
Computational Statistics
Chapter 5: Monte Carlo Markov Chains

1. Construct a random walk MH sampler to generate a sample of 10,000
observations from the Laplace distribution,

f(x) =
1

2
e−|x|, −∞ < x < +∞.

Use ε ∼ N (0, σ2) to generate proposals x∗ = x(t−1) + ε. Draw the sam-
ple paths and autocorrelation functions (use function acf) for various
values of σ2. After you have found a chain with good mixing, draw a
histogram of the sampled values, together with the target density.

2. Consider the model

yi = βxi + ui, ui ∼ N (0, 1), i = 1, . . . , n,

with the gamma prior distribution β ∼ G(2, 1), β > 0.

(a) Verify that the posterior distribution is

f(β|y1, . . . , yn) ∝ β exp(−β) exp

[
−1

2

n∑
i=1

(yi − βxi)2
]
1(0,+∞)(β).

Note that this distribution does not have a standard form.

(b) Construct an MH algorithm to sample from this distribution with
an independence kernel, where the kernel is the prior distribution.

(c) Generate a dataset by choosing n = 50, xi from N (0, 1) and a
value of β from its prior distribution. Apply the MH algorithm
to this dataset.

(d) Plot the sample path, the histogram of simulated values and the
autocorrelation function (use function acf).

(e) Compute the posterior expectation of β and its simulation stan-
dard error.

3. The dataset coal.dat is a time series of the numbers of disasters at coal
mines annually between 1851 and 1962. We assume that the number
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of coal mining disasters follows a Poisson distribution P(θ1) until some
unknown change point k, and then a Poisson distribution P(θ2). The
prior distributions are f(θ1) ∼ G(α01, β01), f(θ2) ∼ G(α02, β02), and
k ∼ U(n), a discrete uniform distribution in {1, . . . , n}, where n is the
number of years. We want to approximate the posterior distributions
of θ1, θ2 and k using the Gibbs sampling algorithm.

(a) Plot the data.

(b) Show that

f(θ1, θ2, k|x) ∝

θα01−1
1 e−β01θ1θα02−1

2 e−β02θ2
k∏
i=1

e−θ1θxi1

n∏
i=k+1

e−θ2θxi2

and

θ1|x, k ∼ G(α01 +

k∑
i=1

xi, β01 + k)

θ2|x, k ∼ G(α02 +

n∑
i=k+1

xi, β02 + n− k)

f(k|x, θ1, θ2) ∝ ek(θ2−θ1)
(
θ1
θ2

)∑k
i=1 xi

.

(c) Construct a Gibbs algorithm for this problem. Apply it to the
data with α01 = α02 = 0.5 and β01 = β02 = 1.

(d) For each parameter, plot the sample path, the histogram of simu-
lated values and the autocorrelation function (use function acf).

(e) Estimate the conditional expectations of each parameter with
the associated simulation standard error using the batch means
method.

4. The file investment.txt contains 15 yearly observations of U.S. in-
vestment data for the period 1968-1982. The variables are

• Year = Date,

• GNP = Nominal GNP,

• Invest = Nominal Investment,

• CPI = Consumer price index,

• Interest = Interest rate,

• Inflation = rate of inflation computed as the percentage change
in the CPI.
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(a) We consider the linear regression model y ∼ Nn(Xβ, σ2In) with
the dependent variable Invest/(10*CPI) and, as covariates, the
time trend (a vector of integers from 1 to 15), GNP/(10*CPI),
Interest and Inflation. Plot the data and compute the least-
squares estimate of the parameters.

(b) We assume a normal prior for β: β ∼ N(β0,B0) and an inverse
Gamma prior for σ2: σ2 ∼ IG(α0/2, δ0/2) . The prior density of
σ2 is, thus,

f(σ2|α0, δ0) =
(δ0/2)α0/2

Γ(α0/2)

1

(σ2)α0/2+1
e−δ0/(2σ

2)I(σ2 > 0).

Show that

β|σ2,y ∼ N(β,B1) and σ2|β,y ∼ IG(α1/2, δ1/2),

with

B1 = (σ−2XTX + B−10 )−1

β = B1(σ
−2XTy + B−10 β0)

α1 = α0 + n

δ1 = δ0 + (y −Xβ)T (y −Xβ).

(c) Program a Gibbs sampler to simulate the posterior distribution of
parameters β and σ. (To simulate from the multivariate normal
distribution, you can use function mvrnorm in package MASS).

(d) Use the Gibbs sampler with different parameters of the prior prob-
ability distributions. To determine the parameters of the inverse
Gamma distribution, you may use the following equations that
relate the shape parameter α and the rate parameter δ to the
mean µ and the variance V of the inverse Gamma distribution:

α = µ2/V + 2, δ = µ(µ2/V + 1).

(e) Write a function that generates samples from the posterior pre-
dictive distribution of y0 = xT0 β+ σu, with u ∼ N(0, 1) and from
the posterior distribution of E(y0) = xT0 β.
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