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Foreword

The theory of belief functions (BF) is not a theory of Imprecise
Probability (IP)! In particular, it does not represent uncertainty
using sets of probability measures.
However, as IP theory, BF theory does extend Probability theory
by allowing some imprecision (using a multi-valued mapping in
the case of belief functions).
These two theories can be seen as implementing two ways of
mixing set-based representations of uncertainty and Probability
theory:

By defining sets of probability measures (IP theory);
By assigning probability masses to sets (BF theory).
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Theory of belief functions
History

Also known as Dempster-Shafer (DS) theory or Evidence theory.
Originates from the work of Dempster (1968) in the context of
statistical inference.
Formalized by Shafer (1976) as a theory of evidence.
Popularized and developed by Smets in the 1980’s and 1990’s
under the name Transferable Belief Model.
Starting from the 1990’s, growing number of applications in AI,
information fusion, classification, reliability and risk analysis, etc.
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Theory of belief functions
Important ideas

1 DS theory: a modeling language for representing elementary
items of evidence and combining them, in order to form a
representation of our beliefs about certain aspects of the world.

2 The theory of belief function subsumes both the set-based and
probabilistic approaches to uncertainty:

A belief function may be viewed both as a generalized set and as a
non additive measure.
Basic mechanisms for reasoning with belief functions extend both
probabilistic operations (such as marginalization and conditioning)
and set-theoretic operations (such as intersection and union).

3 DS reasoning produces the same results as probabilistic
reasoning or interval analysis when provided with the same
information. However, its greater expressive power allows us to
handle more general forms of information.
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Mass function
Definition

Let ω be an unknown quantity with possible values in a finite
domain Ω, called the frame of discernment.
A piece of evidence about ω may be represented by a mass
function m on Ω, defined as a function 2Ω → [0,1], such that
m(∅) = 0 and ∑

A⊆Ω

m(A) = 1.

Any subset A of Ω such that m(A) > 0 is called a focal set of m.
Special cases:

A logical mass function has only one focal set (∼ set).
A Bayesian mass function has only focal sets of cardinality one (∼
probability distribution).

The vacuous mass function is defined by mΩ(ω) = 1. It
represents a completely uninformative piece of evidence.
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Mass function
Example

A murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}.
A witness saw the murderer going away, but he is short-sighted
and he only saw that it was a man. We know that the witness is
drunk 20 % of the time.
If the witness was not drunk, we know that ω ∈ {Peter , John}.
Otherwise, we only know that ω ∈ Ω. The first case holds with
probability 0.8.
Corresponding mass function:

m({Peter , John}) = 0.8, m(Ω) = 0.2
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Semantics

What do these numbers mean?
In the murder example, the evidence can be interpreted in two
different ways and we can assign probabilities to the different
interpretations:

With probability 0.8, we know that the murderer is either Peter or
John;
With probability 0.2, we know nothing.

A DS mass function encodes probability judgements about the
reliability and meaning of a piece of evidence.
It can be constructed by comparing our evidence to a situation
where we receive a message that was encoded using a code
selected at random with known probabilities.
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Random code semantics

(C,	
  P)	
   Ω	



Γ	
  

ci	
  
Γ(ci)	
  

A source holds some true information of
the form ω ∈ A∗ for some A∗ ⊆ Ω;
It sends us this information as an
encoded message using a code in
C = {c1, . . . , cr}, selected at random
according to some known probability
measure on P;
Decoding the message using code c
produces a new message of the form
“ω ∈ Γ(c) ⊆ Ω”.

Then,
∀A ⊆ Ω, m(A) = P({c ∈ C|Γ(c) = A})

is the chance that the original message was “ω ∈ A”, i.e., the
probability of knowing only that ω ∈ A.
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Belief and plausibility functions

For any A ⊆ Ω, we can define:
The total degree of support (belief) in A as the probability that the
evidence implies A:

Bel(A) = P({c ∈ C|Γ(c) ⊆ A}) =
∑
B⊆A

m(B).

The plausibility of A as the probability that the evidence does not
contradict A:

Pl(A) = P({c ∈ C|Γ(c) ∩ A 6= ∅}) = 1− Bel(A).

Uncertainty on the truth value of the proposition “ω ∈ A” is
represented by two numbers: Bel(A) and Pl(A), with
Bel(A) ≤ Pl(A).
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Characterization of belief functions

Function Bel : 2Ω → [0,1] is a completely monotone capacity,
i.e., it verifies Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity Bel
corresponds a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.

m, Bel and Pl are thus three equivalent representations of a
piece of evidence.
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Special cases

If all focal sets of m are singletons, then m is said to be
Bayesian: it is equivalent to a probability distribution, and
Bel = Pl is a probability measure.
If the focal sets of m are nested, then m is said to be consonant.
Pl is a possibility measure, i.e.,

Pl(A ∪ B) = max(Pl(A),Pl(B)), ∀A,B ⊆ Ω,

and Bel is the dual necessity measure. The contour function
pl(ω) = Pl({ω}) is the possibility distribution.
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Extension to infinite frames

In the finite case, we have seen that a belief function Bel can be
seen as arising from an underlying probability space (C,A,P)
and a multi-valued mapping Γ : C → 2Ω.
In the general case, given

a (finite or not) probability space (C,A,P);
a (finite or not) measurable space (Ω,B) and
a multi-valued mapping Γ : C → 2Ω,

we can always (under some measurability conditions) define a
completely monotone capacity (i.e., belief function) Bel as:

Bel(A) = P({c ∈ C|Γ(c) ⊆ A}), ∀A ∈ B.
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Random intervals (Ω = R)

(C,A,P)	
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Let (U,V ) be a two-dimensional random variable from (C,A,P)
to (R2,B(R2)) such that P(U ≤ V ) = 1 and

Γ(c) = [U(c),V (c)] ⊆ R.

This setting defines a random closed interval, which induces a
belief function on (R,B(R)) defined by

Bel(A) = P([U,V ] ⊆ A), ∀A ∈ B(R).
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Examples

Consonant random interval p-box
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Basic operations on belief functions

1 Combining independent pieces of evidence (Dempster’s rule);
2 Expressing evidence in a coarser frame (marginalization);
3 Expressing evidence in a finer frame (vacuous extension);
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Combination of evidence
Murder example continued

The first item of evidence gave us: m1({Peter , John}) = 0.8,
m1(Ω) = 0.2.
New piece of evidence: a blond hair has been found.
There is a probability 0.6 that the room has been cleaned before
the crime: m2({John,Mary}) = 0.6, m2(Ω) = 0.4.
How to combine these two pieces of evidence?
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Combination of evidence
Problem analysis

(C1,	
  P1)	
  

Ω	

Γ1	
  

drunk	
  (0.2)	
  

not	
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  (0.8)	
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Mary	
  

(C2,	
  P2)	
  

Γ2	
  

cleaned	
  (0.6)	
  

not	
  cleaned	
  
(0.4)	
  

If codes c1 ∈ C1 and c2 ∈ C2 were
selected, then we know that
ω ∈ Γ1(c1) ∩ Γ2(c2).
If the codes were selected
independently, then the probability that
the pair (c1, c2) was selected is
P1({c1})P2({c2}).
If Γ1(c1) ∩ Γ2(c2) = ∅, we know that
(c1, c2) could not have been selected.
The joint probability distribution on
C1 × C2 must be conditioned to eliminate
such pairs.
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Dempster’s rule
Definition

Let m1 and m2 be two mass functions on the same frame Ω,
induced by two independent pieces of evidence.
Their combination using Dempster’s rule is defined as:

(m1 ⊕m2)(A) =
1

1− K

∑
B∩C=A

m1(B)m2(C), ∀A 6= ∅,

where
K =

∑
B∩C=∅

m1(B)m2(C)

is the degree of conflict between m1 and m2.
m1 ⊕m2 exists iff K < 1.
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Dempster’s rule
Properties

Commutativity, associativity. Neutral element: mΩ.
Generalization of intersection: if mA and mB are logical mass
functions and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

Generalization of probabilistic conditioning: if m is a Bayesian
mass function and mA is a logical mass function, then m ⊕mA is
a Bayesian mass function that corresponding to the conditioning
of m by A.
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Dempster’s rule
Expression using commonalities

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω.

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Expression of ⊕ using commonalities:

(Q1 ⊕Q2)(A) =
1

1− K
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅.

(Q1 ⊕Q2)(∅) = 1.
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Refinement of a frame

Assume we are interested in the nature of an object in a road
scene. We could describe it, e.g., in the frame
Θ = {vehicle,pedestrian}, or in the finer frame
Ω = {car,bicycle,motorcycle,pedestrian}.
A frame Ω is a refinement of a frame Θ (or, equivalently, Θ is a
coarsening of Ω) if elements of Ω can be obtained by splitting
some or all of the elements of Θ.
Formally, Ω is a refinement of a frame Θ iff there is then a
one-to-one mapping ρ between Θ and a partition of Ω:

Θ	

 Ω	


θ1	
  

θ2	
  
θ3	
  

ρ	
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Compatible frames

Two frames are said to be compatible if they have a common
refinement.
Example:

Let ΩX = {red, blue, green} and ΩY = {small,medium, large} be
the domains of attributes X and Y describing, respectively, the
color and the size of an object.
Then ΩX and ΩY have the common refinement ΩX × ΩY .
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Marginalization

Let ΩX and ΩY be two compatible frames.
Let mXY be a mass function on ΩX × ΩY .
It can be expressed in the coarser frame ΩX by transferring each
mass mXY (A) to the projection of A on ΩX .

Marginal mass function:

mXY↓X (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mXY (A) ∀B ⊆ ΩX .

Generalizes both set projection and probabilistic marginalization.
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Vacuous extension

The “inverse” of marginalization.
A mass function mX on ΩX can be expressed in ΩX × ΩY by
transferring each mass mX (B) to the cylindrical extension of B:

This operation is called the vacuous extension of mX in ΩX × ΩY .
We have

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise.
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Application to uncertain reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX ;
A joint mass function mXY representing an uncertain relation
between X and Y .

What can we say about Y ?
Solution:

mY =
(
mX↑XY ⊕mXY )↓Y .

Infeasible with many variables and large frames of discernment,
but efficient algorithms exist to carry out the operations in frames
of minimal dimensions.
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Decision making under uncertainty

A decision problem can be formalized by defining:
A set Ω of states of the world ;
A set X of consequences;
a set F of acts, where an act is a function f : Ω→ X .

Let < be a preference relation on F , such that f < g means that
f is at least as desirable as g.
Savage (1954) has showed that < verifies some rationality
requirements iff there exists a probability measure P on Ω and a
utility function u : X → R such that

∀f ,g ∈ F , f < g ⇔ EP(u ◦ f ) ≥ EP(u ◦ g).

Furthermore, P is unique and u is unique up to a positive affine
transformation.
Does that mean that basing decisions on belief functions is
irrational?
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Savage’s axioms

Savage has proposed 7 axioms, 4 of which are considered as
meaningful (the other three are technical).
Let us examine the first two axioms.
Axiom 1: < is a total preorder (complete, reflexive and transitive).
Axiom 2 [Sure Thing Principle]. Given f ,h ∈ F and E ⊆ Ω, let
fEh denote the act defined by

(fEh)(ω) =

{
f (ω) if ω ∈ E
h(ω) if ω 6∈ E .

Then the Sure Thing Principle states that ∀E , ∀f ,g,h,h′,

fEh < gEh⇒ fEh′ < gEh′.

This axiom seems reasonable, but it is not verified empirically!
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Ellsberg’s paradox

Suppose you have an urn containing 30 red balls and 60 balls,
either black or yellow. Consider the following gambles:

f1: You receive 100 euros if you draw a red ball;
f2: You receive 100 euros if you draw a black ball.
f3: You receive 100 euros if you draw a red or yellow ball;
f4: You receive 100 euros if you draw a black or yellow ball.

Most people strictly prefer f1 to f2, but they strictly prefer f4 to f3.

R B Y
f1 100 0 0
f2 0 100 0
f3 100 0 100
f4 0 100 100

Now,

f1 = f1{R,B}0, f2 = f2{R,B}0

f3 = f1{R,B}100, f4 = f2{R,B}100.

The Sure Thing Principle is violated!
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Gilboa’s theorem

Gilboa (1987) proposed a modification of Savage’s axioms with,
in particular, a weaker form of Axiom 2.
A preference relation < meets these weaker requirements iff
there exists a (non necessarily additive) measure µ and a utility
function u : X → R such that

∀f ,g ∈ F , f < g ⇔ Cµ(u ◦ f ) ≥ Cµ(u ◦ g),

where Cµ is the Choquet integral, defined for X : Ω→ R as

Cµ(X ) =

∫ +∞

0
µ(X > t)dt +

∫ 0

−∞
[µ(X > t)− 1]dt .

Given a belief function Bel on Ω and a utility function u, this
theorem supports making decisions based on the Choquet
integral of u with respect to Bel or Pl .
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Lower and upper expected utilities

For finite Ω, it can be shown that

CBel (u ◦ f ) =
∑
B⊆Ω

m(B) min
ω∈B

u(f (ω))

CPl (u ◦ f ) =
∑
B⊆Ω

m(B) max
ω∈B

u(f (ω)).

Let P(Bel) be the set of probability measures P compatible with
Bel , i.e., such that Bel ≤ P. Then, it can be shown that

CBel (u ◦ f ) = min
P∈P(Bel)

EP(u ◦ f ) = E(u ◦ f )

CPl (u ◦ f ) = max
P∈P(Bel)

EP(u ◦ f ) = E(u ◦ f ).
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Decision making
Strategies

For each act f we have two expected utilities E(f ) and E(f ). How
to make a decision?
Possible decision criteria:

1 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (conservative strategy);
2 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (pessimistic strategy);
3 f < g iff E(u ◦ f ) ≥ E(u ◦ g) (optimistic strategy);
4 f < g iff

αE(u ◦ f ) + (1− α)E(u ◦ f ) ≥ αE(u ◦ g) + (1− α)E(u ◦ g)

for some α ∈ [0, 1] called a pessimism index (Hurwicz criterion).

The conservative strategy yields only a partial preorder: f and g
are not comparable if E(u ◦ f ) < E(u ◦ g) and E(u ◦ g) < E(u ◦ f ).
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Ellsberg’s paradox revisited

We have m({R}) = 1/3, m({B,Y}) = 2/3.

R B Y E(u ◦ f ) E(u ◦ f )
f1 100 0 0 u(100)/3 u(100)/3
f2 0 100 0 u(0) u(200)/3
f3 100 0 100 u(100)/3 u(100)
f4 0 100 100 u(200)/3 u(200)/3

The observed behavior (f1 < f2 and f4 < f3) is explained by the
pessimistic strategy.
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Decision making
Special case

Let Ω = {ω1, . . . , ωK}, X = {correct ,error} and F = {f1, . . . , fK},
where

fk (ω`) =

{
correct if k = `

error if k 6= `

and u(correct) = 1, u(error) = 0.
Then E(u ◦ fk ) = Bel({ωk}) and E(u ◦ fk ) = pl(ωk ).
The optimistic (resp., pessimistic) strategy selects the hypothesis
with the largest plausibility (resp., belief).
Practical advantage of the maximum plausibility rule: if
m12 = m1 ⊕m2, then

pl12(ω) ∝ pl1(ω)pl2(ω),∀ω ∈ Ω.

When combining several mass functions, we do not need to
compute the complete mass function to make a decision.
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General Methodology

1 Define the frame of discernment Ω (may be a product space
Ω = Ω1 × . . .× Ωn).

2 Break down the available evidence into independent pieces and
model each one by a mass function m on Ω.

3 Combine the mass functions using Dempster’s rule.
4 Marginalize the combined mass function on the frame of interest

and, if necessary, find the elementary hypothesis with the largest
plausibility.
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Problem statement

?

A population is assumed to be
partitioned in c groups or classes.
Let Ω = {ω1, . . . , ωc} denote the set of
classes.
Each instance is described by

A feature vector x ∈ Rp;
A class label y ∈ Ω.

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict the
class of a new instance described by x.
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What can we expect from belief functions?

Problems with “weak” information:
Non exhaustive learning sets;
Learning and test data drawn from different distributions;
Partially labeled data (imperfect class information for training data),
etc.

Information fusion: combination of classifiers trained using
different data sets or different learning algorithms (ensemble
methods).
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Main belief function approaches

1 Approach 1: Convert the outputs from standard classifiers into
belief functions and combine them using Dempster’s rule or any
other alternative rule (e.g., Quost al., IJAR, 2011);

2 Approach 2: Develop evidence-theoretic classifiers directly
providing belief functions as outputs:

Generalized Bayes theorem, extends the Bayesian classifier when
class densities and priors are ill-known (Appriou, 1991; Denœux
and Smets, IEEE SMC, 2008);
Distance-based approach: evidential k -NN rule (Denœux, IEEE
SMC, 1995), evidential neural network classifier (Denœux, IEEE
SMC, 2000).
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Evidential k -NN rule
Principle

Xi

di

X

Let Ω be the set of classes.
Let Nk (x) ⊂ L denote the set of the k
nearest neighbors of x in L, based on some
distance measure.
Each xi ∈ Nk (x) can be considered as a
piece of evidence regarding the class of x.
The strength of this evidence decreases
with the distance di between x and xi .
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Evidential k -NN rule
Formalization

The evidence of (xi , yi ) with xi ∈ Nk (x) can be represented by a
mass function mi on Ω:

mi ({yi}) = ϕ (di )

mi (Ω) = 1− ϕ (di ) ,

where ϕ is a decreasing function such that limd→+∞ ϕ(d) = 0.
Pooling of evidence:

m =
⊕

xi∈Nk (x)

mi .

Function ϕ can be fixed heuristically or selected among a family
{ϕθ|θ ∈ Θ} using, e.g., cross-validation.
Decision: select the class with the highest plausibility.
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Performance comparison (UCI database)

Sonar data
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Ionosphere data
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Test error rates as a function of k for the voting (-), evidential (:), fuzzy (–) and
distance-weighted (-.) k -NN rules.

Thierry Denœux Belief functions: basic theory and applications 47/ 101



Basic theory
Applications

Statistical inference

Classification
Preference aggregation
Object association

Partially supervised data

In some applications, learning instances are labeled by experts
or indirect methods (no ground truth). Class labels of learning
data are then uncertain: partially supervised learning problem.
Formalization of the learning set:

L = {(xi ,mi ), i = 1, . . . ,n}

where
xi is the attribute vector for instance i , and
mi is a mass function representing uncertain expert knowledge
about the class yi of instance i .

Special cases:
mi ({ωk}) = 1 for all i : supervised learning;
mi (Ω) = 1 for all i : unsupervised learning;

The evidential k -NN rule can easily be adapted to handle such
uncertain learning data.
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Evidential k -NN rule for partially supervised data

(Xi,mi)	
  

di	
  

X	
  

Each mass function mi is discounted with a
rate depending on the distance di :

m′i (A) = ϕ (di ) mi (A), ∀A ⊂ Ω.

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A).

The k mass functions m′i are combined
using Dempster’s rule:

m =
⊕

xi∈Nk (x)

m′i .
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Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes),
50 % negative (delta waves), 5 experts.

0 20 40 60
0

50

100

150

200

250

300

A
/D

 c
on

ve
rt

er
 o

ut
pu

t
0  0  0  0  0

0 20 40 60
0

50

100

150

200

250

300
1  0  0  0  0

0 20 40 60
0

50

100

150

200

250

300
1  0  1  0  0

0 20 40 60
0

50

100

150

200

250

300

A
/D

 c
on

ve
rt

er
 o

ut
pu

t

1  1  0  1  0

0 20 40 60
0

50

100

150

200

250

300

time

1  0  1  1  1

0 20 40 60
0

50

100

150

200

250

300
1  1  1  1  1

Thierry Denœux Belief functions: basic theory and applications 50/ 101



Basic theory
Applications

Statistical inference

Classification
Preference aggregation
Object association

Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
For each learning instance xi , the expert opinions were modeled
as a mass function mi .
n = 200 learning patterns, 300 test patterns

k k -NN w k -NN Ev. k -NN Ev. k -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Data fusion example

S1

S2

x

x’

Classifier 1

Classifier 2

m

m’

⊕ m ⊕ m’

c = 2 classes
Learning set (n = 60): x ∈ R5,x′ ∈ R3, Gaussian distributions,
conditionally independent
Test set (real operating conditions): x← x + ε, ε ∼ N (0, σ2I).
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Results
Test error rates: x + ε, ε ∼ N (0, σ2I)
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Summary on classification and ML

The theory of belief functions has great potential to help solve
complex machine learning (ML) problems, particularly those
involving:

Weak information (partially labeled data, unreliable sensor data,
etc.);
Multiple sources of information (classifier or clustering ensembles)
(Quost et al., 2007; Masson and Denoeux, 2011).

Other ML applications:
Regression (Petit-Renaud and Denoeux, 2004);
Multi-label classification (Denoeux et al. 2010);
Clustering (Denoeux and Masson, 2004; Masson and Denoeux
2008; Antoine et al., 2012).

Thierry Denœux Belief functions: basic theory and applications 54/ 101



Basic theory
Applications

Statistical inference

Classification
Preference aggregation
Object association

Outline

1 Basic theory
Representation of evidence
Operations on Belief functions
Decision making

2 Applications
Classification
Preference aggregation
Object association

3 Statistical inference
Dempster’s approach
Likelihood-based approach
Sea level rise example

Thierry Denœux Belief functions: basic theory and applications 55/ 101



Basic theory
Applications

Statistical inference

Classification
Preference aggregation
Object association

Problem

We consider a set of alternatives O = {o1,o2, ...,on} and an
unknown linear order (transitive, antisymmetric and complete
relation) on O.
Typically, this linear order corresponds to preferences held by an
agent or a group of agents, so that oi � oj is interpreted as
“alternative oi is preferred to alternative oj ”.
A source of information (elicitation procedure, classifier) provides
us with n(n − 1)/2 paired comparisons, with some uncertainty.
Problem: derive the most plausible linear order from this
uncertain (and possibly conflicting) information.
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Example (Tritchler & Lockwood, 1991)

Four scenarios O = {A,B,C,D} describing ethical dilemmas in
health care.
Two experts gave their preference for all six possible scenario
pairs with confidence degrees.

A

D C

B
0,44

0,06

0,930,970.740.94

A

D C

B
0,44

0,01

0,80,970.740.94

What can we say about the preferences of each expert?
Assuming the existence of a unique consensus linear ordering L∗

and seeing the expert assessments as sources of information,
what can we say about L∗?
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Pairwise mass functions

The frame of discernment is the set L of linear orders over O.
Comparing each pair of objects (oi ,oj ) yields a pairwise mass
function mΘij on a coarsening Θij = {oi � oj ,oj � oi} with the
following form:

mΘij (oi � oj ) = αij ,

mΘij (oj � oi ) = βij ,

mΘij (Θij ) = 1− αij − βij .

mΘij may come from a single expert (e.g., an evidential classifier)
or from the combination of the evaluations of several experts.
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Combined mass function

Each of the n(n − 1)/2 pairwise comparison yields a mass
function mΘij on a coarsening Θij of L.
Let Lij = {L ∈ L|(oi ,oj ) ∈ L}. Vacuously extending mΘij in L
yields

mΘij↑L(Lij ) = αij ,

mΘij↑L(Lij ) = βij ,

mΘij↑L(L) = 1− αij − βij .

Combining the pairwise mass functions using Dempster’s rule
yields:

mL =
⊕
i<j

mΘij↑L.
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Plausibility of a linear order

We have mΘij↑L(Lij ) = αij , mΘij↑L(Lij ) = βij ,
mΘij↑L(L) = 1− αij − βij .
Let plij be the corresponding contour function:

plij (L) =

{
1− βij if (oi ,oj ) ∈ L,
1− αij if (oi ,oj ) 6∈ L.

After combining the mΘij↑L for all i < j we get:

pl(L) =
1

1− K

∏
i<j

(1− βij )
`ij (1− αij )

1−`ij ,

where `ij = 1 if (oi ,oj ) ∈ L and 0 otherwise.
An algorithm for computing the degree of conflict K has been
given by Tritchler & Lockwood (1991).
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Finding the most plausible linear order

We have

ln pl(L) =
∑
i<j

`ij ln
(

1− βij

1− αij

)
+ c

pl(L) can thus be maximized by solving the following binary
integer programming problem:

max
`ij∈{0,1}

∑
i<j

`ij ln
(

1− βij

1− αij

)
,

subject to: {
`ij + `jk − 1 ≤ `ik , ∀i < j < k , (1)
`ik ≤ lij + `jk , ∀i < j < k . (2)

Constraint (1) ensures that `ij = 1 and `jk = 1⇒ `jk = 1, and (2)
ensures that `ij = 0 and `jk = 0⇒ `ik = 0.
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Example

Expert 1

A

D C

B
0,44

0,06

0,930,970.740.94

L∗1 = A � D � B � C

pl(L∗1) = 0.807

Expert 2

A

D C

B
0,44

0,01

0,80,970.740.94

L∗2 = A � C � D � B

pl(L∗2) = 1
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Example: combination of expert evaluations

Dempster’s rule of combination:

(oi ,oj ) oi � oj oj � oi Θij

(A,B) 0.3056 0.3056 0.3889
(A,C) 0.9991 0 0.0009
(A,D) 0.9964 0 0.0036
(B,C) 0.7266 0.2187 0.0547
(B,D) 0 0.9324 0.0676
(C,D) 0.0594 0.0094 0.9312

L∗ = A � D � B � C and pl(L∗) = 0.8893.
We get the same linear order as the one given by Expert 1.
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Summary on preference aggregation

The framework of belief functions allows us to model uncertainty
in paired comparisons.
The most plausible linear order can be computed efficiently
using a binary linear programming approach.
The approach has been applied to label ranking, in which the
task is to learn a “ranker” that maps p-dimensional feature
vectors x describing an agent to a linear order over a finite set of
alternatives, describing the agent’s preferences (Denœux and
Masson, BELIEF 2012).
The method can easily be extended to the elicitation of
preference relations with indifference and/or incomparability
between alternatives (Denœux and Masson. Annals of
Operations Research 195(1):135-161, 2012).
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Problem description

Let E = {e1, . . . ,en} and F = {f1, . . . , fp} be two sets of objects
perceived by two sensors, or by a sensor at two different times.
Problem: given information each object (position, velocity, class,
etc.), find a matching between the two sets, in such a way that
each object in one set is matched with at most one object in the
other set.
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Method of approach

1 For each pair of objects (ei , fj ) ∈ E × F , use sensor information
to build a pairwise mass function mΘij on the frame
Θij = {hij ,hij}, where

hij denotes the hypothesis that ei and fj are the same objects, and
hij is the hypothesis that ei and fj are different objects.

2 Vacuously extend the np mass functions mΘij in the frame R
containing all admissible matching relations.

3 Combine the np extended mass functions mΘij↑R and find the
matching relation with the highest plausibility.
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Building the pairwise mass functions
Using position information

Assume that each sensor provides an estimated position for
each object. Let dij denote the distance between the estimated
positions of ei and fj , computed using some distance measure.
A small value of dij supports hypothesis hij , while a large value of
dij supports hypothesis hij . Depending on sensor reliability, a
fraction of the unit mass should also be assigned to
Θij = {hij ,hij}.
This line of reasoning justifies a mass function mΘij

p of the form:

mΘij
p ({hij}) = αϕ(dij )

mΘij
p ({hij}) = α (1− ϕ(dij ))

mΘij
p (Θij ) = α,

where α ∈ [0,1] is a degree of confidence in the sensor
information and ϕ is a decreasing function taking values in [0,1].
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Building the pairwise mass functions
Using velocity information

Let us now assume that each sensor returns a velocity vector for
each object. Let d ′ij denote the distance between the velocities of
objects ei and fj .

Here, a large value of d ′ij supports the hypothesis hij , whereas a
small value of d ′ij does not support specifically hij or hij , as two
distinct objects may have similar velocities.

Consequently, the following form of the mass function mΘij
v

induce by d ′ij seems appropriate:

mΘij
v ({hij}) = α′

(
1− ψ(d ′ij )

)
(1a)

mΘij
v (Θij ) = 1− α′

(
1− ψ(d ′ij )

)
, (1b)

where α′ ∈ [0,1] is a degree of confidence in the sensor
information and ψ is a decreasing function taking values in [0,1].
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Building the pairwise mass functions
Using class information

Let us assume that the objects belong to classes. Let Ω be the
set of possible classes, and let mi and mj denote mass functions
representing evidence about the class membership of objects ei
and fj .
If ei and fj do not belong to the same class, they cannot be the
same object. However, if ei and fj do belong to the same class,
they may or may not be the same object.
Using this line of reasoning, we can show that the mass function
mΘij

c on Θij derived from mi and mj has the following expression:

mΘij
c ({hij}) = κij

mΘij
c (Θij ) = 1− κij ,

where κij is the degree of conflict between mi and mj
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Building the pairwise mass functions
Aggregation and vacuous extension

For each object pair (ei , fj ), a pairwise mass function mΘij

representing all the available evidence about Θij can finally be
obtained as:

mΘij = mΘij
p ⊕mΘij

v ⊕mΘij
c .

Let R be the set of all admissible matching relations, and let
Rij ⊆ R be the subset of relations R such that (ei , fj ) ∈ R.
Vacuously extending mΘij in R yields the following mass function:

mΘij↑R(Rij ) = mΘij ({hij}) = αij

mΘij↑R(Rij ) = mΘij ({hij}) = βij

mΘij↑R(R) = mΘij (Θij ) = 1− αij − βij .
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Combining pairwise mass functions

Let plij denote the contour function corresponding to mΘij↑R. For
all R ∈ R,

plij (R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,

= (1− βij )
Rij (1− αij )

1−Rij

Consequently, the contour function corresponding to the
combined mass function

mR =
⊕

i,j

mΘij↑R

is
pl(R) ∝

∏
i,j

(1− βij )
Rij (1− αij )

1−Rij .
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Finding the most plausible matching

We have

ln pl(R) =
∑
i,j

[Rij ln(1− βij ) + (1− Rij ) ln(1− αij )] + C.

The most plausible relation R∗ can thus be found by solving the
following binary linear optimization problem:

max
n∑

i=1

p∑
j=1

Rij ln
1− βij

1− αij

subject to
∑p

j=1 Rij ≤ 1, ∀i and
∑n

i=1 Rij ≤ 1, ∀j .
This problem can be shown to be equivalent to a linear
assignment problem and can be solved using, e.g., the
Hungarian algorithm in O(max(n,p)3) time.
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Conclusion

In this problem as well as in the previous one, the frame of
discernment can be huge (e.g., n! in the preference aggregation
problem).
Yet, the belief function approach is manageable because:

The elementary pieces of evidence that are combined have a
simple form (this is almost always the case);
We are only interested in the most plausible alternative: hence, we
do not have to compute the full combined belief function.

Other problems with very large frame for which belief functions
have been successfully applied:

Clustering: Ω is the space of all partitions (Masson and Denoeux,
2011) ;
Multi-label classification: Ω is the powerset of the set of classes
(Denoeux et al., 2010).
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The problem

We consider a statistical model {f (x , θ), x ∈ X, θ ∈ Θ}, where X
is the sample space and Θ the parameter space.
Having observed x , how to quantify the uncertainty about Θ,
without specifying a prior probability distribution?
Two main approaches using belief functions:

1 Dempster’s approach based on an auxiliary variable with a pivotal
probability distribution (Dempster, 1967);

2 Likelihood-based approach (Shafer, 1976, Wasserman, 1990).
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Sampling model

Suppose that the sampling model X ∼ f (x ; θ) can be
represented by an “a-equation” of the form

X = a(θ,U),

where U ∈ U is an (unobserved) auxiliary variable with known
probability distribution µ independent of θ.
This representation is quite natural in the context of data
generation.
For instance, to generate a continuous random variable X with
cumulative distribution function (cdf) Fθ, one might draw U from
U([0,1]) and set X = F−1

θ (U).
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From a-equation to belief function

The equation X = a(θ,U) defines a multi-valued mapping

Γ : U → Γ(U) = {(X , θ) ∈ X×Θ|X = a(θ,U)}.

Under measurability conditions, the probability space
(U,B(U), µ) and the multi-valued mapping Γ induce a belief
function BelΘ×X on X×Θ.
Conditioning BelΘ×X on θ yields the sampling distribution f (·; θ)
on X;
Conditioning it on X = x gives a belief function BelΘ(·; x) on Θ.
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Example: Bernoulli sample

Let X = (X1, . . . ,Xn) consist of independent Bernoulli
observations and θ ∈ Θ = [0,1] is the probability of success.
Sampling model:

Xi =

{
1 if Ui ≤ θ
0 otherwise,

where U = (U1, . . . ,Un) has pivotal measure µ = U([0,1]n).
Having observed the number of successes y =

∑n
i=1 xi , the

belief function BelΘ(·; x) is induced by a random closed interval

[U(y),U(y+1)],

where U(i) denotes the i-th order statistics from U1, . . . ,Un.
Quantities like BelΘ([a,b]; x) or PlΘ([a,b]; x) are readily
calculated.
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Discussion

Dempster’s model has several nice features:
It allows us to quantify the uncertainty on Θ after observing the
data, without having to specify a prior distribution on Θ;
When a Bayesian prior P0 is available, combining it with BelΘ(·, x)
using Dempster’s rule yields the Bayesian posterior:

BelΘ(·, x)⊕ P0 = P(·|x).

Drawbacks:
It often leads to cumbersome or even intractable calculations
except for very simple models, which imposes the use of
Monte-Carlo simulations.
More fundamentally, the analysis depends on the a-equation
X = a(θ,U) and the auxiliary variable U, which are not unique for a
given statistical model {f (·; θ), θ ∈ Θ}. As U is not observed, how
can we argue for an a-equation or another?
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Likelihood-based belief function
Requirements

1 Likelihood principle: BelΘ(·; x) should be based only on the
likelihood function L(θ; x) = f (x ; θ).

2 Compatibility with Bayesian inference: when a Bayesian prior P0
is available, combining it with BelΘ(·, x) using Dempster’s rule
should yield the Bayesian posterior:

BelΘ(·, x)⊕ P0 = P(·|x).

3 Principle of minimal commitment: among all the belief functions
satisfying the previous two requirements, BelΘ(·, x) should be the
least committed (least informative).
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Likelihood-based belief function
Solution

BelΘ(·; x) is the consonant belief function with contour function
equal to the normalized likelihood:

pl(θ; x) =
L(θ; x)

supθ′∈Θ L(θ′; x)
,

The corresponding plausibility function is:

PlΘ(A; x) = sup
θ∈A

pl(θ; x) =
supθ∈A L(θ; x)

supθ∈Θ L(θ; x)
, ∀A ⊆ Θ.

Corresponding random set: (Ω,B(Ω), µ, Γx ) with Ω = [0,1],
µ = U([0,1]) and

Γx (ω) = {θ ∈ Θ|pl(θ; x) ≥ ω}.
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Discussion

The likelihood-based method is much simpler to implement than
Dempster’s method, even for complex models.
By construction, it boils down to Bayesian inference when a
Bayesian prior is available.
It is compatible with usual likelihood-based inference:

Assume that θ = (θ1, θ2) ∈ Θ1 ×Θ2 and θ2 is a nuisance
parameter. The marginal contour function on Θ1

pl(θ1; x) = sup
θ2∈Θ2

pl(θ1, θ2; x) =
supθ2∈Θ2

L(θ1, θ2; x)

sup(θ1,θ2)∈Θ L(θ1, θ2; x)

is the relative profile likelihood function.
Let H0 ⊂ Θ be a composite hypothesis. Its plausibility

Pl(H0; x) =
supθ∈H0

L(θ; x)

supθ∈Θ L(θ; x)
.

is the usual likelihood ratio statistics Λ(x).
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Climate change

Climate change is expected to have enormous economic impact,
including threats to infrastructure assets through

damage or destruction from extreme events;
coastal flooding and inundation from sea level rise, etc.

Adaptation of infrastructure to climate change is a major issue for
the next century.
Engineering design processes and standards are based on
analysis of historical climate data (using, e.g. Extreme Value
Theory), with the assumption of a stable climate.
Procedures need to be updated to include expert assessments
of changes in climate conditions in the 21th century.
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Adaptation of flood defense structures

Commonly, flood defenses in coastal areas are designed to
withstand at least 100 years return period events.
However, due to climate change, they will be subject during their
life time to higher loads than the design estimations.
The main impact is related to the increase of the mean sea level,
which affects the frequency and intensity of surges.
For adaptation purposes, statistics of extreme sea levels derived
from historical data should be combined with projections of the
future sea level rise (SLR).
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Assumptions

The annual maximum sea level Z at a given location is often
assumed to have a Gumbel distribution

P(Z ≤ z) = exp
[
−exp

(
−z − µ

σ

)]
with mode µ and scale parameter σ.
Current design procedures are based on the return level zT
associated to a return period T , defined as the quantile at level
1− 1/T . Here,

zT = µ− σ log
[
− log

(
1− 1

T

)]
Because of climate change, it is assumed that the distribution of
annual maximum sea level at the end of the century will be
shifted to the right, with shift equal to the SLR :

z ′T = zT + SLR.
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Approach

1 Represent the evidence on zT by a likelihood-based belief
function using past sea level measurements;

2 Represent the evidence on SLR by a belief function describing
expert opinions;

3 Combine these two items of evidence to get a belief function on
z ′T = zT + SLR.
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Statistical evidence on zT

Let z1, . . . , zn be n i.i.d. observations of Z . The likelihood
function is:

L(zT , µ; z1, . . . , zn) =
n∏

i=1

f (zi ; zT , µ),

where the pdf of Z has been reparametrized as a function of zT
and µ.
The corresponding contour function is thus:

pl(zT , µ; z1, . . . , zn) =
L(zT , µ; z1, . . . , zn)

supzT ,µ
L(zT , µ; z1, . . . , zn)

and the marginal contour function of zT is

pl(zT ; z1, . . . , zn) = sup
µ

pl(zT , µ; z1, . . . , zn).
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Data

15 years of sea level data at Le Havre, France
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Results
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Expert evidence on SLR

Future SLR projections provided by the IPCC last Assessment
Report (2007) give [0.18 m, 0.79 m] as a likely range of values
for SLR over the 1990-2095 period. However, it is indicated that
higher values cannot be excluded.
Other recent SLR assessments based on semi-empirical models
have been undertaken. For example, based on a simple
statistical model, Rahmstorf (2007) suggests [0.5m, 1.4 m] as a
likely range.
Recent studies indicate that the threshold of 2 m cannot be
exceeded by the end of this century due to physical constraints.
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Representation of expert evidence

The interval [0.5,0.79] = [0.18,0.79] ∩ [0.5,1.4] seems to be fully
supported by the available evidence, as it is considered highly
plausible by all three sources, while values outside the interval
[0,2] are considered as impossible.
Three representations:

Consonant random intervals with core [0.5, 0.79], support [0, 2] and
different contour functions π;
p-boxes with same cumulative belief and plausibility functions as
above;
Random sets [U,V ] with independent U and V and same
cumulative belief and plausibility functions as above.
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Representation of expert opinions

Contour functions Cumulative Bel and Pl

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SLR

π(
S

LR
)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SLR

F *(S
LR

),
 F

* (S
LR

)

Thierry Denœux Belief functions: basic theory and applications 96/ 101



Basic theory
Applications

Statistical inference

Dempster’s approach
Likelihood-based approach
Sea level rise example

Combination
Principle

Let [UzT ,VzT ] and [USLR ,VSLR] be the independent random
intervals representing evidence on zT and SLR, respectively.
The random interval for z ′T = zT + SLR is

[UzT ,VzT ] + [USLR ,VSLR] = [UzT + USLR ,VzT + VSLR]

The corresponding belief and plausibility functions are

Bel(A) = P([UzT + USLR ,VzT + VSLR] ⊆ A)

Pl(A) = P([UzT + USLR ,VzT + VSLR] ∩ A 6= ∅)

for all A ∈ B(R).
Bel(A) and Pl(A) can be estimated by Monte Carlo simulation.
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Combination
Monte Carlo simulation
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Algorithm to approximate Pl(A):

k = 0
for i = 1 : N do

Pick ω1 ∼ U(0,1), ω2 ∼ U(0,1)
I =
[UzT (ω1) + USLR(ω2),VzT (ω1) + VSLR(ω2)]
if I ∩ A 6= ∅ then

k = k + 1
end if

end for
P̂l(A) = k

N
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Result
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Summary

The theory of belief functions is a modeling language for
representing elementary items of evidence and combining them,
in order to form a representation of our beliefs about certain
aspects of the world.
This theory is relatively simple to implement and has been
successfully used in a wide range of applications, such as
classification and sensor fusion.
Evidential reasoning can be implemented even in very large
spaces, because

Elementary items of evidence induce simple belief functions, which
can be combined very efficiently;
The most plausible hypothesis can be found without computing the
whole combined belief function.

Statistical evidence may be represented by likelihood-based
belief functions, generalizing both likelihood-based and Bayesian
inference.
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Papers and Matlab software available at:

https://www.hds.utc.fr/˜tdenoeux

THANK YOU!
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