
Computational Statistics

Chapter 3: EM algorithm

1. Let Y = (Y1, . . . , Yn) be an i.i.d. sample from a mixture of a normal
distribution N (µ, σ) and a uniform distribution U([−a, a]), with pdf

f(y; θ) = πφ(y;µ, σ) + (1− π)c, (1)

where φ(·;µ, σ) is the normal pdf, c = (2a)−1, π is the proportion
of the normal distribution in the mixture and θ = (µ, σ, π)T is the
vector of parameters. Typically, the uniform distribution corresponds
to outliers in the data. The proportion of outliers in the population is
then 1−π. We want to estimate parameter θ using the EM algorithm

(a) Using the functions sample, rnorm and runif, generate a sample
of size n = 100. Draw a box plot of the data.

(b) Write an EM algorithm for this problem.

(c) Apply the EM algorithm to the data, with different initializations.

Draw the estimated probabilities 1 − z(t)i of being an outlier, as
a function of yi. Does it make sense?

(d) Compare the estimates with those computed using the optim

function.

2. We will now apply the same idea to linear regression. We assume
that we have an independent sample Y = (Y1, . . . , Yn), where the
distribution of each observation Yi a mixture of a normal distribution
N (vTi β, σ

2) and a uniform distribution U([−a, a]), vi being a vector of
covariates and β a vector of coefficients. The pdf of Yi is

f(y; θ) = πφ(y; vTi β, σ) + (1− π)c, (2)

with θ = (βT , σ, π)T and c = (2a)−1.

(a) Using the functions rnorm and runif, generate a sample of size
n = 100, with vi ∼ U([−6, 6]), β = (1, 2)T , σ = 2, a = 20 and
π = 0.5. Draw a scatter plot of the data.

(b) Compute the ordinary least squares estimates (OLS) of the coef-
ficients, and draw the corresponding line.

1



(c) Write an EM algorithm for this problem. (In the M-step, you
will have to solve a weighted least-squares problem. You can use
the lm function with input parameter weights).

(d) Apply the EM algorithm to the data, taking the OLS estimates as
initial values. Draw the line with coefficients equal to the MLEs.

Plot the points (vi, yi) such that z
(t)
i < 0.5 as filled circles. Does

it make sense?

3. We consider again the problem of estimating the parameters in a
mixture of a normal distribution N (µ, σ) and a uniform distribution
U([−a, a]), where a is a known constant. The observed data are an iid
sample y1, . . . , yn from Y with pdf

f(y; θ) = πφ(y;µ, σ) + (1− π)c, (3)

where φ(·;µ, σ) is the normal pdf, c = (2a)−1, π is the proportion
of the normal distribution in the mixture and θ = (µ, σ, π)T is the
vector of parameters. Typically, the uniform distribution corresponds
to outliers in the data. The proportion of outliers in the population is
then 1− π.

We have seen how to find the MLE θ̂ of θ using the EM algorithm.
We now want to estimate the variance of θ̂.

(a) Set θ = (0, 1, 0.9) and a = 5. Generate N = 1000 samples of size
n = 100. For each sample, compute θ̂ using the EM algorithm.
Estimate the variance of θ̂.

(b) We now consider one sample y1, . . . , yn and we wish to estimate
Var(θ̂) from that sample, without knowing the true value of θ. We
will use Louis’ method: compute îx(θ̂) and estimate îz|y(θ̂) by

Monte Carlo simulation; compute an estimate of îy(θ̂) using the

missing information principle equation, and its inverse îy(θ̂)−1.

2


