Computational Statistics EM algorithm: variance estimation

We consider again the problem of estimating the parameters in a mixture of a normal distribution $\mathcal{N}(\mu, \sigma)$ and a uniform distribution $\mathcal{U}([-a, a])$, where a is a known constant. The observed data are an iid sample w_1, \ldots, w_n from W with pdf

$$g(w;\theta) = \pi\phi(w;\mu,\sigma) + (1-\pi)c,\tag{1}$$

where $\phi(\cdot; \mu, \sigma)$ is the normal pdf, $c = (2a)^{-1}$, π is the proportion of the normal distribution in the mixture and $\theta = (\mu, \sigma, \pi)^T$ is the vector of parameters. Typically, the uniform distribution corresponds to outliers in the data. The proportion of outliers in the population is then $1 - \pi$.

We have seen how to find the MLE $\hat{\theta}$ of θ using the EM algorithm. We know want to estimate the variance of $\hat{\theta}$.

- 1. Set $\theta = (0, 1, 0.9)$ and a = 5. Generate N = 1000 samples of size n = 100. For each sample, compute $\hat{\theta}$ using the EM algorithm. Estimate the variance of $\hat{\theta}$.
- 2. We now consider one sample w_1, \ldots, w_n and we wish to estimate $\operatorname{Var}(\theta)$ from that sample, without knowing the true value of θ . We will use two methods.
 - (a) Louis' method: compute $\hat{i}_{\mathbf{x}}(\hat{\theta})$ and estimate $\hat{i}_{\mathbf{z}|\mathbf{y}}(\hat{\theta})$ by Monte Carlo simulation; compute an estimate of $\hat{i}_{\mathbf{y}}(\hat{\theta})$ using the missing information principle equation, and its inverse $\hat{i}_{\mathbf{v}}(\hat{\theta})^{-1}$.
 - (b) Bootstrapping: generate B = 1000 bootstrap samples. Estimate $Var(\hat{\theta})$ by the sample variance of the bootstrap estimates of θ .
- 3. Compare the estimates of $Var(\hat{\theta})$ obtained by the different methods.