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We study a new approach to statistical prediction in the Dempster–Shafer framework. 
Given a parametric model, the random variable to be predicted is expressed as a function 
of the parameter and a pivotal random variable. A consonant belief function in the 
parameter space is constructed from the likelihood function, and combined with the pivotal 
distribution to yield a predictive belief function that quantifies the uncertainty about the 
future data. The method boils down to Bayesian prediction when a probabilistic prior is 
available. The asymptotic consistency of the method is established in the iid case, under 
some assumptions. The predictive belief function can be approximated to any desired 
accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the 
method is applied to multiple linear regression.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Dempster–Shafer theory of belief functions [11,12,58] is now a well established formal framework for reasoning 
with uncertainty. It has been successfully applied to many problems, including classification [21], function approximation 
[54,64], clustering [20,47], image segmentation [40], scene perception [39], multiple-attribute decision making [10], machine 
diagnosis and prognosis [56,57], etc. To further extend the application of Dempster–Shafer theory to new problems, we need 
well-founded and computationally tractable methods to model different kinds of evidence in the belief function framework. 
The purpose of this paper, which builds on previous work by the authors [18,19,35,36], is to present such methods for 
statistical inference and prediction.

Although statistical inference provided the first motivation for introducing belief functions in the 1960s [11–13], applica-
tions in this area have remained limited. The reason might be that the approach initially introduced by Dempster [15], and 
further elaborated in recent years [41,45,46] under the name of the “weak belief” model, is computationally demanding and 
it cannot be applied easily to the complex statistical models encountered in many areas, such as machine learning or econo-
metrics. For this reason, frequentist and Bayesian methods have remained by far the most popular. Yet, these approaches 
are not without defect. It is well known that frequentist methods provide pre-experimental measures of the accuracy of 
statistical evidence, which are not conditioned on specific data [8]. For instance, a 95% confidence interval contains the pa-
rameter of interest for 95% of the samples, but the 95% value is just an average, and the interval may certainly (or certainly 
not) contain the parameter for some specific samples [8, page 5]. For this reason, a confidence level or a p-value are not 
appropriate measures of the strength of statistical evidence (see more discussion on this point in [8]). Bayesian methods do 
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implement some form of post-experimental reasoning. However, they require the statistician to provide a prior probability 
distribution, which is problematic when no prior knowledge, or only weak information, is available. These shortcomings of 
traditional methods of inference have motivated the development of alternative approaches up to these days. The theory 
of belief functions, which focuses on the concept of evidence [58], seems particularly well-suited as a model of statisti-
cal evidence. However, statistical methods based on belief functions will not gain widespread acceptance unless they are 
conceptually simple and easily applicable to a wide range of problems and models.

In this paper, we advocate another approach to statistical inference using belief functions, based on the concept of 
likelihood. This approach was initially introduced by Shafer in [58, Chapter 11] and was later studied by some authors [1,65]. 
It was recently derived axiomatically from three principles: the likelihood principle, compatibility with Bayesian inference 
and the principle of maximum uncertainty [18,19]. This approach is in line with likelihood-based inference as advocated by 
Fisher in his later work [28] and, later, by Birnbaum [9], Barnard [5], and Edwards [27], among others. It retains the idea 
that “all we need to know about the result of a random experiment is contained in the likelihood function”, but reinterprets 
it as defining a consonant belief function. Combining this belief function by Dempster’s rule with a Bayesian prior yields 
the Bayesian posterior distribution, which ensures compatibility with Bayesian inference. An important advantage of the 
belief function approach, however, is that it allows the statistician to use either a weaker form of prior information,1 as 
a general belief function, or even no prior information at all (which corresponds to providing a vacuous belief function as 
prior information).

In recent work [36], we have extended the likelihood-based approach to prediction problems. Prediction can be defined 
as the task of making statements about data that have not yet been observed. Assume, for instance, that we have drawn 
y balls out of n draws with replacement from an urn contain an unknown proportion θ of black balls, and a proportion 
1 − θ of white balls. Let z be a binary variable defined by z = 1 if the next ball to be drawn is black, and z = 0 otherwise. 
Guessing the value of z is a prediction problem. The general model for such problems involves a pair (y, z) of random 
quantities whose joint distribution depends on some parameter θ , where y is observed but z is not yet observed. In [36], 
we proposed a solution to this problem, using the likelihood-based approach outlined above, and we applied it to a very 
specific model in the field of marketing econometrics. The same approach was used in [67] to calibrate a certain kind 
of binary classifiers. In this paper, we further explore this method by proving that, under some mild assumptions, the 
predictive belief function converges, in some sense, to the true probability distribution of the not-yet observed data. We 
also address describe several simulation and approximation techniques to estimate the predictive belief function or an outer 
approximation thereof. Finally, we illustrate the practical application of the method using multiple linear regression. In 
particular, we show that the ex ante forecasting problem has a natural and simple solution using our approach.

The rest of this paper is organized as follows. Some background on belief functions will first be given in Section 2. 
The estimation and prediction methods will then be presented, respectively, in Sections 3 and 4. The application to linear 
regression will then be studied in Section 5. Finally, Section 6 will conclude the paper.

2. Background on belief functions

Most applications of Dempster–Shafer theory use belief functions defined on finite sets [58]. However, in statistical 
models, the parameter and sample spaces are often infinite. To make the paper self-contained, we will recall some basic 
definitions and results on belief functions defined on arbitrary spaces (finite or not).

2.1. Belief function induced by a source

Let (�, B) be a measurable space. A belief function on B is a mapping Bel : B → [0, 1] verifying the following three 
conditions:

1. Bel(∅) = 0;
2. Bel(�) = 1;
3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅�=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)
. (1)

Similarly, a plausibility function can be defined as a function Pl : B → [0, 1] such that:

1. Pl(∅) = 0;
2. Pl(�) = 1;
3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

1 A similar goal is pursued by robust Bayes [7] and imprecise probability approaches (see, e.g., [42,48]), which attempt to represent weak prior informa-
tion by sets of probability measures. A comparison with these alternative approaches is beyond the scope of this paper.
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∑
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)
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It is clear that, Bel is a belief function if and only if Pl defined by Pl(B) = 1 − Bel(B) for all B ∈ B is a plausibility function. 
The function pl : � → [0, 1] such that pl(x) = Pl({x}) for any x ∈ � is called the contour function of Bel.

In Dempster–Shafer theory, a belief function Bel is used as a representation of a belief state about some question of 
interest, induced by a given piece of evidence. The number Bel(B) is interpreted as the probability that the evidence supports 
(implies) B , while Pl(B) is the probability that the evidence does not support the complement of B (is not contradictory 
with B).

A convenient way to create a belief function is through a multivalued mapping from a probability space to B [12]. More 
precisely, let (S, A, P ) be a probability space and let � : S → 2� be a multi-valued mapping. We can define two inverses 
of �:

1. The lower inverse

�∗(B) = B∗ = {s ∈ S|�(s) �= ∅,�(s) ⊆ B}; (3)

2. The upper inverse

�∗(B) = B∗ = {s ∈ S|�(s) ∩ B �= ∅}, (4)

for all B ∈ B. We say that � is strongly measurable with respect to A and B iff, for all B ∈ B, B∗ ∈ A. This implies that, for 
all B ∈ B, B∗ ∈A.

We then have the following important theorem [52].

Theorem 1. Let (S, A, P) be a probability space, (�, B) a measurable space and � a strongly measurable mapping w.r.t. A and B
such that P(�∗) �= 0. Let the lower and upper probability measures be defined as follows: for all B ∈B,

P∗(B) = K · P(B∗), (5a)

P
∗(B) = K · P(B∗) = 1 − P∗(B), (5b)

where K = [P(�∗)]−1 . Then, P∗ is a belief function and P∗ is the dual plausibility function.

Under the conditions of Theorem 1, the four-tuple (S, A, P, �) is called a source for the belief function P∗ . The set �(s)
are called the focal sets of Bel.

Given a source (S, A, P, �), we can also define a third notion of inverse for � as

�̃(B) = B̃ = {s ∈ S|�(s) ⊇ B}, (6)

for all B ∈ B. If B̃ ∈A for all B ∈ B, then we can define another function Q from B to [0, 1], called the commonality function, 
as Q (B) = K · P(B̃).

2.2. Practical models

In Section 3 below, we will encounter three important examples of sources defining belief functions of practical interest 
in � =R

d: random vectors, consonant random closed sets and random intervals.

Random vectors
Let X be a random vector from (S, A, P) to (Rd, B(Rd)). It is clear that the mapping � from S to the power set of Rd , 

defined by �(s) = {X(s)}, is strongly measurable. The induced belief function is the probability distribution PX of X .

Consonant random closed sets
Let us assume that � = R

d . Let π be an upper semi-continuous map from Rd to [0, 1], i.e., for any s ∈ [0, 1], the set

sπ = {x ∈ R
d|π(x) ≥ s} (7)

is closed. Furthermore, assume that π(x) = 1 for some x. Let S be the interval [0, 1], A be the Borel σ -field on [0, 1], λ be
the uniform probability measure on S , and � be the mapping defined by �(s) = sπ . Then � is strongly measurable and it 
defines a random closed set [53]. We can observe that its focal sets are nested: it is said to be consonant. The corresponding 
plausibility and belief functions verify the following equalities, for any B ⊂ R

d:

Pl(B) = supπ(x), (8)

x∈B
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and

Bel(B) = 1 − Pl(B) = inf
x/∈B

(1 − π(x)). (9)

The corresponding contour function pl is equal to π .

Random closed intervals
Let (U , V ) be a bi-dimensional random vector from a probability space (S, A, P) to R2 such that

P({s ∈ S|U (s) ≤ V (s)}) = 1. (10)

The mapping

� : s → �(s) = [U (s), V (s)] (11)

is strongly measurable. It defines a random closed interval [14], which is a source for a belief function in � = R.
The lower and upper cumulative distribution functions (cdf) of the random interval [U , V ] are the function F∗ and F ∗

defined, respectively, as follows,

F∗(x) = Bel ((−∞, x]) (12a)

F ∗(x) = Pl ((−∞, x]) , (12b)

for all x ∈R, where Bel and Pl are the belief and plausibility functions associated to [U , V ]. The following equalities hold,

F∗(x) = P([U , V ] ⊆ (−∞, x]) = P(V ≤ x) = F V (x), (13)

where F V is the cdf of V , and

F ∗(x) = P([U , V ] ∩ (−∞, x] �= ∅) = P(U ≤ x) = FU (x). (14)

2.3. Dempster’s rule

Assume that we have n sources (Si, Ai, Pi, �i) for i = 1, . . . , n, where each �i is a multi-valued mapping from Si to 2� . 
Then, the combined source (S, A, P, �) can be defined as follows [12]:

S = S1 × S2 . . . × Sn, (15a)

A = A1 ⊗A2 . . . ⊗An, (15b)

P = P1 ⊗ P2 . . . ⊗ Pn, (15c)

�∩(s) = �1(s1) ∩ �2(s2) ∩ . . . ∩ �n(sn), (15d)

where A is the tensor product σ -algebra on the product space S , and P is the product measure. The belief function Bel
induced by the source (S, A, P, �∩) can then be written as Bel1 ⊕ . . . ⊕ Beln , where Beli is the belief function induced by 
source i. For each B ∈ B, Bel(B) is the conditional probability that �∩(s) ⊆ B , given that �∩(s) �= ∅,

Bel(B) = P ({s ∈ S|�∩(s) �= ∅,�∩(s) ⊆ B})
P({s ∈ S|�∩(s) �= ∅}) , (16)

which is well defined iff the denominator is non-null (i.e., if the n belief functions are not totally conflicting). The consid-
eration of the product probability measure in (15c) corresponds to an assumption of independence between the items of 
evidence.

When � = R
d , the combined belief values Bel(B) usually cannot be computed analytically, even when the individual 

belief functions Beli have one of the simple forms outlined in Section 2.2. However, they can easily be approximated by 
Monte Carlo simulation. The method, described in Algorithm 1, is to draw (s1, . . . , sn) from the product probability measure 
P and to compute the intersection of the sets �(sk) for k = 1, . . . , n. If this intersection is non-empty, we keep it as a focal 
set of the combined belief function Bel = Bel1 ⊕ . . . ⊕ Beln . This process is repeated until we get N focal sets B1, . . . , B N . 
These focal sets with probability masses 1/N constitute a belief function B̂el that approximates Bel. In particular, degrees of 
belief Bel(B) and degrees of plausibility Pl(B) can be approximated by B̂el(B) and P̂l(B) defined as follows,

B̂el(B) = 1

N
#{i ∈ {1, . . . , N}|Bi ⊆ B}, (17a)

P̂l(B) = 1

N
#{i ∈ {1, . . . , N}|Bi ∩ B �= ∅}. (17b)

If the degree of conflict P({s ∈ S|�∩(s) = ∅}) between the n belief functions is high, then Algorithm 1 will be slow, because 
the condition 

⋂n
k=1 �k(sk) �= ∅ will often not be met, and a large number of draws will be needed to get N focal sets. Moral 

and Wilson have proposed Markov chain [50] and importance sampling [51] algorithms to approximate the combination of 
conflicting belief functions on a finite space more efficiently. We are not aware, however, of any extension of these methods 
to the case where � is infinite. In any case, conflict will not be an issue in paper, as the belief functions to be combined as 
part of the prediction method described in Section 4 have no conflict.
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Algorithm 1 Monte Carlo algorithm for Dempster’s rule.
Require: Desired number of focal sets N

i ← 0
while i < N do

for k = 1 to n do
Draw sk from Pk

end for
if
⋂n

k=1 �k(sk) �= ∅ then
i ← i + 1
Bi ←⋂n

k=1 �k(sk)

end if
end while

2.4. Least-commitment principle

In many cases, a belief function is underdetermined by some constraints. For instance, an expert might provide only the 
contour function pl. Usually, infinitely many belief functions are compatible with such constraints. The Least-Commitment 
Principle (LCP) [25,61], or principle of maximal uncertainty [38], then prescribes to select the least informative (committed) 
one, if it exists. To make this principle operational, we need ways to compare the information contents of belief functions. 
Several partial informational orderings have been defined (see, e.g., [17,24,37,68]). For instance, Bel1 can be considered to 
be less committed than Bel2 if it assigns smaller degrees of belief to every statement, i.e., if Bel1 ≤ Bel2. Alternatively, Bel1 is 
said to be Q -less committed than Bel2 if Q 1 ≥ Q 2, where Q 1 and Q 2 are the commonality functions associated to Bel1 and 
Bel2, respectively. As shown in [24], these two notions are not equivalent.

2.5. Lower and upper expectations

Let Bel be a belief function on (�, B) induced by a source (S, A, P, �), and let P(Bel) denote the set of probability 
measures P on (�, B) such that Bel(B) ≤ P (B) ≤ Pl(B), for all B ∈ B. For any measurable function X from � to R, its lower 
and upper expectations with respect to Bel are defined as follows,

E∗(X) = inf
P∈P(Bel)

EP (X) and E
∗(X) = sup

P∈P(Bel)
EP (X), (18)

where EP (·) denotes the expectation with respect to P . It can be shown [65] that

E∗(X) =
∫
S

X(s)P(ds) and E
∗(X) =

∫
S

X(s)P(ds), (19)

where

X(s) = inf
ω∈�(s)

X(ω) and X(s) = sup
ω∈�(s)

X(ω). (20)

In the special case where � = R and Bel is induced by a random interval [U , V ], the lower and upper expectations of a 
non-decreasing function X : � →R are thus simply its expectation with respect to U and V ,

E∗(X) = EU (X) and E
∗(X) = EV (X). (21)

As shown in [31], the lower and upper expectations are the Choquet integrals with respect to Bel and Pl, respectively. 
A Savage-like axiomatic justification of decision-making based on maximization of Choquet-expected utilities has been pro-
vided by Gilboa [30].

3. Estimation using belief functions

The definition of a belief function from the likelihood function will first be recalled in Section 3.1. Some connections 
with classical methods of inference will then be outlined in Section 3.2, and the consistency of the method will be studied 
in Section 3.3.

3.1. Likelihood-based belief function

Let y ∈ Y denote the observed data, assumed to be a realization of a random vector Y with probability mass or density 
function fθ (y), where θ ∈ 	 is an unknown parameter. The likelihood function is a mapping L y from 	 to [0, +∞) defined 
by

L y(θ) = cfθ (y), (22)
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where c > 0 is an arbitrary multiplicative constant. Several authors have defended the view that the likelihood function 
contains all the information about the parameter provided by the experiment, a thesis called the Likelihood Principle (LP) 
[5,8,9,27]. In particular, this principle was shown by Birnbaum in [9] to follow from two principles generally accepted by 
most (but not all) statisticians: the conditionality principle (see also [8, page 25]) and the sufficiency principle. As likelihood 
is defined up to a multiplicative constant, it can conveniently be rescaled to the interval [0, 1], by the transformation

R y(θ) = L y(θ)

L y (̂θ)
, (23)

where ̂θ is a maximizer of L y(θ), i.e., a maximum likelihood estimate (MLE) of θ , and it is assumed that L y (̂θ) < +∞. Plots 
of function R y(θ), called the relative likelihood, provide a complete graphical description of the result of a random experi-
ment [63]. Likelihood regions, defined as the set of parameter values θ whose relative likelihood exceeds some threshold,

s R y = {θ ∈ 	|R y(θ) ≥ s}, (24)

for s ∈ [0, 1], are useful summaries of function R y .
In [58], Shafer proposed to interpret R y(θ) as the plausibility of θ after observing y. The relative likelihood is then 

considered as the contour function pl y(θ) of a belief function Bel	y on 	:

ply(θ) = R y(θ), (25)

for all θ ∈ 	. If one further assumes Bel	y to be consonant, then the plausibility of any hypothesis H ⊆ 	 is given by (8) as

Pl	y (H) = sup
θ∈H

ply(θ). (26)

As explained in Section 2.2, Bel	y is then induced by the source (S, A, λ, �y), where S = [0, 1], A is the Borel sigma-field 
on S , λ is the uniform probability measure on [0, 1] and �y(s) = s R y for all s ∈ S .

The so-called likelihood-based approach to belief function-based inference was introduced by Shafer on intuitive grounds. 
It was recently shown in [18] to be the only belief function Bel	y on 	 verifying the following three requirements:

1. Likelihood principle: Bel	y should only depend on the likelihood function L y(θ).

2. Compatibility with Bayesian inference: if a Bayesian prior g(θ) is available, combining it with Bel	y using Dempster’s 
rule (see Section 2.3) should yield the Bayesian posterior.

3. Least Commitment Principle (see Section 2.4): Bel	y should be the least committed belief function (according to the 
Q -ordering), among all those satisfying the previous two requirements.

These principles are discussed at length in [18] and in the subsequent discussion [19,22,49]. They can be considered to 
provide a firm theoretical basis for the likelihood-based belief function approach.

Example 1. Let y = (y1, . . . , yn) be a realization from an iid random sample Y = (Y1, . . . , Yn) from the uniform distribution 
U([0, θ]), where θ ∈ 	 = [0, +∞) is the unknown parameter. The likelihood function is

L y(θ) = θ−n1[y(n),+∞)(θ), (27)

where y(n) = max1≤i≤n yi , and the contour function is

ply(θ) =
( y(n)

θ

)n
1[y(n),+∞)(θ). (28)

It is plotted in Fig. 1 for y(n) = 1 and n ∈ {5, 10, 50}. We note that, the contour function being unimodal and upper-semi-
continuous, the focal sets �y(s) are close intervals [θ̂y∗(s), ̂θ∗

y(s)], with θ̂y∗(s) = y(n) and θ̂∗
y(s) = y(n)s−1/n for all s ∈ [0, 1]. 

Consequently, the belief function Bel	y is induced by the random closed interval [y(n), y(n) S−1/n], with S ∼ U([0, 1]). �
3.2. Connections with classical statistical concepts

Likelihood-based inference The approach to statistical inference outlined in the previous section is very close to the “like-
lihoodist” approach advocated by Birnbaum [9], Barnard [5], and Edwards [27], among others. The main difference resides 
in the interpretation of the likelihood function as defining a belief function. This interpretation allows us to quantify the 
uncertainty in statements of the form θ ∈ H , where H may contain multiple values. This is in contrast with the classical 
likelihood approach, in which only the likelihood of single hypotheses is defined. The belief function interpretation provides 
an easy and natural way to combine statistical information with expert opinions (see, e.g., [6]). It will also allow us to 
provide an original solution to the prediction problem, as will be shown in Section 4.
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Fig. 1. Contour function on θ for an iid sample from U([0, θ]), with y(n) = 1 and n ∈ {5,10,50}.

Frequentists tests and confidence regions We can also notice that Pl	y (H) given by (26) is identical to the likelihood ra-
tio statistic for H . From Wilk’s theorem [66], we know that, under regularity conditions, the large sample distribution of 
−2 ln Ply(H), when H holds, is chi-squared, with degrees of freedom equal to the number r of restrictions imposed by H . 
Consequently, rejecting hypothesis H if its plausibility is smaller than exp(−χ2

r;1−α/2), where χ2
r;1−α is the 1 − α-quantile 

of the chi-square distribution with r degrees of freedom, is a testing procedure with significance level approximately equal 
to α. Another consequence is that the likelihood (or plausibility) regions (24) are approximate confidence regions [34]. 
Recently, Martin [43] proposed to define the plausibility of any hypothesis H not as (26), but as

Pl	y (H) = sup
θ∈H

Fθ (R y(θ)), (29)

where Fθ is the cdf of RY (θ) when Y ∼ fθ . In this way, rejecting H when Pl	y (H) ≤ α is an exact testing procedure with 
size α, and exact confidence regions can be constructed. However, this estimation method is no longer compatible with 
Bayesian inference, i.e., combining Pl	y defined by (29) with a prior using Dempster’s rule does not yield the Bayesian 
posterior. Imposing this condition, as done in this paper, thus rules out (29) as a valid definition for the plausibility of a 
hypothesis.

Profile likelihood Assume that θ = (ξ , ν), where ξ is a (vector) parameter of interest and ν is a nuisance parameter. Then, 
the marginal contour function for ξ is

ply(ξ) = sup
ν

ply(ξ ,ν), (30)

which is the profile relative likelihood function. The profiling method for eliminating nuisance parameter thus has a nat-
ural justification in our approach. When the quantities pl y(ξ) cannot be derived analytically, they have to be computed 
numerically using an iterative optimization algorithm.

Rejection sampling The likelihood-based method described here does not require any prior knowledge of θ . However, by 
construction, this approach boils down to Bayesian inference if a prior probability g(θ) is provided and combined with Bel	y
by Dempster’s rule. As it will usually not be possible to compute the analytical expression of the resulting posterior distri-
bution, it can be approximated by Monte Carlo simulation, using Algorithm 1. The algorithm generates a sample θ1, . . . , θ N
from the posterior distribution g(θ |y). The particular form of this algorithm when the likelihood-based belief function is 
combined with a Bayesian prior is described as Algorithm 2. We can see that this is just the rejection sampling algorithm 
with the prior g(θ) as proposal distribution. The rejection sampling algorithm can thus be seen, in this case, as a Monte 
Carlo approximation to Dempster’s rule of combination.

3.3. Consistency

In this section, we assume that the observed data y = (y1, . . . , yn) is a realization of an iid sample Y = (Y1, . . . , Yn)

from Y ∼ fθ (y). In such a situation, it is generally required from any statistical procedure that it precisely identifies the 
true value θ0 of parameter θ in the limit, when n tends to infinity. Since, in our case, the result of the estimation is given 
in the form of a belief function on the parameter space 	, this consistency property has to be given a precise definition. In 
Bayesian statistics, a posterior distribution μn is said to be consistent at θ0 if, for every neighborhood N of θ0, μn(N) → 1
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Algorithm 2 Monte Carlo algorithm for combining the likelihood-based belief function with a Bayesian prior by Dempster’s 
rule.
Require: Desired number of focal sets N

i ← 0
while i < N do

Draw s in [0, 1] from the uniform probability measure λ on [0, 1]
Draw θ from the prior probability distribution g(θ)

if ply(θ) ≥ s then
i ← i + 1
θ i ← θ

end if
end while

almost surely under the law determined by θ0. As we shall see, a similar property holds, under mild conditions, for the 
likelihood-based belief function defined in Section 3.1.

In the following, to emphasize the dependency on the sample size n, we will index by n all the quantities depending 
on y. For instance, the likelihood and plausibility contour functions will be denoted, respectively, as Ln(θ) and pln(θ). The 
following theorem states that the plausibility of any value of θ different from the true value θ0 tends to 0 as the sample size 
tends to infinity. The simple proof given here follows closely that of Fraser [29, page 298]. We reproduce it for completeness.

Theorem 2. If Eθ0 [log fθ (Y )] exists, is finite for all θ , and has a unique maximum at θ0 , then, for any θ �= θ0 , pln(θ) → 0 almost 
surely under the law determined by θ0 .

Proof. As Eθ0 [log fθ (Y )] has a unique maximum at θ0, Eθ0 [log fθ (Y )] < Eθ0 [log fθ0(Y )] for any θ �= θ0 or, equivalently,

Eθ0 [log fθ (Y ) − log fθ0(Y )] = ε < 0. (31)

Hence, by the strong law of large numbers,

Pθ0

[
lim

n→∞
1

n

n∑
i=1

[log fθ (Yi) − log fθ0(Yi)] = ε

]
= 1. (32)

Now,

log
Ln(θ)

Ln(θ0)
=

n∑
i=1

[log fθ (Yi) − log fθ0(Yi)], (33)

so (32) can be written as

Pθ0

[
lim

n→∞
1

n
log

Ln(θ)

Ln(θ0)
= ε

]
= 1, (34)

which implies that

Pθ0

[
lim

n→∞ log
Ln(θ)

Ln(θ0)
= −∞

]
= 1, (35)

or, equivalently,

Pθ0

[
lim

n→∞
Ln(θ)

Ln(θ0)
= 0

]
= 1. (36)

Finally, Ln (̂θ) ≥ Ln(θ0), hence

pln(θ) = Ln(θ)

Ln (̂θ)
≤ Ln(θ)

Ln(θ0)
, (37)

from which we can deduce that pln(θ) → 0 almost surely. �
From the consistency of the MLE, it might be expected that pln(θ0) → 1 almost surely. However, this is not the case 

in general. A recalled in Section 3.2, −2 log pln(θ0) converges in distribution to a chi square distribution with 1 degree 
of freedom, hence pln(θ0) does not converge to 1. However, it can be shown that, under mild conditions, the belief and 
plausibility functions become more and more concentrated around θ0 when the sample size tends to infinity. This is a 
consequence of the following theorem, which follows directly a result proved by Fraser [29, page 301].

In the following, we assume that 	 = R
d and we denote by Bρ(θ) the ball of radius ρ about θ ,
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Bρ(θ) = {θ ′ ∈ 	 : ‖θ − θ ′‖ < ρ}. (38)

We also denote by Bρ(∞) a ball about ∞, defined as

Bρ(∞) = {θ ∈ 	 : ‖θ − 0‖ > 1/ρ}. (39)

Theorem 3. If the following assumptions hold,

1. fθ (y) is a continuous function of θ in Rd ∪ {∞};
2. For each θ �= θ0 , the distribution fθ (y) is different from fθ0(y);
3. For each θ ′ in Rd ∪ {∞}, there is a neighborhood Bρ(θ ′) such that

sup
θ∈Bρ(θ ′)

log fθ (y) ≤ Mθ ′(y), (40)

where Mθ ′ (y) is a bounding function with finite mean value Eθ0 [Mθ ′ (Y )], and the expectation Eθ0 [log fθ ′ (Y )] is finite;

then, for any δ > 0,

Pθ0

[
lim

n→∞ Pl	n (Bδ(θ0)) = 0
]

= 1. (41)

Proof. Under the assumptions of the theorem, Fraser [29, page 301] shows that

Pθ0

[
lim

n→∞ sup
‖θ−θ0‖≥δ

log
Ln(θ)

Ln(θ0)
= −∞

]
= 1. (42)

The theorem follows directly from (37) and (42). �
As an immediate corollary, the belief and the plausibility of any neighborhood of θ 0 tends to 1 almost surely.

Corollary 1. Under the assumptions of Theorem 3, for any neighborhood N of θ0 , Bel	n (N) → 1 and Pl	n (N) → 1 almost surely under 
the law determined by θ0 .

Proof. For any δ > 0, the following equality holds:

Bel	n (Bδ(θ0)) = 1 − Pl	n (Bδ(θ0)). (43)

Consequently, Bel	n (Bδ(θ0)) → 1 almost surely. For any neighborhood N of θ0, there is some δ > 0 such that Bδ(θ0) ⊆ N , 
so Bel	n (N) ≥ Bel	n (Bδ(θ0)) and Bel	n (N) → 1 almost surely. As Pl	n (N) ≥ Bel	n (N), it also holds that Pl	n (N) → 1 almost 
surely. �
4. Prediction

The prediction method introduced in [36] will first be recalled in Section 4.1, and its consistency in the case of iid data 
will be established in Section 4.2. Practical calculation of the predictive belief function using Monte Carlo will then be ad-
dressed in Section 4.3. Finally, the method will be extended to the prediction of multidimensional quantities in Section 4.4.

4.1. Basic method

As we have seen in Section 3, the estimation problem is to make statements about some parameter θ after observing 
some data y with distribution fθ (y). The prediction problem considered in this section is, in some sense, the inverse of 
the previous one: given some knowledge about θ obtained by observing y (represented here by a belief function), we wish 
to make statements about some future data Z ∈ Z, whose conditional distribution f y,θ (z) given y depends on θ . In some 
cases, y = (y1, . . . , yn) is a vector composed of the n first observations of an iid sample, and Z = (Yn+1, . . . , Yn+m) is a 
vector containing m observations to be drawn independently from the same distribution. However, the model used here is 
more general. For instance, y = (y0, y1, . . . , yT ) might be a time series and Z = (ZT +1, . . . , ZT +h) might represent h future 
values to be predicted. Vectors y and Z may also depend on some covariates, as in the regression model considered in 
Section 5.

To describe our prediction method, let us consider the case where the unobserved data Z is one-dimensional.2 The 
multidimensional case will be addressed in Section 4.4. The main idea is to write Z , for fixed y , as function of θ and some 
pivotal variable W , whose distribution does not depend on θ ,

2 We use normal fonts for scalars, and bold fonts for vectors.
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Z = ϕy(θ , W ). (44)

Hereafter, such an equation will be called a ϕ-equation. In practice, function ϕy can be constructed canonically as follows. 
Let us first assume that Z is a continuous r.v. Let Fθ ,y(z) be its conditional cdf given y . We know that W = Fθ ,y(Z) has a 
standard uniform distribution, and one can write Z as a function of θ and W as

Z = F −1
θ,y(W ), (45)

with W ∼ U([0, 1]), which has the same form as (44). When W is discrete, (45) is still valid if F −1
θ ,y now denotes the 

generalized inverse of Fθ ,y ,

F −1
θ,y(W ) = inf{z|Fθ,y(z) ≥ W }. (46)

Example 2. Assume that Z has a continuous uniform distribution on [0, θ] and is independent from Y . Then Fθ (z) = z/θ
for all 0 ≤ z ≤ θ and we can write Z = θW with W ∼ U([0, 1]). �
Example 3. Let Z be a normal r.v. with mean μ and standard deviation σ . Let θ = (μ, σ). Then

Fθ (Z) = �

(
Z − μ

σ

)
= W ∼ U([0,1]),

from which we get

Z = μ + σ�−1(W ). �
For fixed y, Equation (44) describes a relation between z, θ and an auxiliary variable W with standard uniform distri-

bution. Dempster [12,13,15] used such an equation to construct a belief function on θ after observing Z = z. Here, we will 
use it to construct a belief function on Z , given the belief function on θ induced by the likelihood function L y(θ). For that 
purpose, we can notice that Equation (44) defines a multi-valued mapping

�′
y : w → �′

y(w) = {(z, θ) ∈ Z× 	|z = ϕy(θ, w)}, (47)

where Z is the sample space of z. The source ([0, 1], B([0, 1]), λ, �′
y), where B([0, 1]) is the Borel sigma-field on [0, 1], 

defines a joint belief function BelZ×	
y on Z × 	.

We now have two belief functions, Bel	y and BelZ×	
y , induced by multi-valued mapping s → �y(s) and w → �′

y(w). 
Given y, the random variables S and W are independent: for instance, if we know that S = s, i.e., θ ∈ �y(s), this information 
influences our beliefs about Z (because Z depends on θ ), but it does not influence our beliefs about W , which continues 
to have a standard uniform distribution. Because of this independence property, the two belief functions Bel	y and BelZ×	

y

can be combined by Dempster’s rule. After marginalizing on Z, we then get a predictive belief function BelZy on Z. The focal 
sets of the combined belief function are obtained by taking the intersections(

Z× �y(s)
)∩ �′

y(w) = {(z, θ) ∈ Z× 	|z = ϕy(θ , w), θ ∈ �y(s)}. (48)

Projecting these sets on Z, we get

{z ∈ Z|z = ϕy(θ, w), θ ∈ �y(s)} = ϕy(�y(s), w). (49)

Let �′′
y denote the multi-valued mapping

(s, w) → ϕy(�y(s), w). (50)

The predictive belief function BelZy is thus induced by the source

([0,1]2,B([0,1]2), λ2,�
′′
y), (51)

where λ2 is the uniform probability measure in [0, 1]2. We then have

BelZy(A) = λ2

(
{(s, w) ∈ [0,1]2|ϕy(�y(s), w) ⊆ A}

)
, (52a)

PlZy(A) = λ2

(
{(s, w) ∈ [0,1]2|ϕy(�y(s), w) ∩ A �= ∅}

)
, (52b)

for any subset A of Z for which the above expressions are well-defined.
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Fig. 2. Lower and upper predictive cdf for y(n) = 1 and n = 5 (Example 4).

Example 4. Continuing Examples 1 and 2, assume that Y1, . . . , Yn, Z is iid from U([0, θ]). We have seen that the belief 
function Bel	y after observing Y = y is induced by the random interval [y(n), y(n) S−1/n]. As function ϕ(θ, W ) = θW is 
continuous in θ , each focal set of BelZy is an interval

ϕ(�y(s), w) = [y(n)w, y(n)s−1/n w], (53)

so that BelZy is induced by the random interval

[ Ẑ y∗, Ẑ∗
y] = [y(n)W , y(n)S−1/n W ]. (54)

From (13)–(14), the upper and lower cdfs of BelZy are, respectively, the cdfs of Ẑ y∗ and Ẑ∗
y . As Ẑ y∗ ∼ U([0, y(n)]), we have

F ∗(z) = PlZy((−∞, z]) = P( Ẑ y∗ ≤ z) =

⎧⎪⎨⎪⎩
0 if z ≤ 0,

z/y(n) if 0 < z ≤ y(n),

1 if z > y(n),

(55)

and

F∗(z) = BelZy((−∞, z]) = P( Ẑ y∗ ≤ z) (56a)

=
1∫

0

P(y(n) S−1/nW ≤ z|W = w)dw (56b)

=
1∫

0

P(S ≥ (wy(n)/z)n)dw (56c)

=

⎧⎪⎪⎨⎪⎪⎩
0 if z ≤ 0,

nz
(n+1)y(n)

if 0 < z ≤ y(n),

1 − 1
n+1

(
z

y(n)

)n
if z > y(n).

(56d)

These functions are plotted in Fig. 2 for y(n) = 1 and n = 5.
The lower expectation of Z is E∗(Z) = y(n)E(W ) = y(n)/2, and its upper expectation is E∗(Z) = y(n)E(S−1/n)E(W ). It is 

easy to show that E(S−1/n) = n/(n − 1). Hence,

E
∗(Z) = ny(n)

2(n − 1)
. (57)

It is interesting to study to the behavior of the predictive random interval (54) when the sample size n tends to infinity. 
From the consistency of the MLE, Y(n) converges in probability to θ0, so
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ẐY ∗ = Y(n)W
d−→ θ0W = Z , (58)

where d−→ denotes convergence in distribution. We have seen that E(S−1/n) = n/(n − 1), and

Var(S−1/n) = n

(n − 2)(n − 1)2
. (59)

Consequently, E(S−1/n) → 1 and Var(S−1/n) → 0, so S−1/n P−→ 1. Hence,

Ẑ∗
Y = Y(n) S−1/nW

d−→ θ0W = Z . (60)

In this example, the predictive random interval is thus consistent, in the sense that its bounds converge in probability to 
the true distribution of Z . In the next section, we will see that this property generally holds under mild conditions. �
4.2. Consistency

In this section, we will assume that the observed data y = (y1, . . . , yn) is a realization of an iid sample Y = (Y1, . . . , Yn). 
Furthermore, we will assume that the likelihood function Ln(θ) is unimodal and upper-semicontinuous, so that its level 
sets �n(s) are closed and connected, and that function ϕ(θ , w) is continuous. Under these conditions, the random set 
ϕ(�n(S), W ) is a closed random interval [ Ẑ∗n, ̂Z∗

n ]. We then have the following theorem:

Theorem 4. Assume that the conditions of Theorem 3 hold, and that the predictive belief function BelZn is induced by a random closed 
interval [ Ẑ∗n, ̂Z∗

n ]. Then ̂Z∗n and ̂Z∗
n both converge in distribution to Z when n tends to infinity.

Proof. Let S1, S2, . . . be an iid sequence of random variables with a standard uniform distribution, and let θ̃ 1, ̃θ2, . . . be a 
sequence of random variables such that ̃θn ∈ �n(Sn). According to Theorem 3, for any δ > 0, we have,

lim
n→∞ Beln(Bδ(θ0)) = lim

n→∞P(�(Sn) ⊆ Bδ(θ0)) = 1, (61)

almost surely under the law determined by θ0. Since ̃θn ∈ �n(Sn), its follows that

lim
n→∞P(‖̃θn − θ0‖ ≤ δ) = 1, (62)

i.e., ̃θn converges in probability to θ0. Now,

Ẑ∗n = minϕ(�n(Sn), W ) = ϕ(̂θ∗n, W ), (63)

for some θ̂∗n ∈ �n(Sn). As shown above, θ̂∗n converges in probability to θ0. By the continuity of ϕ , it results that Ẑ∗n

converges in distribution to ϕ(̂θ∗n, W ) = Z . The same line of reasoning leads to a similar conclusion for Ẑ∗
n . �

4.3. Practical calculation

For most models, the calculations cannot be done analytically as in Example 4, and one often has to approximate the 
quantities defined in (52) by Monte Carlo simulation. Some computational issues are discussed in this section.

Hereafter, we will assume that each focal set ϕy(�y(s), w) to a closed interval [z∗(s, w), z∗(s, w)], in which case the 
predictive belief function BelZy is equivalent to a random closed interval. If this is not the case, due to, e.g., the multi-modality 
of the likelihood function L y(θ), then we can always represent each focal set ϕy(�y(s), w) by its interval hull [ϕy(�y(s), w)]
(i.e., the smallest enclosing interval). This strategy yields a conservative approximation, in the sense that the approximating 
belief-plausibility intervals always contain the true ones.

Basically, the general Monte Carlo approach is to draw N pairs (si, wi) independently from a uniform distribution, and to 
compute (or approximate) the focal sets ϕy(�y(si), wi). The predictive belief and plausibility of any subset A ⊆ Z are then 
estimated by

B̂el
Z

y(A) = 1

N
#{i ∈ {1, . . . , N}|ϕy(�y(si), wi) ⊆ A}, (64a)

P̂l
Z

y(A) = 1

N
#{i ∈ {1, . . . , N}|ϕy(�y(si), wi) ∩ A �= ∅}. (64b)

When each focal set ϕy(�y(si), wi) is a closed interval [z∗(si, wi), z∗(si, wi)], the lower and upper expectations of Z can be 
estimated, respectively, by the sample means of z∗(si, wi) and z∗(si, wi).

The main questions to be considered are (1) how to generate the pairs (si, wi), and (2) how to compute the focal sets 
ϕy(�y(si), wi).
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Generation of the pairs (si, wi): To generate the pairs (si, wi), we may use a uniform random number generator. However, 
better results can be obtained using quasi-random low-discrepancy sequences such as Halton sequences [33], [32, page 625]. 
A sequence of Halton draws is generated as follows. Let r be a prime number greater than two. An integer g can be 
expressed in terms of the base r as

g =
I∑

i=0

bir
i, (65)

where 0 ≤ bi ≤ r − 1 and r I ≤ g ≤ r I+1. The Halton sequence is then the series

H(g) =
I∑

i=0

bir
−i−1, (66)

for g = 1, 2, . . . , N . To generate a two-dimensional series, we select two prime numbers r and r′ .

Computation of the focal sets ϕy(�y(si), wi) The basic method is to search for the minimum and the maximum of ϕy(θ , wi)

under the constraint ply(θ) ≥ si , which can be achieved using an iterative constrained nonlinear optimization algorithm. In 
some cases, however, these optimization problems can be simplified.

First, consider the case where the parameter θ is a scalar. If the contour function is upper-semicontinuous and multi-
modal, the constraint pl y(θ) ≥ si can be expressed as θ̂∗(si) ≤ θ ≤ θ̂∗(si), where θ̂∗(si) and θ̂∗(si) are the solutions of the 
equation ply(θ) = si . These solutions can be found by any root-finding algorithm. If function ϕy (θ, wi) is monotone in θ , 
then the minimum and maximum of ϕy(θ, wi) can be found directly.

In the case where y = (y1, . . . , yn) is a realization of an iid sample, then the contour function will often be, for large n, 
approximately Gaussian [18],

ply(θ) ≈ exp

[
−1

2
I y(θ̂)(θ − θ̂ )2

]
, (67)

where I y(θ̂) is the observed information defined as

I y(θ̂) = − ∂2 log ply(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

= −∂2 log L y(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

. (68)

The equation ply(θ) = si then has the following two approximate solutions

θ̂∗(si) ≈ θ̂ −
√

−2 log si

I y(θ̂ )
(69a)

θ̂∗(si) ≈ θ̂ +
√

−2 log si

I y(θ̂ )
. (69b)

Before studying the multidimensional case, let us consider the following example.

Example 5. Let y = (y1, . . . , yn) be a realization from an iid sample from the exponential distribution with rate parameter θ , 
with pdf

fθ (y) = θ exp(−θ y)1[0,+∞)(y) (70)

and cdf

Fθ (y) = 1 − exp(−θ y). (71)

Let Z be an independent r.v. with the same distribution as Y . By solving the equation Fθ (Z) = W , we get the ϕ-equation

Z = − log(1 − W )

θ
, (72)

where W is a r.v. with a standard uniform distribution. The contour function is

ply(θ) =
(

θ

θ̂

)
exp

[
(θ̂ − θ)

n∑
i=1

yi

]
, (73)

with θ̂ = 1/y is the inverse of the mean of the yi . The focal sets ϕy(�y(si), wi) are the intervals [z∗(si, wi), z∗(si, wi)] with
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Fig. 3. Lower and upper cdf for the exponential data (Example 5): exact bounds (plain curves) and normal approximations (dotted curves).

Fig. 4. Example of convergence of B̂el
Z

y ([0, 3]) to BelZy ([0, 3]) for Halton draws (upper solid line) and random draws (lower interrupted line) from a uniform 
distribution.

z∗(si, wi) = − log(1 − wi)

θ̂∗(si)
and z∗(si, wi) = − log(1 − wi)

θ̂∗(si)
, (74)

where θ∗(si) and θ∗(si) are the solutions of the equation pl y(θ) = si . These solutions have no analytical expression, but they 
can be approximated by

θ̂∗(si) ≈ θ̂

(
1 −

√
−2

log si

n

)
(75a)

θ̂∗(si) ≈ θ̂

(
1 +

√
−2

log si

n

)
. (75b)

Fig. 3 shows lower and upper cdfs computed with N = 10, 000 focal sets, for n = 30 observations drawn from the 
exponential distribution with θ = 1. The MLE of θ was θ̂ = 1.010396. The solid and dotted lines correspond, respectively, to 
the exact bounds and to the normal approximations. We can see that the approximation is already very good for moderate n. 
Fig. 4 shows the convergence of B̂el

Z

y([0, 3]) to BelZy([0, 3]) for Halton draws and random draws from a uniform distribution. 
The convergence of the Halton estimator is clearly faster, which confirms previous findings [32, page 628]. �
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Let us now consider the case where 	 = R
p with p > 1. When p is large, the minimization and maximization of 

ϕy(θ, wi) under the constraint ply(θ) ≥ si , for each pair (si, wi), may be time-consuming. However, an outer approximation 
of the predictive belief function can be computed efficiently as follows. Let pl y(θ j) be the marginal contour function for 
component j of θ ,

ply(θ j) = sup
θ− j

ply(θ), (76)

where θ− j is the subvector of θ with component j removed. Assuming pl y(θ j) to be unimodal and upper-semicontinuous, 
let θ̂ j∗(si) and θ̂∗

j (si) be the two roots of the equation ply(θ j) = si . Then, the Cartesian product of the intervals 
[θ̂ j∗(si), ̂θ∗

j (si)] contains �y(si),

p∏
j=1

[θ̂ j∗(si), θ̂
∗
j (si)] ⊇ �y(si). (77)

Let ̃z∗(si, wi) and ̃z∗(si, wi) be the minimum and the maximum of ϕy(θ, wi) under the constraints θ̂ j∗(si) ≤ θ j ≤ θ̂∗
j (si) for 

j = 1, . . . , p. From (77), we have

z̃∗(si, wi) ≤ z∗(si, wi) ≤ z∗(si, wi) ≤ z̃∗(si, wi), (78)

where z∗(si, wi) and z∗(si, wi) are the minimum and the maximum of ϕy(θ , wi) under the constraint ply(θ) = si . The 
approximating intervals

[̃z∗(si, wi), z̃∗(si, wi)]
thus contain the true focal intervals [z∗(si, wi), z∗(si, wi)], resulting in an outer approximation of the true predictive belief 
function.

Example 6. Let y = (y1, . . . , yn) be a realization of an iid sample from the normal distribution with mean μ and stan-
dard deviation σ . The vector of parameters is thus θ = (μ, σ). Let Z be an unobserved random quantity with the same 
distribution. As mentioned in Example 3, we can write Z as

Z = ϕ(θ, W ) = μ + σ�−1(W ), (79)

where � denotes the cdf of the standard normal distribution and W has a standard uniform distribution. The contour 
function on 	 is

ply(μ,σ ) =
(

s2

σ 2

)n/2

exp

(
n

2
− 1

2σ 2

n∑
i=1

(yi − μ)2

)
, (80)

where s2 is the sample variance. The focal sets ϕ(�y(si), wi) are closed intervals [z∗(si, wi), z∗(si, wi)], where z∗(si, wi)

and z∗(si, wi) are the minimum and the maximum of ϕ(θ , wi) under the nonlinear constraint pl y(μ, σ) = si . Now, the 
marginal contour functions are

ply(μ) = ply(μ, σ̂ 2(μ)) =
(

s2

σ̂ 2(μ)

)n/2

, (81)

where

σ̂ 2(μ) = 1

n

n∑
i=1

(yi − μ)2, (82)

and

ply(σ ) = ply(y,σ 2) =
(

s2

σ 2

)n/2

exp

[
n

2

(
1 − s2

σ 2

)]
. (83)

Let μ̂∗(si) and μ̂∗(si) be the roots of the equation ply(μ) = si . Similarly, let σ̂∗(si) and σ̂ ∗(si) be the roots of the equation 
ply(σ ) = si . We have

z̃∗(si, wi) =
{
μ̂∗(si) + σ̂∗(si)�

−1(wi) if wi ≥ 0.5

μ̂∗(si) + σ̂ ∗(si)�
−1(wi) if wi < 0.5,

(84a)

z̃∗(si, wi) =
{
μ̂∗(si) + σ̂ ∗(si)�

−1(wi) if wi ≥ 0.5

μ̂∗(si) + σ̂∗(si)�
−1(wi) if wi < 0.5.

(84b)
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Fig. 5. Lower and upper cdf for the normal data (Example 6): exact bounds (solid lines), approximations using the marginal contour functions (interrupted 
lines) and plug-in cdf �((z − y)/s2) (central dotted line).

Fig. 5 shows lower and upper cdfs computed using the exact focal intervals [z∗(si, wi), z∗(si, wi)] (solid lines) and using 
the approximations [̃z∗(si, wi), ̃z∗(si, wi)] (interrupted lines), for a normal sample of size n = 10 with y = 0.3083027 and 
s2 = 1.006766. We also show the plug-in cdf �((z − y)/s2) (central dotted line). We can see that, in this case, the outer 
approximation is quite accurate. We will see later that this is not always true (see Example 9). Further research is needed 
to determine the conditions under which this approximation method produces acceptable results. �
4.4. Prediction of a multidimensional variable

Until now, we have assumed, for simplicity, the predicted variable Z to be one-dimensional. However, the method can 
be extended in a straightforward way to the more general case where the data Z to be predicted is a vector. Assume, for 
instance, that Z is a two-dimensional vector (Z1, Z2). We can express the marginal distribution of Z1 and the conditional 
distribution of Z2 given z1 as follows,

Z1 = F −1
y,θ (W1) (85a)

Z2 = F −1
y,z1,θ (W2), (85b)

where F y,θ is the conditional cdf of Z1 given y, F y,z1,θ is the conditional cdf of Z2 given y and z1, and W = (W1, W2) has 
a uniform distribution in [0, 1]2. This line of reasoning shows that any d-dimensional vector z can be written as

Z = ϕy(θ , W ), (86)

where W has a uniform distribution on [0, 1]d . The predictive belief function BelZy is then induced by the source

([0,1]d+1,B([0,1]d+1), λd+1,�
′′
y), (87)

where λd+1 is the uniform probability measure in [0, 1]d+1 and �′′
y is the multi-valued mapping

(s, w) → ϕy(�y(s), w). (88)

In general, the focal sets �′′
y(s, w) are subsets of Rd with arbitrary shape. They can be approximated by boxes

B(s, w) =
d∏

k=1

[z∗k(s, w), z∗
k (s, w)], (89)

where z∗k(s, w) and z∗
k (s, w) are, respectively, the minimum and maximum of the k-th component of z under the constraint 

ply(θ) ≥ s.

Example 7. Consider an AR(1) process

Xt = c + φ Xt−1 + εt, (90)
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with εt ∼N (0, σ 2). Let y = (x1, . . . , xT ) the observed sequence between times 1 and T . Given that

X1 ∼ N
(

c

1 − φ
,

σ 2

1 − φ2

)
and

Xt |xt−1 ∼ N
(

c + φxt−1,σ
2
)

the likelihood function can easily computed as

L y(θ) = f (x1)

T∏
t=2

f (xt |xt−1), (91)

where θ = (c, φ, σ). The contour function is then ply(θ) = L y(θ)/L y (̂θ), where the MLE ̂θ has to be computed numerically. 
Assume now that we wish to predict the next two terms of the sequence, and let Z = (XT +1, XT +2). We can write

Z1 = c + φxt + σ�−1(W1) (92a)

Z2 = c + φz1 + σ�−1(W2) (92b)

= c + φc + φ2xt + φσ�−1(W1) + σ�−1(W2). (92c)

Vector Z can thus be written as Z = ϕy(θ, W1, W2), with (W1, W2) having a uniform distribution on [0, 1]2. The focal sets 
ϕy(�y(s), w) are regions of R2 defined as

ϕy(�y(s), w) = {(z1, z2) : ∃(c, φ,σ ),pl y(c, φ,σ ) ≥ s,

z1 = c + φxt + σ�−1(w1), z2 = c + φz1 + σ�−1(z2)}. (93)

They can be approximated by boxes

B(s, w) = [z∗1(s, w), z∗
1(s, w)] × [z∗2(s, w), z∗

2(s, w)], (94)

with

z∗1(s, w) = min
c,φ,σ

[c + φxt + σ�−1(w1)] (95a)

z∗
1(s, w) = max

c,φ,σ
[c + φxt + σ�−1(w1)] (95b)

z∗2(s, w) = min
c,φ,σ

[c + φc + φ2xt + φσ�−1(w1) + σ�−1(w2)] (95c)

z∗
2(s, w) = max

c,φ,σ
[c + φc + φ2xt + φσ�−1(w1) + σ�−1(w2))], (95d)

under the constraint ply(c, φ, σ) ≥ s.

4.5. Comparison with previous work

In this section, we briefly discuss the relationships between our approach and previous work on statistical prediction in 
the belief function framework.

Dempster’s approach [12,13] is entirely based on ϕ-equations such as (44) (see also [2, page 251]). With our notation, 
this approach is to write (Y , Z) as function of θ and a pivotal random variable W ,

(Y , Z) = ϕ(θ , W ), (96)

which induces a belief function of the product space Y × Z × 	. Conditioning on the observed data y and marginalizing 
on Z then yields a predictive belief function on Z. This approach is appealing because of its conceptual simplicity. However, 
it has proved difficult to put at work in practice, except for very simple models. Our method combines Shafer’s idea of 
building a consonant belief function from the likelihood function, with Dempster’s ϕ-equation used only in the prediction 
step, resulting in a well-founded and yet computationally tractable method.

One could imagine using a different method to construct a belief function in the estimation step. Shafer [59] mentions 
three methods, including Smets’ Generalized Bayes Theorem [60,61]. However, this method is only applicable in the very 
specific situation where the parameter space 	 is finite, and we have independent datasets for each single parameter 
value θk ∈ 	 [23]. These conditions are usually non satisfied in statistical inference problems. As argued in Section 3, the 
likelihood-based approach to representing statistical evidence is both well-founded theoretically and easy to use for a wide 
range of statistical problems.
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In [16], Denoeux proposed a different method to build a predictive belief function for a discrete variable Z , based on 
multinomial confidence regions. This approach was extended to the case of a continuous variable in [3], using confidence 
bands on the cdf. Predictive belief functions constructed using this approach have the property that they are dominated by 
the true probability distribution of Z with some confidence level 1 −α, i.e., for a proportion of at least 1 −α of the observed 
samples. In [4], a different approach based on the inverse pignistic transformation [26] was proposed. In this approach, we 
consider a set P of probability distributions that contains the true distribution of Z with some specified probability. We then 
demand that the pignistic probability distribution [62] of the predictive belief function be contained in P , and we construct 
the most committed consonant belief function that is less committed than any belief function having this property. These 
two approaches have a frequentist flavor and can be implemented using multinomial confidence regions and confidence 
bands in the case of iid data. In contrast with the method described here, they are, however, fundamentally incompatible 
with Bayesian reasoning. Our new approach is also more widely applicable, as it does not rely on the iid assumption.

In a recent paper3 [44], Martin and Lingham propose a different approach in the Inferential Model framework [45,46]. 
This approach starts with two separate ϕ-equations for Y and Z ,

Y = ϕ(θ , W ) and Z = ϕ′(θ, W ′). (97)

Solving for θ in the first equation and plugging in to the second one yields a new ϕ equation of the form

Z = ϕ′(θ(Y , W ), W ′), (98)

which they rewrite as Z = ϕ′′(Y , W ′′). They then define a predictive random set for W ′′ , which, for fixed y, allows them to 
define the plausibility of any assertion A ⊂ Y of interest. The authors indicate that “the choice of a predictive random set 
ought to depend on the assertion A of interest”. The approach thus departs from the classical Dempster–Shafer theory, in 
which belief functions quantify degrees of belief. In contrast, our method sticks strictly to this subjective interpretation. As 
both approaches have been developed independently and almost simultaneously, more work is needed to carry out a deep 
analysis of the relative merits of the two approaches, both from the theoretical and practical viewpoints.

5. Application to regression

To provide a more detailed illustration of the way the above estimation and prediction methods can be put at work, we 
will discuss their use for regression analysis. The estimation and prediction problems will first addressed, respectively, in 
Sections 5.1 and 5.2. Finally, the prediction problem with uncertain inputs will be studied in Section 5.3.

5.1. Estimation

We consider the following standard linear regression model,

y = Xβ + ε, (99)

where y = (y1, . . . , yn)′ is the vector of n observations of the dependent variable, X is the fixed design matrix of size 
n × (p + 1), such that the first column contains 1’s and column j (1 ≤ j ≤ p) contains the observations of the j-th covariate, 
and ε = (ε1, . . . , εn)′ is the vector of errors, assumed to be normally distributed with mean 0 and covariance matrix σ 2 In , 
where In is the identity matrix of size n. The vector of coefficients is θ = (β ′, σ)′ . The likelihood function for this model is

L y(θ) = (2πσ 2)−n/2 exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
. (100)

Assuming X to have full column rank, the MLE of β is the ordinary least squares estimate

β̂ = (X ′ X)−1 X ′ y (101)

and the MLE of σ is the standard deviation of residuals:

σ̂ =
√

(y − Xβ̂)′(y − Xβ̂)/n. (102)

The contour function (25) can thus be readily calculated as

ply(θ) = L y(θ)/L y (̂θ), (103)

with ̂θ = (β̂
′
, ̂σ)′ .

Let us now consider assertions (hypotheses) H of the form Rβ = q, where R is a r × (p + 1) constant matrix and q is a 
constant vector of length r, for some r ≤ p + 1. (Equations of the form Rβ = q are sometimes called “linear restrictions”). 

3 We thank an anonymous reviewer for bringing this work to our attention.
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Table 1
Regression coefficients (movie example).

Estimate Std. Error t-value p-value Pl(β j = 0)

(Intercept) 15.400 0.643 23.960 <2e−16 1.0e−34
G 0.384 0.553 0.695 0.49 0.74
PG 0.534 0.300 1.780 0.081 0.15
PG13 0.215 0.219 0.983 0.33 0.55
LOGBUDGET 0.261 0.185 1.408 0.17 0.30
STARPOWR 4.32e−3 0.0128 0.337 0.74 0.93
SEQUEL 0.275 0.273 1.007 0.32 0.54
ACTION −0.869 0.293 −2.964 4.7e−3 6.6e−3
COMEDY −0.0162 0.256 −0.063 0.95 0.99
ANIMATED −0.833 0.430 −1.937 0.058 0.11
HORROR 0.375 0.371 1.009 0.32 0.54
BUZZ 0.429 0.0784 5.473 1.4e−06 4.8e−07

This general formulation includes as special cases usual assumptions of the forms {β j = 0}, {β j = 0, ∀ j ∈ {1, . . . , p}}, or 
{β j = βk}. The plausibility of H is

Pl	y (H) = sup
Rβ=q

ply(θ). (104)

The solution of this linearly constrained optimization problem is given by the restricted least-squares estimate ̂θ∗ = (β̂
′
∗, ̂σ∗)′ , 

which has the following expression [32, page 122],

β̂∗ = β̂ − (X ′ X)−1 R ′[R(X ′ X)−1 R ′]−1(Rβ̂ − q), (105)

and

σ̂∗ =
√

(y − Xβ̂∗)′(y − Xβ̂∗)/n. (106)

We then have

Pl	y (H) = L y (̂θ∗)
L y (̂θ)

. (107)

Equations (105)–(107) allow us, in particular, to compute the marginal contour functions pl y(β j). The marginal contour 
functions ply(σ

2) is

ply(σ
2) =

(
σ̂ 2

σ 2

)n/2

exp

[
n

2

(
1 − σ̂ 2

σ 2

)]
. (108)

We note that assertions of the form c(β) = 0, where c is a nonlinear function, could be handled as well, the solving the 
corresponding nonlinear optimization problem numerically.

Example 8. As an example, we considered the task of predicting the box office success of movies. We used the same dataset4

as in [32, page 93], containing data about 62 movies released in 2009. We considered the logarithm of Box Office receipts as 
dependent variable, and 11 covariates: 3 dummy variables (G, PG, PG13) to encode the MPAA (Motion Picture Association of 
America) rating, logarithm of budget (LOGBUDGET), star power (STARPOWR), a dummy variable to indicate if the movie is a 
sequel (SEQUEL), four dummy variables to describe the genre (ACTION, COMEDY, ANIMATED, HORROR), and one variable to 
represent internet buzz (BUZZ). This last variable was constructed by aggregating four measures using principal component 
analysis, as described in [32, pages 93–94].

Table 1 shows the MLEs of the coefficients, together with the usual statistics (standard errors, t and p-values) and the 
plausibilities Pl(β j = 0) computed using (105)–(26). We can see that, from a practical point of view, the p-values and the 
plausibilities provide similar information. Both measures identify variables BUZZ, ACTION and, to a lesser extent, ANIMATED 
as having a coefficient significantly different from zero. However, they have completely different interpretations: the p-value 
is the probability, under the hypothesis β j = 0 and assuming new data to be repeatedly drawn, of observing an absolute 
value |T | of the t statistics as least as large as the observed value |t|. It is thus based on the assumption of repeated 
sampling, and it takes into account, in the computation of the probability, values of statistics |t| larger than the one that has 
actually been observed. In contrast, the assertion Pl(β j = 0) = α means that there is a vector β of coefficients, with β j = 0, 
whose likelihood, given the data, is α times the maximum likelihood. This interpretation only involves the observed data 

4 This dataset can be downloaded at http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.

http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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Fig. 6. Marginal contour functions for the coefficients of variables G (a) and BUZZ (b).

(and not any other data that might have been observed). More complete information can be gained by plotting the marginal 
contour functions ply(β j), such as displayed in Fig. 6 for parameters G and BUZZ.

Finally, it is common practice in regression analysis to test the hypothesis that all coefficients (except the intercept) are 
equal to zero. If this hypothesis is rejected, the regression is said to be significant. In our approach, the plausibility of this 
hypothesis can be computed using (105)–(107), with the restriction matrix R of size p × (p +1) such that Rij = 1 if j = i +1
and Rij = 1 otherwise, and taking q as a vector of p components, each of which is equal to zero. In the movie example, we 
get Pl y	(H) = 10−12, which clearly indicates that this hypothesis is extremely unlikely, given the data. �
5.2. Prediction

Prediction with the linear regression can be easily handled using the method described in Section 4. Let Z be a not-yet 
observed value of the dependent variable for a vector x0 of covariates:

Z = x′
0β + ε0, (109)

with ε0 ∼N (0, σ 2). We can write, equivalently,

Z = x′
0β + σ�−1(W ), (110a)

= ϕy(θ , W ), (110b)

where W has a standard uniform distribution. The predictive belief function on Z can then be approximated using the 
methods described in Section 4.3. The exact method necessitates, for each pair (si, wi), to compute the minimum and the 
maximum of the linear function x′

0β + σ�−1(wi) under the nonlinear constraint pl y ≥ si . The outer approximation method 
is to compute the si-level sets [β̂ j∗(si), ̂β∗

j (si)] and [σ̂∗(si), σ ∗(si)] of the marginal contour functions ply(β j) and ply(σ ). 
Each focal set ϕy(�y(si), wi) is then approximated by the interval [̃z∗(si, wi), ̃z∗(si, wi)], with

z̃∗(si, wi) =
∑

j:x0 j>0

β̂ j∗(si)x0 j +
∑

j:x0 j<0

β̂∗
j (si)x0 j +

(σ̂∗(si)1wi≥0.5 + σ̂ ∗(si)1wi<0.5)�
−1(wi) (111a)

z̃∗(si, wi) =
∑

j:x0 j>0

β̂∗
j (si)x0 j +

∑
j:x0 j<0

β̂ j∗(si)x0 j +

(σ̂ ∗(si)1wi≥0.5 + σ̂∗(si)1wi<0.5)�
−1(wi). (111b)

Example 9. Continuing Example 8, let us consider a reduced model with only the variables ACTION and BUZZ as inputs (as 
only these two factors have a significant effect on the dependent variable). Assume that, for a particular movie, we have the 
following input vector x0 = (1, 12.81)′ , meaning that it is an action film with buzz variable equal to 2.81. Fig. 7(a) displays 
the lower and upper cdfs of the predictive belief function, approximated using N = 5000 randomly generated focal sets, 
using the exact method (solid lines) and using the outer approximation method (interrupted lines). We can see that, in this 



O. Kanjanatarakul et al. / International Journal of Approximate Reasoning 72 (2016) 71–94 91
Fig. 7. (a): Lower and upper cdf for the prediction problem: exact values (solid lines) and outer approximations (interrupted lines); the central curve is the 
cdf of the plug-in distribution of Z ; the vertical dotted lines correspond to the frequentist 95% prediction interval. (b): pl-plot: plausibility PlZy ([z − δ, z + δ])
as a function of z, for δ ∈ {0, 0.5, 1, 2}.

case, the outer approximation method is very conservative, which may be due to a high correlation between the coefficient 
estimates. The figure also shows the bounds of the 95% prediction interval, as well as the cdf of the plug-in distribution 
of Z , which is the normal distribution with mean x′

0β̂ and standard deviation σ̂ . Fig. 7(b) is a “pl-plot”, which shows the 
plausibilities PlZy([z − δ, z + δ]) (computed using the exact method) as a function of z, for different values of δ. The plug-in 
estimate of the expectation of Z is 17.27. The lower–upper expectation interval is [17.02, 17.51]. Its estimation using the 
outer approximation method is [16.57, 17.97]. �
5.3. Prediction with uncertain inputs

From a practical point of view, a significant advantage of the predictive belief function formalism is the ease with 
which, being built upon the very general Dempster–Shafer framework, it can accommodate various sources of uncertain 
information. Consider, for example, the ex ante forecasting situation, in which some explanatory variables are unknown at 
the time of the forecast and have to be estimated or predicted. The classical way to handle this problem is to assume that 
x0 has been estimated with some variance, which has to be taken into account in the calculation of the forecast variance. 
However, as noted by Green [32, page 87], this problem is considered by many authors as “simply intractable” and, even 
with simplifying assumptions, “analytical results for the correct forecast variance remain to be derived except for simple 
special cases”. In contrast, this problem can be handled very naturally in our approach by modeling partial knowledge 
of x0 by a belief function BelX in the sample space X of x0. Recall, from Section 4.1, that the predictive belief function 
BelZy is obtained by combining the likelihood belief function Bel	y with the joint belief function BelZ×	

y induced by (45). 
As the belief function BelX is just another piece of evidence, it can be combined with the other two by Dempster’s rule. 
The combined belief function is then, as before, marginalized on Z to get the predictive belief function. To describe the 
corresponding algorithm, let us emphasize the dependence of Z on x0 by rewriting (110b) as

Z = ϕy(x0, θ , W ). (112)

Assume that the belief function BelX is induced by a source (�, A, P�, �), where � is a multi-valued mapping from �
to 2X . The predictive belief function BelZy is then induced by the multi-valued mapping

(ω, s, w) → ϕy(�(ω),�y(s), w). (113)

If ϕy is continuous and if both �(ω) and �y(s) are connected for all ω and s, then each set ϕy(�(ω), �y(s), w) is an 
interval, and BelZy is equivalent to a random interval. It can be approximated by Monte Carlo simulation using Algorithm 3.

Example 10. To illustrate the application of this algorithm, we considered the prediction of movie box office receipt with the 
same input vector x0 as in Example 9, but assuming the buzz variable to be partially unknown. To model partial knowledge 
of BUZZ, we used a consonant random interval with the following triangular contour function,
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Algorithm 3 Monte Carlo algorithm for approximating a predictive belief function with uncertain input vector x0 (random 
interval case).
Require: Desired number of focal sets N

for i = 1 to N do
Draw (si , wi) uniformly in [0, 1]2

Draw ω from P�

Search for z∗i = minθ ϕy(x0, θ, wi) such that ply(θ) ≥ si and x0 ∈ �(ω).
Search for z∗

i = maxθ ϕy(x0, θ, wi) such that ply(θ) ≥ si and x0 ∈ �(ω).
Bi ← [z∗i , z∗

i ]
end for

Fig. 8. (a): Lower and upper cdf for the prediction problem with uncertain inputs (solid lines) and with certain inputs (interrupted lines); (b): pl-plot of the 
predictive belief function with uncertain inputs.

pl(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃ − x

x̃ − x∗
if x∗ ≤ x < x̃

x − x̃

x∗ − x̃
if x̃ ≤ x < x∗

0 otherwise,

(114)

with x∗ = 0, x∗ = 5 and x̃ = 2.81. The resulting lower and upper cdfs are shown as interrupted lines in Fig. 8(a), and 
the corresponding pl-plot is shown in Fig. 8(b). The estimated lower–upper expectation interval is [16.36, 18.11]. We can 
see that, as expected, the predictive belief function becomes more uncertain, as a result of the uncertainty on one of the 
covariates. �

Another situation in which the regression analysis has to be combined with other sources of information is the case 
where, in addition to the statistical prediction computed from the linear regression model, some expert opinions about the 
future data Z are available. In our example, we can figure out that specialists of the movie industry (such as film critics) can 
provide a prediction of a movie’s box office success, taking into account various pieces of evidence that can never be fully 
captured by a regression equation. Such non-statistical information can be represented in the belief function framework and 
combined with the predictive belief function using Dempster’s rule. In contrast, it is not at all clear how prediction intervals 
and expert options, being of totally different natures, could be combined in a principled way.

6. Conclusions

In many areas, such as business and economics, forecasts are typically used for decision-making and strategic planning. 
When aggregating predictions from numerical models with other information, decision-makers need to assess the uncer-
tainty of the forecasts. Describing this uncertainty in a faithful and accurate way is thus a very important issue. The approach 
advocated in this paper is to model estimation uncertainty using a belief function constructed from the likelihood, and to 
combine it with random uncertainty arising from the data-generating process, resulting in a predictive belief function. The 
practical use of this method has been illustrated using a simple but widely used model: standard linear regression.

Predictive belief functions constructed in this way have been argued to be better founded than frequentist prediction 
intervals, and to be more widely applicable than Bayesian posterior predictive distributions, which always require prior 
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distributions. However, the latter are recovered when a prior distribution on the model parameters is specified. The proposed 
method also has practical advantages over the frequentist approach, which often has to resort to asymptotic approximations. 
For instance, in linear regression with serial correlation, the variance of prediction errors cannot be determined exactly, 
making it difficult to compute prediction intervals [55, page 215]. In contrast, the predicted belief function can easily be 
approximated to any desired accuracy using Monte Carlo simulation, even for small sample sizes.
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