta\right)=\prod_{i=1}^{N} p\left(y_{i} \mid z_{i} ; \theta\right) p\left(z_{i} \mid \pi\right) \\
& =\prod_{i=1}^{N} \prod_{k=1}^{K} \phi\left(y_{i} ; \beta_{k}^{T} x_{i}, \sigma_{k}\right)^{z_{i k}} \pi_{k}^{z_{i k}}
\end{aligned}
$$

with $z_{i k}=1$ if $z_{i}=k$ and $z_{i k}=0$ otherwise.

Derivation of function Q

- Complete-data log-likelihood:

$$
\ell_{c}(\theta)=\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k} \log \phi\left(y_{i} ; \beta_{k}^{T} x_{i}, \sigma_{k}\right)+\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k} \log \pi_{k}
$$

- It is linear in the $z_{i k}$. Consequently, the Q function is simply

$$
Q\left(\theta, \theta^{(t)}\right)=\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}^{(t)} \log \phi\left(y_{i} ; \beta_{k}^{T} x_{i}, \sigma_{k}\right)+\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}^{(t)} \log \pi_{k}
$$

with $z_{i k}^{(t)}=\mathbb{E}_{\theta^{(t)}}\left[Z_{i k} \mid y_{i}\right]=\mathbb{P}_{\theta^{(t)}}\left[Z_{i}=k \mid y_{i}\right]$.

EM algorithm

- E-step: compute

$$
\begin{aligned}
z_{i k}^{(t)} & =\mathbb{P}_{\theta^{(t)}}\left[Z_{i}=k \mid y_{i}\right] \\
& =\frac{\phi\left(y_{i} ; \beta_{k}^{(t) T} x_{i}, \sigma_{k}^{(t)}\right) \pi_{k}^{(t)}}{\sum_{\ell=1}^{K} \phi\left(y_{i} ; \beta_{\ell}^{(t) T} x_{i}, \sigma_{\ell}^{(t)}\right) \pi_{\ell}^{(t)}}
\end{aligned}
$$

- M-step: Maximize $Q\left(\theta, \theta^{(t)}\right)$. As before, we get

$$
\pi_{k}^{(t+1)}=\frac{N_{k}^{(t)}}{N}
$$

with $N_{k}^{(t)}=\sum_{i=1}^{N} z_{i k}^{(t)}$.

M-step: update of the β_{k} and σ_{k}

- In $Q\left(\theta, \theta^{(t)}\right)$, the term depending on β_{k} is

$$
S S_{k}=\sum_{i=1}^{N} z_{i k}^{(t)}\left(y_{i}-\beta_{k}^{T} x_{i}\right)^{2}
$$

- Minimizing $S S_{k}$ w.r.t. β_{k} is a weighted least-squares (WLS) problem. In matrix form,

$$
S S_{k}=\left(\boldsymbol{y}-\boldsymbol{X} \beta_{k}\right)^{T} \boldsymbol{W}_{k}\left(\boldsymbol{y}-\boldsymbol{X} \beta_{k}\right)
$$

with $\boldsymbol{W}_{k}=\operatorname{diag}\left(z_{i 1}^{(t)}, \ldots, z_{i K}^{(t)}\right)$.

M-step: update of the β_{k} and σ_{k} (continued)

- The solution is the WLS estimate of β_{k} :

$$
\beta_{k}^{(t+1)}=\left(\boldsymbol{X}^{T} \boldsymbol{W}_{k} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{W}_{k} \boldsymbol{y}
$$

- The value of σ^{k} minimizing $Q\left(\theta, \theta^{(t)}\right)$ is the weighted average of the residuals,

$$
\begin{aligned}
\sigma_{k}^{2(t+1)} & =\frac{1}{N_{k}^{(t)}} \sum_{i=1}^{N} z_{i k}^{(t)}\left(y_{i}-\beta_{k}^{(t+1) T} x_{i}\right)^{2} \\
& =\frac{1}{N_{k}^{(t)}}\left(\boldsymbol{y}-\boldsymbol{X} \beta_{k}^{(t+1)}\right)^{T} \boldsymbol{W}_{k}\left(\boldsymbol{y}-\boldsymbol{X} \beta_{k}^{(t+1)}\right)
\end{aligned}
$$

Mixture of regressions using mixtools

```
library(mixtools)
data(CO2data)
attach(CO2data)
CO2reg <- regmixEM(CO2, GNP)
summary(CO2reg)
ii1<-CO2reg$posterior>0.5
ii2<-C02reg$posterior<=0.5
text(GNP[ii1],CO2[ii1],country[ii1],col='red')
text(GNP[Cii2],CO2[ii2], country[ii2],col='blue')
abline(CO2reg$beta[,1],col='red')
abline(CO2reg$beta[,2],col='blue')
```


Best solution in 10 runs

Increase of log-likelihood

Another solution (with lower log-likelihood)

Increase of log-likelihood

Overview

EM algorithm
 Description
 Analysis

Some variants
Facilitating the E-step
Facilitating the M-step
Variance estimation
Louis' method
SEM algorithm
Bootstrap
Application to Regression models
Mixture of regressions
Mixture of experts

Making the mixing proportions predictor-dependent

- An interesting extension of the previous model is to assume the proportions π_{k} to be partially explained by a vector of concomitant variables W.
- If $W=X$, we can approximate the regression function by different linear functions in different regions of the predictor space.
- In ML, this method is referred to as the mixture of experts methods.
- A useful parametric form for π_{k} that ensures $\pi_{k} \geq 0$ and $\sum_{k=1}^{K} \pi_{k}=1$ is the multinomial logit model

$$
\pi_{k}(w, \alpha)=\frac{\exp \left(\alpha_{k}^{T} w\right)}{\sum_{\ell=1}^{K} \exp \left(\alpha_{\ell}^{T} w\right)}
$$

with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ and $\alpha_{1}=0$.

EM algorithm

- The Q function is the same as before, except that the π_{k} now depend on the w_{i} and parameter α :

$$
Q\left(\theta, \theta^{(t)}\right)=\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}^{(t)} \log \phi\left(y_{i} ; \beta_{k}^{T} x_{i}, \sigma_{k}\right)+\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}^{(t)} \log \pi_{k}\left(w_{i}, \alpha\right)
$$

- In the M -step, the update formula for β_{k} and σ_{k} are unchanged.
- The last term of $Q\left(\theta, \theta^{(t)}\right)$ can be maximized w.r.t. α using an iterative algorithm, such as the Newton-Raphson procedure. (See remark on next slide)

Generalized EM algorithm

- To ensure convergence of EM, we only need to increase (but not necessarily maximize) $Q\left(\theta, \theta^{(t)}\right)$ at each step.
- Any algorithm that chooses $\theta^{(t+1)}$ at each iteration to guarantee the above condition (without maximizing $Q\left(\theta, \theta^{(t)}\right)$) is called a Generalized EM (GEM) algorithm.
- Here, we can perform a single step of the Newton-Raphson algorithm to maximize

$$
\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}^{(t)} \log \pi_{k}\left(w_{i}, \alpha\right)
$$

with respect to α.

- Backtracking can be used to ensure ascent.

Example: motorcycle data

Motorcycle data

> library ('MASS') x<-mcycle\$times $y<-m c y c l e \$ a c c e l$
> plot (x, y)

Mixture of experts using flexmix

```
library(flexmix)
K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula=~x))
beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef
```


Plotting the posterior probabilities

```
xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)
for(k in 1:K) pit[,k]<-exp(alpha[1,k]+alpha[2,k]*xt)
pit<-pit/rowSums(pit)
plot(xt,pit[,1],type="l",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)
```


Posterior probabilities

Motorcycle data - posterior probabilities

Plotting the predictions

yhat<-rep(0,Nt)
for (k in $1: \mathrm{K}$) yhat<-yhat+pit[,k]*(beta[1,k]+beta[2,k]*xt)
plot($x, y, m a i n=" M o t o r c y c l e ~ d a t a ", x l a b=" t i m e ", y l a b=" a c c e l e r a t i o n ") ~$
for (k in $1: K$) abline (beta[1:2,k],lty=2)
lines(xt,yhat, col='red',lwd=2)

Regression lines and predictions

Motorcycle data

