Workshop on Belief Functions Lecture 1 – Exercises

Thierry Denœux

July-August 2017

1 Representation of Evidence

- 1. An urn contains 90 balls, of which 30 are white, and 60 are either black or yellow. A ball is going to be drawn from the urn. Represent the uncertainty about the outcome of this experiment using a mass function on a suitable frame. Compute the corresponding belief and plausibility functions.
- 2. Let Bel be a belief function on Ω and let Pl be the corresponding plausibility function. Show that

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

and

$$Pl(A \cap B) \le Pl(A) + Pl(B) - Pl(A \cup B),$$

for all $A, B \subseteq \Omega$.

3. Let m be the mass function on $\Omega = \{a, b, c\}$ defined by:

$$m(\{a\}) = 0.2$$
 $m(\{a,b\}) = 0.5$ $m(\Omega) = 0.3$.

Compute Bel(A) and Pl(A) for all $A \subseteq \Omega$. Which special properties do these functions verify?

4. Let us consider the following plausibility function on $\Omega = \{a, b, c\}$:

\overline{A}	Ø	<i>{a}</i>	<i>{b}</i>	$\{a,b\}$	$\{c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,b,c\}$
Pl(A)	0	0.5	0.55	1	0.5	0.8	0.7	1

- (a) Compute the corresponding belief function.
- (b) Is the corresponding mass function consonant? Give its expression.

- (c) Give a compatible probability measure, and the corresponding allocation of probability.
- 5. Let π be the following possibility distribution on $\Omega = \{a, b, c, d, e, f\}$:

ω	a	b	c	d	e	f
$\pi(\omega)$	0.1	0.3	0.5	1	0.7	0.3

Compute the corresponding mass function.

6. Let m be a consonant mass function on a frame Ω and let Bel and Pl be the corresponding belief and plausibility functions. Show that, for any subset A of Ω , $Bel(A) > 0 \Rightarrow Pl(A) = 1$.

2 Operations on Belief Functions

1. Let m_1 and m_2 be two mass functions on $\Omega = \{a, b, c, d\}$ defined as follows

$$m_1(\{a\}) = 0.3$$
 $m_1(\{a,c\}) = 0.5$ $m_1(\{b,c,d\}) = 0.2$

and

$$m_2({b,c}) = 0.4$$
 $m_2({a,c,d}) = 0.5$ $m_2({d}) = 0.1$.

Compute the combined mass functions using different combination operators.

2. Let $\Omega = \{a, b\}$, and let m and m' be the following mass functions on Ω ,

$$m = \{a\}^{\alpha} \oplus \{b\}^{\beta}, \quad m' = \{a\}^{\alpha'} \oplus \{b\}^{\beta'},$$

where A^w denotes the simple mass function m such that m(A) = 1 - w and $m(\Omega) = w$.

- (a) Compute m and m'.
- (b) Compute $m \oplus m'$.
- 3. Let m be a mass function on Ω and B a non-empty subset of Ω .
 - (a) Express the conditional belief function Bel(.|B) as a function of Bel.
 - (b) What does this formula become when *Bel* is a probability measure?
- 4. Let m_1 and m_2 be two consonant mass functions, and let Pl_1 and Pl_2 be the corresponding plausibility measures.

- (a) Show that $Pl_1 \vee Pl_2 = \max(Pl_1, Pl_2)$ is a plausibility measure.
- (b) What are the properties of this operator?
- (c) Using a counterexample, show that $Pl_1 \vee Pl_2$ may not be a plausibility measure when m_1 and m_2 are not consonant.
- 5. Let $\Theta = \{\theta_1, \theta_2, \theta_3\}$ and $\Omega = \{a, b, c\}$ be two frames of discernment. We consider the following mass function on $\Omega \times \Theta$:

$$m^{\Omega \times \Theta}(\{(a, \theta_1)\}) = 0.2 \quad m^{\Omega \times \Theta}(\Omega \times \{\theta_2\}) = 0.3$$

$$m^{\Omega \times \Theta}(\{b\} \times \Theta\}) = 0.4 \quad m^{\Omega \times \Theta}(\{(a, \theta_1), (b, \theta_2), (c, \theta_3)\}) = 0.1$$

- (a) Compute $m^{\Omega \times \Theta \downarrow \Omega}$ and its vacuous extension on $\Omega \times \Theta$.
- (b) Compute $m^{\Omega \times \Theta \downarrow \Theta}$ and its vacuous extension on $\Omega \times \Theta$.