Computational Statistics Final Exam

June 18, 2019

Write your code in a *single file* with name <your_name>.R. Insert comment lines between your code as follows:

Send your file to tdenoeux@utc.fr.

Exercise 1

The following data are assumed to be an i.i.d. sample from a Cauchy distribution:

$$0.31,\ 0.99,\ 0.54,\ 0.60,\ -1.08,\ -1.13,\ 0.92,\ 0.60,\ 1.13,\ 5.74,\ 1.14,\ 2.46,\ -11.28,\\ 1.37,\ -17.58,\ 0.69,\ 0.20,\ 1.04,\ 1.10,\ 0.36$$

The density function of the Cauchy distribution with location parameter x_0 and scale parameter $\gamma > 0$ is

$$f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma} \right)^2 \right]}.$$

- 1. Compute the maximum likelihood estimate of $\theta = (x_0, \gamma)$. (Use functions deauchy for the Cauchy density and optim for the optimization).
- 2. Compute 95% confidence intervals on x_0 and γ using the bootstrap percentile method (use B = 1000 bootstrap samples).

Exercise 2

We consider the following realization from an i.i.d. random sample X_1, \ldots, X_{10} from an exponential distribution $\mathcal{E}(\theta)$ with rate θ :

```
0.345, 0.386, 0.279, 0.031, 0.177, 0.038, 0.450, 0.083, 0.217, 0.673
```

We recall that the density of $\mathcal{E}(\theta)$ is $f(x) = \theta \exp(-\theta x)I(x \ge 0)$. A lognormal prior distribution for θ is assumed: $\log \theta \sim \mathcal{N}(\log(6), 0.5^2)$. Denote the likelihood as $L(\theta; \mathbf{x})$ and the prior as $\pi(\theta)$. The MLE of θ is $\hat{\theta} = 1/\overline{x}$.

- 1. Plot $q(\theta \mid \mathbf{x}) = \pi(\theta)L(\theta; \mathbf{x})$ and $e(\theta) = \pi(\theta)L(\widehat{\theta}; \mathbf{x})$ as a function of θ .
- 2. Generate a sample of size N=1000 from the posterior distribution $f(\theta \mid \mathbf{x})$ using the rejection sampling method. Draw a histogram of this sample.
- 3. Compute a 95% confidence interval on the posterior expectation $\mathbb{E}(\theta|\mathbf{x})$.
- 4. Repeat the same operations as in the two previous questions, using now the SIR method.
- 5. Compare graphically the two samples using function qqplot.

Exercise 3

We consider the same data and the same model as in Exercise 2.

- 1. Construct an Metropolis-Hastings algorithm to sample from the posterior distribution $f(\theta \mid \mathbf{x})$ with an independence kernel, where the kernel is the prior distribution. Generate a Markov chain of size n = 10,000.
- 2. Plot the sample path, the histogram of simulated values and the autocorrelation function (use function acf).
- 3. Compute the posterior expectation of θ and its simulation standard error (use the batch-means method).