Computational Statistics Chapter 5: Monte Carlo Markov Chains

1. Construct a random walk MH sampler to generate a sample of 10,000 observations from the Laplace distribution,

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty.$$

Use $\epsilon \sim \mathcal{N}(0, \sigma^2)$ to generate proposals $x^* = x^{(t-1)} + \epsilon$. Draw the sample paths and autocorrelation functions (use function acf) for various values of σ^2 . After you have found a chain with good mixing, draw a histogram of the sampled values, together with the target density.

2. Consider the model

$$y_i = \beta x_i + u_i, \quad u_i \sim \mathcal{N}(0, 1), \quad i = 1, \dots, n,$$

with the gamma prior distribution $\beta \sim G(2,1), \beta > 0$.

(a) Verify that the posterior distribution is

$$f(\beta|y_1,\ldots,y_n) \propto \beta \exp(-\beta) \exp\left[-\frac{1}{2}\sum_{i=1}^n (y_i-\beta x_i)^2\right] \mathbb{1}_{(0,+\infty)}(\beta).$$

Note that this distribution does not have a standard form.

- (b) Construct an MH algorithm to sample from this distribution with an independence kernel, where the kernel is the prior distribution.
- (c) Generate a dataset by choosing n = 50, x_i from $\mathcal{N}(0,1)$ and a value of β from its prior distribution. Apply the MH algorithm to this dataset.
- (d) Plot the sample path, the histogram of simulated values and the autocorrelation function (use function acf).
- (e) Compute the posterior expectation of β and its simulation standard error.
- 3. The dataset coal.dat is a time series of the numbers of disasters at coal mines annually between 1851 and 1962. We assume that the number of coal mining disasters follows a Poisson distribution $\mathcal{P}(\theta_1)$ until

some unknown change point k, and then a Poisson distribution $\mathcal{P}(\theta_2)$. The prior distributions are $f(\theta_1) \sim G(\alpha_{01}, \beta_{01})$, $f(\theta_2) \sim G(\alpha_{02}, \beta_{02})$ and $k \sim \mathcal{U}(0, 1)$, where $G(\alpha, \beta)$ denotes the Gamma distribution with shape parameter α and rate β . We want to approximate the posterior distributions of θ_1 , θ_2 and k using the Gibbs sampling algorithm.

- (a) Plot the data.
- (b) Show that

$$f(\theta_1, \theta_2, k | \mathbf{x}) \propto$$

$$\theta_1^{\alpha_{01} - 1} e^{-\beta_{01}\theta_1} \theta_2^{\alpha_{02} - 1} e^{-\beta_{02}\theta_2} \prod_{i=1}^k e^{-\theta_1} \theta_1^{x_i} \prod_{i=k+1}^n e^{-\theta_2} \theta_2^{x_i}$$

and

$$\theta_1 | \mathbf{x}, k \sim G(\alpha_{01} + \sum_{i=1}^k x_i, \beta_{01} + k)$$

$$\theta_2 | \mathbf{x}, k \sim G(\alpha_{02} + \sum_{i=k+1}^n x_i, \beta_{01} + n - k)$$

$$f(k|x, \theta_1, \theta_2) \propto e^{k(\theta_2 - \theta_1)} \left(\frac{\theta_1}{\theta_2}\right)^{\sum_{i=1}^k x_i}.$$

- (c) Construct a Gibbs algorithm for this problem. Apply it to the data with $\alpha_{01} = \alpha_{02} = 0.5$ and $\beta_{01} = \beta_{02} = 1$.
- (d) For each parameter, plot the sample path, the histogram of simulated values and the autocorrelation function (use function acf).
- (e) Estimate the conditional expectations of each parameter with the associated simulation standard error using the batch means method.