Evidential Machine learning

Supervised and unsupervised learning using belief functions

Thierry Denœux

Université de technologie de Compiègne, Compiègne, France and Institut Universitaire de France, Paris, France

https://www.hds.utc.fr/~tdenoeux

2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) May 25, 2022

Machine Learning

- Machine Learning (ML) started in the 1950's, but it has recently undergone important developments and immensely grown in popularity due to the advent of deep neural networks.
- Basically, deep networks make it possible to extract high-level ("semantic") features from complex structured data (images, videos, texts, graphs, etc.).
- These features allow us to make predictions for classification or regression tasks, or to lay bare some underlying structure of the data (partition, hierarchy, etc.).
- One of the topical problems in ML is the quantification of uncertainty, including
 - Prediction uncertainty (supervised learning)
 - Cluster-membership uncertainty (unsupervised learning)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Uncertainty

- Main sources:
 - Randomness (aleatory uncertainty)
 - Lack of knowledge (epistemic uncertainty)
 - Conflict
- Theoretical frameworks:
 - Frequentist (confidence regions, p-values, etc.)
 - Bayesian (additive probabilities)
 - Imprecise probabilities (lower/upper previsions, etc.)
 - Fuzzy sets and possibility theory
 - Belief functions: Dempster-Shafer (DS) / Evidence theory
- Arguments for DS theory:
 - Extends both Bayesian and Possibility theories
 - Allows for the representation of aleatory and epistemic uncertainties
 - Well-suited for information fusion

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule

Evidential machine learning

- Evidential classification
- Evidential clustering

Key features of DS theory

Generality: DS theory is based on the idea of combining sets and probabilities. It extends both

- Propositional logic, computing with sets (interval analysis)
- Probabilistic reasoning

All that can be done with sets or with probabilities alone can be done with belief functions, but DS theory can do much more!

Operationality: DS theory is easily put in practice by breaking down the available evidence into elementary pieces of evidence, and combining them by a suitable operator called Dempster's rule of combination.

Scalability: Contrary to a widespread misconception, evidential reasoning can be applied to very large problems.

イロト イポト イヨト イヨト

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule

Evidential machine learning

- Evidential classification
- Evidential clustering

Mass function

Definition (Mass function)

A mass function on a finite set Ω is a mapping $m : 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1.$$

If $m(\emptyset) = 0$, *m* is said to be normalized (usually assumed).

Definition (Focal set)

Let *m* be a mass function on Ω . Every subset *A* of Ω such that m(A) > 0 is called focal set of *m*.

Interpretation

- Interpretation:
 - Ω is the set of possible answers to some question (called the frame of discernment)
 - Mass function *m* describes a piece of evidence/information pertaining to that question
 - Each mass *m*(*A*) represents a share of a unit mass of belief allocated to focal set *A*, and which cannot be allocated to any strict subset of *A*.
- Example: consider an object recognition task, and

 $\Omega = \{ pedestrian, car, motorcycle, tree \}$

A sensor tells us that the object is a vehicle, and this information is 80% reliable. This information (evidence) can be represented by the following mass function:

$$m(\{\text{car}, \text{motorcycle}\}) = 0.8, \quad m(\Omega) = 0.2$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Special cases

- If m(A) = 1 for some A ⊆ Ω, m is said to be logical. It represents pure imprecision.
- The mass function m₀ such that m₀(Ω) = 1 is said to be vacuous. It corresponds to complete ignorance.
- If $m(A) > 0 \Rightarrow |A| = 1$, m is said to be Bayesian. It can be used to represent aleatory uncertainty.

イロト イポト イヨト イヨト

Belief and plausibility functions

Definition

Given a normalized mass function m on Ω , the belief and plausibility functions are defined, respectively, as

$$Bel(A) := \sum_{B \subseteq A} m(B)$$

$$Pl(A) := \sum_{B \cap A \neq \emptyset} m(B) = 1 - Bel(\overline{A}),$$

for all $A \subseteq \Omega$.

Interpretation:

- Bel(A) is a measure of total support in A
- PI(A) is a measure of the lack of support in \overline{A} (or consistency with A)

Two-dimensional representation

 The uncertainty about a set of possibilities A ⊆ Ω is thus described by two numbers

$$(Bel(A), Pl(A))$$
 with $Bel(A) \leq Pl(A)$

• Total ignorance (vacuous mass function):

$$(Bel(A), Pl(A)) = (0, 1), \quad \forall A \in 2^{\Omega} \setminus \{\Omega, \emptyset\}$$

• Infinitely precise information (Bayesian mass function):

Bel(A) = Pl(A)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Demoster's rule

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions ۲
- Dempster's rule

- Evidential classification
- Evidential clustering

Dempster's rule

Dempster's rule

In DS theory, Dempster's rule is the fundamental mechanism for combining belief functions representing independent items of evidence.

Definition (Orthogonal sum, degree of conflict)

Let m_1 and m_2 be two mass functions such that $\kappa < 1$. Their orthogonal sum is the mass function defined by

$$(m_1 \oplus m_2)(A) := \frac{\sum_{B \cap C = A} m_1(B) m_2(C)}{1 - \kappa}$$
(1)

for all $A \neq \emptyset$ and $(m_1 \oplus m_2)(\emptyset) := 0$. In (1), κ is the degree of conflict defined as

$$\kappa := \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Properties

Proposition

If several pieces of evidence are combined, the order does not matter:

 $m_1 \oplus m_2 = m_2 \oplus m_1$

$$m_1 \oplus (m_2 \oplus m_3) = (m_1 \oplus m_2) \oplus m_3$$

A mass function m is not changed if combined with the vacuous mass function m_0 :

 $m \oplus m_0 = m$.

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Misconception about Dempster's rule

- Following a 1979 report by Zadeh, it is repeated that "Dempster's rule yields counterintuitive results" (which is usually used as a justification to introduce new combination rules)
- Zadeh's example: $\Omega = \{a, b, c\}$, two experts

 $m_1(\{a\}) = 0.99, \quad m_1(\{b\}) = 0.01 \quad m_1(\{c\}) = 0$

$$m_2(\{a\}) = 0, \quad m_2(\{b\}) = 0.01 \quad m_2(\{c\}) = 0.99$$

We get $(m_1 \oplus m_2)(\{b\}) = 1$, which is claimed to be "counterintuitive" because both experts considered *b* as very unlikely.

- But Expert 1 claims that *c* is absolutely impossible, and Expert 2 claims that *a* is absolutely impossible, so *b* is the only remaining possibility!
- Dempster's rule does produce sound results when used and interpreted correctly.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule

Evidential machine learning

- Evidential classification
- Evidential clustering

イロト イヨト イヨト イヨト

Main learning tasks

Outline

- Mass, belief and plausibility functions
- Dempster's rule

- Evidential machine learningEvidential classification
- Evidential clustering

Application of DS theory to classification

• Two of the first papers applying DS theory to classification:

T. Denœux.

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on SMC, 25(05):804-813, 1995.

T. Denœux.

A neural network classifier based on Dempster-Shafer theory. *IEEE transactions on SMC A*, 30(2):131–150, 2000.

• I will briefly recall the evidential neural network and describe some recent developments.

Evidential neural network classifier

- The learning set is summarized by *r* prototypes.
- Each prototype \boldsymbol{p}_i has membership degree u_{ik} to each class ω_k , with $\sum_{k=1}^{c} u_{ik} = 1$.
- Each prototype *p_i* is a piece of evidence about the class of *x*; its reliability decreases with the distance *d_i* between *x* and *p_i*.

Propagation equations

• Mass function induced by prototype p_i:

$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i d_i^2), \quad k = 1, \dots, c$$
$$m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i d_i^2)$$

Remark: when $d_i \rightarrow +\infty$, $m_i \rightarrow m_0$.

• Combination:

$$m = \bigoplus_{i=1}^{r} m_i$$

The focal sets of the combined mass function *m* are the singletons {ω_k},
 k = 1,..., *c* and Ω.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Neural network implementation

Image: A math a math

Learning

- The parameters are the
 - The prototypes \boldsymbol{p}_i , i = 1, ..., r (*rp* parameters)
 - The membership degrees u_{ik} , i = 1, ..., r, k = 1, ..., c (*rc* parameters)
 - The α_i and γ_i , $i = 1 \dots, r$ (2*r* parameters).
- Let θ denote the vector of all parameters. It can be estimated by minimizing a loss function such as

$$J(\theta) = \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{c} (pl_{ik} - y_{ik})^{2}}_{\text{error}} + \lambda \underbrace{\sum_{i=1}^{r} \alpha_{i}}_{\text{regularization}}$$

where p_{ik} is the output plausibility of class ω_k for instance *i*, $y_{ik} = l(y_i = \omega_k)$, and λ is a regularization coefficient (hyperparameter).

The hyperparameter λ can be optimized by cross-validation.

Implementations

- Matlab: http://www.hds.utc.fr/~tdenoeux/software/belief_ NN/belief_NN.zip
- R package evclass, available at https: //cran.r-project.org/web/packages/evclass/index.html

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Mass on $\{\omega_1\}$

m({ω₁})

ъ

ヘロト ヘヨト ヘヨト

Mass on $\{\omega_2\}$

 $m(\{\omega_2\})$

< E

A B > A B >

Mass on $\{\omega_3\}$

m({ω₃})

< E

・ロ・・ (日・・ (日・)

Mass on Ω

 $m(\Omega)$

E

・ロト ・回ト ・ヨト ・ヨト

Deep evidential classifier

Z. Tong, Ph. Xu and T. Denœux

An evidential classifier based on Dempster-Shafer theory and deep learning.

Neurocomputing 450:275-293, 2021.

(I)

Application to classifier fusion

- Training deep networks on very large datasets requires considerable computational ressources
- For a given problem, there usually exist many smaller heterogenous datasets with different sets of classes and levels of granularity.
- Proposed approach: combine classifiers trained on different, heterogenous learning sets.
- Z. Tong, Ph. Xu and T. Denœux
 Fusion of Evidential CNN Classifiers for Image Classification.
 In T. Denoeux et al. (Eds), Belief Functions: Theory and Applications, Springer International Publishing, Cham, pp 168–176, 2021.

・ロン ・回 と ・ 回 と

Classifier fusion for image classification

Data sets

Dataset	# classes	# training instances	# test instances
Tiny ImageNet	200	10 ⁵	10 ⁴
Flower-102	102	4080	4129
CIFAR-10	10	$5 imes 10^4$	10 ⁴

Thierry Denœux

ICoDT2, May 25, 2022 32 / 50

Method

- An evidential classifier is trained on each of the learning sets.
- Each classifier has its own frame of discernment, containing the classes represented in its training set, and a class ω_0 representing everything else.
- The classifier outputs are expressed in a common refined frame Ω^0 and combined by Dempster's rule.
- Optionally, the classifiers can be fine-tuned together using the whole data set (partially supervised learning).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Alternative fusion methods

Probability-to-mass fusion (PMF)¹ probabilistic classifiers (softmax ouputs), combination of probabilities (extended in Ω^0) by Dempster's rule Bayesian fusion (BF): probabilistic classifiers (softmax ouputs), probabilities computed in Ω^0 using Laplace's indifference principle, combination by Dempster's rule

Probabilistic feature combination (PFC): concatenation of the feature vectors + softmax layer

Evidential feature combination (EFC): concatenation of the feature vectors + DS layer

¹Ph. Xu, F. Davoine, J.-B. Bordes, H. Zhao and Th. Denœux. Multimodal Information Fusion for Urban Scene Understanding. *Machine Vision and Applications* 27(3):331–349, 2016.

Results

Classifier	Tiny ImageNet	Flower-102	CIFAR-10	Overall
E-ResNet-101	18.66	4.68	4.61	-
P-ResNet-101 ²	18.70	4.69	4.66	-
MFE-ResNet-101	18.52	4.68	3.94	10.31
PMF-ResNet-101	18.54	4.69	4.42	10.40
BF-ResNet-101	19.18	5.07	6.04	11.10
E2E MFE-ResNet-101	18.50	4.67	3.82	10.27
E2E PMF-ResNet-101	18.49	4.68	4.28	10.35
E2E BF-ResNet-101	18.87	4.99	5.74	10.89
E2E PFC-ResNet-101	18.59	5.74	4.89	10.94
E2E EFC-ResNet-101	21.68	5.46	7.57	12.56

²Y. Luo et al. Direction concentration learning: Enhancing congruency in machine learning. *IEEE Trans. PAMI* 43(6), 2021.

Interpretation

Instanco/labol		p' on Ω^0		
instance/laber	p' from Tiny ImageNet	p' from CIFAR-10	p' from Flower102	after fusion
	p'(Egyptian cat) = 0.472	p'(cat) = 0.873	p'(buttercup) = 0.001	p'(Egytian cat) = 0.860
and the second	p'(chihuahua) = 0.511	p'(dog) = 0.116	p'(camellia) = 0	p'(chihuahua) = 0.125
STREAM PROVIDENT	···· .			
Egyptian cat	$p'(\omega_0^1) = 0.001$	$p'(\omega_0^2) = 0.001$	$p'(\omega_0^3) = 0.998$	$p'(\omega_0^0) = 0.001$
-	p'(king penguin) = 0.453	p'(bird) = 0.732	p'(buttercup) = 0	p'(king penguin) = 0.988
The second second	p'(academic gown) = 0.532	$p'({\rm frog}) = 0.102$	p'(camellia) = 0.001	p'(academic gown) = 0.006
king penguin	$p'(\omega_0^1) = 0.001$	$p'(\omega_0^2) = 0.004$	$p'(\omega_0^3) = 0.993$	$p'(\omega_0^0) = 0.001$
and the second	p'(bull frog) = 0.382	p'(frog) = 0.972	p'(buttercup) = 0.001	p'(bull frog) = 0.388
	p'(tailed frog) = 0.602	p'(cat) = 0.010	p'(camellia) = 0	p'(tailed frog) = 0.611
bull frog	$p'(\omega_0^1) = 0$	$p'(\omega_0^2)=0$	$p'(\omega_0^3) = 0.999$	$p'(\omega_0^0) = 0$

æ

◆□ > ◆□ > ◆豆 > ◆豆 >

Outline

- Mass, belief and plausibility functions
- Dempster's rule

Evidential machine learning

- Evidential classification
- Evidential clustering

Evidential clustering

- Several soft clustering methodologies to have been proposed over the years:
 - Fuzzy clustering: $u_{ik} \in [0, 1], \sum_{k=1}^{c} u_{ik} = 1$
 - Possibilistic clustering: $u_{ik} \in [0, 1]$
 - Rough clustering: $(\underline{u}_{ik}, \overline{u}_{ik}) \in \{0, 1\}^2$, with $\underline{u}_{ik} \leq \overline{u}_{ik}, \sum_{k=1}^{c} \underline{u}_{ik} \leq 1$ and $\sum_{k=1}^{c} \overline{u}_{ik} \geq 1$
- Evidential clustering generalizes and unifies these approaches. First references:
 - T. Denœux and M.-H. Masson.

EVCLUS: Evidential Clustering of Proximity Data. *IEEE Transactions on Systems, Man and Cybernetics B* 34(1):95-109, 2004.

M.-H. Masson and T. Denœux. ECM: An evidential version of the fuzzy c-means algorithm. *Pattern Recognition* 41(4):1384–1397, 2008.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Credal partition

- Let O = {o₁,..., o_n} be a set of n objects and Ω = {ω₁,..., ω_c} be a set of c groups (clusters).
- Assumption: each object *o_i* belongs to at most one group.

Definition

A credal partition is an n-tuple $M := (m_1, ..., m_n)$, where each m_i is a mass function on Ω representing uncertain knowledge about the cluster membership of object o_i .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Credal partition

	Ø	$\{\omega_1\}$	$\{\omega_2\}$	$\{\omega_1,\omega_2\}$
m_3	0	1	0	0
m_5	0	0.5	0	0.5
m_6	0	0	0	1
<i>m</i> ₁₂	0.9	0	0.1	0

э

-

Relationship with other clustering structures

Evidential clustering algorithms

• Evidential *c*-means (ECM)³:

- Attribute data
- HCM, FCM family
- 2 EVCLUS⁴:
 - Attribute or proximity (possibly non metric) data
 - Multidimensional scaling approach
- Bootstrapping approach⁵
 - · Based on a mixture models and bootstrap confidence intervals
 - The resulting credal partition has frequentist properties

All these algorithms are implemented in the R package evclust, see https://cran.r-project.org/web/packages/evclust/index.html

⁴T. Denœux *et al.* Evidential clustering of large dissimilarity data. *KBS* 106:179–195, 2016.

⁵T. Denœux. Calibrated model-based evidential clustering using bootstrapping. *Information Sciences* 528:17–45, 2020.

³M.-H. Masson and T. Denœux. ECM: An evidential version of the fuzzy c-means algorithm. *Pattern Recognition* 41(4):1384–1397, 2008.

NN-EVCLUS

х

Information Sciences, 572:297–330, 2021.

Example: mass on the emptyset

Example: masses on singletons and pairs

Thierry Denœux

Evidential Machine learning

ICoDT2, May 25, 2022 45 / 50

Constrained clustering

Must-link

Cannot-link

Constrained clustering Result

Thierry Denœux

Summary

- Until recently, ML has been mostly based on probability theory. As a more general model, DS theory offers a radically new and promising approach to uncertainty quantification in ML.
- Other applications of belief functions in ML include
 - Classifier/clusterer ensembles
 - Partially labeled data
 - Regression
 - Multilabel classification
 - Partial classification
 - Transfer learning
 - Preference learning, etc.
- Many classical ML techniques can be revisited from a DS perspective, with important implications in terms of
 - Interpretation
 - Decision strategies
 - Model combination, etc.

References I

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux

Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspective

Knowledge-Based Systems 176:54–67, 2019.

Z. Tong, Ph. Xu and T. Denœux

An evidential classifier based on Dempster-Shafer theory and deep learning

Neurocomputing 450:275–293, 2021.

Z. Tong, Ph. Xu and T. Denœux Evidential fully convolutional network for semantic segmentation Applied Intelligence 51:6376–6399, 2021

References II

cf. https://www.hds.utc.fr/~tdenoeux

Z.-G. Liu, L.-Q. Huang, K. Zhou, and T. Denoeux.

Combination of Transferable Classification with Multisource Domain Adaptation Based on Evidential Reasoning

IEEE Transactions on Neural Networks and Learning Systems 32:5: 2015–2029, 2021.

L. Ma and T. Denoeux. Partial Classification in the Belief Function Framework Knowledge-Based Systems 214:106742, 2021.

T. Denoeux.

Calibrated model-based evidential clustering using bootstrapping *Information Sciences* 528:17–45, 2020.

T. Denœux

NN-EVCLUS: Neural Network-based Evidential Clustering Information Sciences 572:297–330, 2021.

• □ ▶ • □ ▶ • □ ▶ • □ ▶