Introduction to belief functions

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253)
https://www.hds.utc.fr/~tdenoeux

Fourth School on Belief Functions and their Applications Xi'An, China, July 5, 2017

Contents of this lecture

(1) Historical perspective, motivations
(2) Fundamental concepts: belief, plausibility, commonality, conditioning, basic combination rules
(3) Some more advanced concepts: cautious rule, multidimensional belief functions, belief functions in infinite spaces

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.)
- Different sources of uncertainty
- Variability of entities in populations and outcomes of random (repeatable) experiments \rightarrow Aleatory uncertainty. Example: drawing a ball from an urn. Cannot be reduced
- Lack of knowledge \rightarrow Epistemic uncertainty. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced
- Classical ways of representing uncertainty
(1) Using probabilities
(2) Using set (e.g., interval analysis), or propositional logic

Probability theory

- Probability theory can be used to represent
- Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies
- Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model)
(1) Inability to represent ignorance
(2) Not a plausibility model of how people make decisions based on weak information

The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity X, we should assign equal probability to any possible value of X
- The wine/water paradox

There is a certain quantity of liquids. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between $1 / 3$ and 3 .
What is the probability that the ratio of wine to water is less than or equal to 2?

The wine/water paradox (continued)

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. According to the $\mathrm{PI}, X \sim \mathcal{U}_{[1 / 3,3]}$. Consequently

$$
P(X \leq 2)=(2-1 / 3) /(3-1 / 3)=5 / 8
$$

The wine/water paradox (continued)

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. According to the $\mathrm{PI}, X \sim \mathcal{U}_{[1 / 3,3]}$. Consequently

$$
P(X \leq 2)=(2-1 / 3) /(3-1 / 3)=5 / 8
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. According to the PI, $Y \sim \mathcal{U}_{[1 / 3,3]}$. Consequently

$$
P(Y \geq 1 / 2)=(3-1 / 2) /(3-1 / 3)=15 / 16
$$

The wine/water paradox (continued)

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. According to the $\mathrm{PI}, X \sim \mathcal{U}_{[1 / 3,3]}$. Consequently

$$
P(X \leq 2)=(2-1 / 3) /(3-1 / 3)=5 / 8
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. According to the PI, $Y \sim \mathcal{U}_{[1 / 3,3]}$. Consequently

$$
P(Y \geq 1 / 2)=(3-1 / 2) /(3-1 / 3)=15 / 16
$$

- However, $P(X \leq 2)=P(Y \geq 1 / 2)$!

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
- A: You receive 100 euros if you draw a red ball
- B: You receive 100 euros if you draw a black ball

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
- A: You receive 100 euros if you draw a red ball
- B: You receive 100 euros if you draw a black ball
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
- C: You receive 100 euros if you draw a red or yellow ball
- D: You receive 100 euros if you draw a black or yellow ball

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
- A: You receive 100 euros if you draw a red ball
- B: You receive 100 euros if you draw a black ball
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
- C: You receive 100 euros if you draw a red or yellow ball
- D: You receive 100 euros if you draw a black or yellow ball
- Most people strictly prefer A to B, hence $P($ red $)>P($ black $)$, but they strictly prefer D to C, hence $P($ black $)>P($ red $)$

Set-membership approach

- Partial knowledge about some variable X is described by a set E of possible values for X (constraint)
- Example:
- Consider a system described by the equation

$$
y=f\left(x_{1}, \ldots, x_{n} ; \theta\right)
$$

where y is the output, x_{1}, \ldots, x_{n} are the inputs and θ is a parameter

- Knowing that $x_{i} \in\left[x_{i}, \bar{x}_{i}\right], i=1, \ldots, n$ and $\theta \in[\theta, \bar{\theta}]$, find a set \mathbb{Y} surely containing y
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis)
- Drawback: no way to express doubt, conservative approach

Theory of belief functions

```
History
```

- A formal framework for representing and reasoning with uncertain information
- Also known as Dempster-Shafer theory or Evidence theory
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence
- Popularized and developed by Smets in the 1980's and 1990's under the name Transferable Belief Model
- Starting from the 1990's, growing number of applications in information fusion, classification, reliability and risk analysis, etc.

Theory of belief functions

Main idea

- The theory of belief functions extends both the set-membership approach and Probability Theory
- A belief function may be viewed both as a generalized set and as a non additive measure
- The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)
- Dempter-Shafer reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way

Relationships wth other theories

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment)
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every A of Ω such that $m(A)>0$ is a focal set of m
- m is said to be normalized if $m(\emptyset)=0$. This property will be assumed hereafter, unless otherwise specified

Example: the broken sensor

- Let X be some physical quantity (e.g., a temperature), talking values in Ω.
- A sensor returns a set of values $A \subset \Omega$, for instance, $A=[20,22]$.
- However, the sensor may be broken, in which case the value it returns is completely arbitrary.
- There is a probability $p=0.1$ that the sensor is broken.
- What can we say about X ? How to represent the available information (evidence)?

Analysis

- Here, the probability p is not about X, but about the state of a sensor.
- Let $S=\{$ working, broken $\}$ the set of possible sensor states.
- If the state is "working", we know that $X \in A$.
- If the state is "broken", we just know that $X \in \Omega$, and nothing more.
- This uncertain evidence can be represented by a mass function m on Ω, such that

$$
m(A)=0.9, \quad m(\Omega)=0.1
$$

Source

- A mass function m on Ω may be viewed as arising from
- A set $S=\left\{s_{1}, \ldots, s_{r}\right\}$ of states (interpretations)
- A probability measure P on S
- A multi-valued mapping $\Gamma: S \rightarrow 2^{\Omega}$
- The four-tuple $\left(S, 2^{S}, P, \Gamma\right)$ is called a source for m
- Meaning: under interpretation s_{i}, the evidence tells us that $X \in \Gamma\left(s_{i}\right)$, and nothing more. The probability $P\left(\left\{s_{i}\right\}\right)$ is transferred to $A_{i}=\Gamma\left(s_{i}\right)$
- $m(A)$ is the probability of knowing that $X \in A$, and nothing more, given the available evidence

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function $m_{[A]}$ such that $m_{[A]}(A)=1$
- $m_{[A]}$ is equivalent to A
- Special case: m_{7}, the vacuous mass function, represents total ignorance
- If each interpretation s_{i} of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
- a generalized set
- a generalized probability distribution
- Total ignorance is represented by the vacuous mass function $m_{\text {? }}$ such that $m_{?}(\Omega)=1$

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Belief function

- If the evidence tells us that the truth is in A, and $A \subseteq B$, we say that the evidence supports B.

- Given a normalized mass function m, the probability that the evidence supports B is thus

$$
B e l(B)=\sum_{A \subseteq B} m(A)
$$

- The number $\operatorname{Bel}(B)$ is called the degree of belief in B, and the function $B \rightarrow \operatorname{Bel}(B)$ is called a belief function.

Plausibility function

- If the evidence does not support \bar{B}, it is consistent with B.

- The probability that the evidence is consistent with B is thus

$$
\begin{aligned}
P l(B) & =\sum_{A \cap B \neq \emptyset} m(A) \\
& =1-\operatorname{Bel}(\bar{B}) .
\end{aligned}
$$

- The number $P I(B)$ is called the plausibility of B, and the function $B \rightarrow P I(B)$ is called a plausibility function.

Two-dimensional representation

- The uncertainty on a proposition B is represented by two numbers: $B e l(B)$ and $P I(B)$, with $\operatorname{Bel}(B) \leq P I(B)$.
- The intervals $[\operatorname{Bel}(B), P l(B)]$ have maximum length when m is the vacuous mass function. Then,

$$
[B e l(B), P l(B)]=[0,1]
$$

for all subset B of Ω, except \emptyset and Ω.

- The intervals $[\operatorname{Bel}(B), P I(B)]$ are reduced to points when the focal sets of m are singletons (m is then said to be Bayesian); then,

$$
B e l(B)=P I(B)
$$

for all B, and $B e l$ is a probability measure.

Broken sensor example

- From

$$
m(A)=0.9, \quad m(\Omega)=0.1
$$

we get

$$
\begin{gathered}
\operatorname{Bel}(A)=m(A)=0.9, \quad P l(A)=m(A)+m(\Omega)=1 \\
\operatorname{Bel}(\bar{A})=0, \quad P l(\bar{A})=m(\Omega)=0.1 \\
\operatorname{Bel}(\Omega)=P l(\Omega)=1
\end{gathered}
$$

- We observe that

$$
\begin{gathered}
\operatorname{Bel}(A \cup \bar{A}) \geq \operatorname{Bel}(A)+\operatorname{Bel}(\bar{A}) \\
P I(A \cup \bar{A}) \leq P I(A)+P I(\bar{A})
\end{gathered}
$$

- Bel and $P l$ are non additive measures.

Characterization of belief functions

- Function $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is a completely monotone capacity: it verifies $\operatorname{Be}(\emptyset)=0, \operatorname{Be}(\Omega)=1$ and

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} B e l\left(\bigcap_{i \in I} A_{i}\right) .
$$

for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω}.

- Conversely, to any completely monotone capacity Bel corresponds a unique mass function m such that:

$$
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} B e l(B), \quad \forall A \subseteq \Omega .
$$

Relations between $m, B e l$ and $P /$

- Let m be a mass function, Bel and $P /$ the corresponding belief and plausibility functions
- For all $A \subseteq \Omega$,

$$
\begin{gathered}
B e l(A)=1-P l(\bar{A}) \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Bel}(B) \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|+1} P l(\bar{B})
\end{gathered}
$$

- $m, B e l$ and $P l$ are thus three equivalent representations of
- a piece of evidence or, equivalently
- a state of belief induced by this evidence

Relationship with Possibility theory

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant
- The following relations then hold

$$
P l(A \cup B)=\max (P l(A), P l(B)), \quad \forall A, B \subseteq \Omega
$$

- $P l$ is this a possibility measure, and $B e l$ is the dual necessity measure
- The possibility distribution is the contour function

$$
p l(x)=P l(\{x\}), \quad \forall x \in \Omega
$$

- The theory of belief function can thus be considered as more expressive than possibility theory (but the combination operations are different, see later).

Credal set

- A probability measure P on Ω is said to be compatible with m if

$$
\forall A \subseteq \Omega, \quad B e l(A) \leq P(A) \leq P I(A)
$$

- The set $\mathcal{P}(m)$ of probability measures compatible with m is called the credal set of m

$$
\mathcal{P}(m)=\{P: \forall A \subseteq \Omega, B e l(A) \leq P(A)\}
$$

- Bel is the lower envelope of $\mathcal{P}(m)$

$$
\forall A \subseteq \Omega, \quad \operatorname{Bel}(A)=\min _{P \in \mathcal{P}(m)} P(A)
$$

- Not all lower envelopes of sets of probability measures are belief functions!

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Broken sensor example continued

- The first item of evidence gave us: $m_{1}(A)=0.9, m_{1}(\Omega)=0.1$.
- Another sensor returns another set of values B, and it is in working condition with probability 0.8 .
- This second piece if evidence can be represented by the mass function: $m_{2}(B)=0.8, m_{2}(\Omega)=0.2$
- How to combine these two pieces of evidence?

Analysis

- If interpretations $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ both hold, then $X \in \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
- If the two pieces of evidence are independent, then the probability that s_{1} and s_{2} both hold is $P_{1}\left(\left\{s_{1}\right\}\right) P_{2}\left(\left\{s_{2}\right\}\right)$

Computation

	S_{2} working (0.8)	S_{2} broken (0.2)
S_{1} working (0.9)	$A \cap B, 0.72$	$A, 0.18$
S_{1} broken (0.1)	$B, 0.08$	$\Omega, 0.02$

We then get the following combined mass function,

$$
\begin{aligned}
m(A \cap B) & =0.72 \\
m(A) & =0.18 \\
m(B) & =0.08 \\
m(\Omega) & =0.02
\end{aligned}
$$

Case of conflicting pieces of evidence

- If $\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)=\emptyset$, we know that s_{1} and s_{2} cannot hold simultaneously
- The joint probability distribution on $S_{1} \times S_{2}$ must be conditioned to eliminate impossible pairs of interpretation

Computation

	S_{2} working (0.8)	S_{2} broken (0.2)
S_{1} working (0.9)	$\emptyset, 0.72$	$A, 0.18$
S_{1} broken (0.1)	$B, 0.08$	$\Omega, 0.02$

We then get the following combined mass function,

$$
\begin{aligned}
m(\emptyset) & =0 \\
m(A) & =0.18 / 0.28 \approx 0.64 \\
m(B) & =0.08 / 0.28 \approx 0.29 \\
m(\Omega) & =0.02 / 0.28 \approx 0.07
\end{aligned}
$$

Dempster's rule

- Let m_{1} and m_{2} be two mass functions and

$$
\kappa=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict

- If $\kappa<1$, then m_{1} and m_{2} can be combined as

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset
$$

and $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: $m_{\text {? }}$
- Generalization of intersection: if $m_{[A]}$ and $m_{[B]}$ are logical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{[A]} \oplus m_{[B]}=m_{[A \cap B]}
$$

- If either m_{1} or m_{2} is Bayesian, then so is $m_{1} \oplus m_{2}$ (as the intersection of a singleton with another subset is either a singleton, or the empty set).

Dempster's conditioning

- Conditioning is a special case, where a mass function m is combined with a logical mass function $m_{[A]}$. Notation:

$$
m \oplus m_{[A]}=m(\cdot \mid A)
$$

- It can be shown that

$$
P I(B \mid A)=\frac{P l(A \cap B)}{P l(A)}
$$

- Generalization of Bayes' conditioning: if m is a Bayesian mass function and $m_{[A]}$ is a logical mass function, then $m \oplus m_{[A]}$ is a Bayesian mass function corresponding to the conditioning of m by A

Commonality function

- Commonality function: let Q : $2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Q is another equivalent representation of a belief function.

Commonality function and Dempster's rule

- Let Q_{1} and Q_{2} be the commonality functions associated to m_{1} and m_{2}.
- Let $Q_{1} \oplus Q_{2}$ be the commonality function associated to $m_{1} \oplus m_{2}$.
- We have

$$
\begin{gathered}
\left(Q_{1} \oplus Q_{2}\right)(A)=\frac{1}{1-\kappa} Q_{1}(A) \cdot Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

- In particular, $p l(\omega)=Q(\{\omega\})$. Consequently,

$$
p l_{1} \oplus p l_{2}=(1-\kappa)^{-1} p l_{1} p l_{2} .
$$

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule ©), which may yield an unnormalized mass function
- He proposed to interpret $m(\emptyset)$ as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption)
- I now think that this interpretation is problematic, as $m(\emptyset)$ increases mechanically when combining more and more items of evidence
- Claim: unnormalized mass functions (and \cap) are convenient mathematically, but only normalized mass functions make sense
- In particular, Bel and PI should always be computed from normalized mass functions

TBM disjunctive rule

- Let $\left(S_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(S_{2}, P_{2}, \Gamma_{2}\right)$ be sources associated to two pieces of evidence
- If interpretation $s_{k} \in S_{k}$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_{k}\left(s_{k}\right)$
- If interpretation $s \in S_{1}$ and $s_{2} \in S_{2}$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_{1}\left(s_{1}\right) \cup \Gamma_{2}\left(s_{2}\right)$
- This leads to the TBM disjunctive rule:

$$
\left(m_{1} \circlearrowleft m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega
$$

- $B e l_{1}(1) \mathrm{Be}_{2}=\mathrm{Be}_{1} \cdot \mathrm{Be}_{2}$

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Informational comparison of belief functions

- Let m_{1} and m_{2} be two mass functions on Ω
- In what sense can we say that m_{1} is more informative (committed) than m_{2} ?
- Special case:
- Let $m_{[A]}$ and $m_{[B]}$ be two logical mass functions
- $m_{[A]}$ is more committed than $m_{[B]}$ iff $A \subseteq B$
- Extension to arbitrary mass functions?

Plausibility ordering

- m_{1} is pl-more committed than $m_{2}\left(\right.$ noted $\left.m_{1} \sqsubseteq_{p l} m_{2}\right)$ if

$$
P l_{1}(A) \leq P l_{2}(A), \quad \forall A \subseteq \Omega
$$

or, equivalently,

$$
B e l_{1}(A) \geq B e l_{2}(A), \quad \forall A \subseteq \Omega
$$

- Imprecise probability interpretation:

$$
m_{1} \sqsubseteq p l m_{2} \Leftrightarrow \mathcal{P}\left(m_{1}\right) \subseteq \mathcal{P}\left(m_{2}\right)
$$

- Properties:
- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{p l} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Commonality ordering

- If $m_{1}=m \oplus m_{2}$ for some m, and if there is no conflict between m and m_{2}, then $Q_{1}(A)=Q(A) Q_{2}(A) \leq Q_{2}(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function
- m_{1} is q-more committed than $m_{2}\left(\right.$ noted $m_{1} \sqsubseteq_{q} m_{2}$) if

$$
Q_{1}(A) \leq Q_{2}(A), \quad \forall A \subseteq \Omega
$$

- Properties:
- Extension of set inclusion:

$$
m_{[A]} \sqsubseteq_{q} m_{[B]} \Leftrightarrow A \subseteq B
$$

- Greatest element: vacuous mass function $m_{\text {? }}$

Strong (specialization) ordering

- m_{1} is a specialization of m_{2} (noted $m_{1} \sqsubseteq_{s} m_{2}$) if m_{1} can be obtained from m_{2} by distributing each mass $m_{2}(B)$ to subsets of B :

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega,
$$

where $S(A, B)=$ proportion of $m_{2}(B)$ transferred to $A \subseteq B$

- S : specialization matrix
- Properties:
- Extension of set inclusion
- Greatest element: $m_{\text {? }}$
- $m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2}\end{array}\right.$

Least Commitment Principle

Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

A very powerful method for constructing belief functions!

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Cautious rule

Motivations

- The basic rules \oplus and () assume the sources of information to be independent, e.g.
- experts with non overlapping experience/knowledge
- non overlapping datasets
- What to do in case of non independent evidence?
- Describe the nature of the interaction between sources (difficult, requires a lot of information)
- Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings

Cautious rule

Principle

- Two sources provide mass functions m_{1} and m_{2}, and the sources are both considered to be reliable
- After receiving these m_{1} and m_{2}, the agent's state of belief should be represented by a mass function m_{12} more committed than m_{1}, and more committed than m_{2}
- Let $\mathcal{S}_{x}(m)$ be the set of mass functions m^{\prime} such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, \cdots\}$. We thus impose that

$$
m_{12} \in \mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)
$$

- According to the LCP, we should select the x-least committed element in $\mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists

Cautious rule

Problem

- The above approach works for special cases
- Example (Dubois, Prade, Smets 2001): if m_{1} and m_{2} are consonant, then the q-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12}=\min \left(Q_{1}, Q_{2}\right)$
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in\{p l, q, s\}$
- We need to define a new ordering relation

Simple and separable mass functions

- Definition: m is simple mass function if it has the following form

$$
\begin{aligned}
& m(A)=1-w(A) \\
& m(\Omega)=w(A)
\end{aligned}
$$

for some $A \subset \Omega, A \neq \emptyset$ and $w(A) \in[0,1]$. It is denoted by $A^{w(A)}$.

- Property: $A^{w_{1}(A)} \oplus A^{w_{2}(A)}=A^{w_{1}(A) w_{2}(A)}$
- A (normalized) mass function is separable if it can be written as the \oplus combination of simple mass functions

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

with $0 \leq w(A) \leq 1$ for all $A \subset \Omega, A \neq \emptyset$

The w-ordering

- Let m_{1} and m_{2} be two mass functions
- We say that m_{1} is w-less committed than m_{2} (denoted by $m_{1} \sqsubseteq_{w} m_{2}$) if

$$
m_{1}=m_{2} \oplus m
$$

for some separable mass function m

- How to check this condition?

Weight function

Definition

- Let m be a non dogmatic mass function, i.e., $m(\Omega)>0$
- The weight function $w: 2^{\Omega} \rightarrow(0,+\infty)$ is defined by $w(\Omega)=1$ and

$$
\ln w(A)=-\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln Q(B), \quad \forall A \subset \Omega
$$

- It can be shown that Q can be recovered from w as follows

$$
\ln Q(A)=-\sum_{\Omega \supset B \nsupseteq A} \ln w(B), \quad \forall A \subseteq \Omega
$$

- m can also be recovered from w by

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

although $A^{w(A)}$ is not a proper mass function when $w(A)>1$

Weight function

Properties

- m is separable iff

$$
w(A) \leq 1, \quad \forall A \subset \Omega, A \neq \emptyset
$$

- Dempster's rule can be computed using the w-function by

$$
m_{1} \oplus m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w_{1}(A) w_{2}(A)}
$$

- Characterization of the w-ordering

$$
m_{1} \sqsubseteq_{w} m_{2} \Leftrightarrow w_{1}(A) \leq w_{2}(A), \quad \forall A \subset \Omega, A \neq \emptyset
$$

Cautious rule

Definition

- Let m_{1} and m_{2} be two non dogmatic mass functions with weight functions w_{1} and w_{2}
- The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by:

$$
m_{1} ® m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{\min \left(w_{1}(A), w_{2}(A)\right)}
$$

- Operator \propto is called the (normalized) cautious rule

Computation

Cautious rule computation

m-space		w-space
m_{1}	\longrightarrow	w_{1}
m_{2}	\longrightarrow	w_{2}
$m_{1} \bowtie m_{2}$	\longleftarrow	$\min \left(w_{1}, w_{2}\right)$

Remark: we often have simple mass functions in the first place, so that the w function is readily available.

Cautious rule

- Commutative, associative
- Idempotent : $\forall m, m ® m=m$
- Distributivity of \oplus with respect to \otimes

$$
\left(m_{1} \oplus m_{2}\right) \otimes\left(m_{1} \oplus m_{3}\right)=m_{1} \oplus\left(m_{2} \bowtie m_{3}\right), \forall m_{1}, m_{2}, m_{3}
$$

The common item of evidence m_{1} is not counted twice!

- No neutral element, but $m_{?} ® m=m$ iff m is separable

Basic rules

Sources	independent	dependent
All reliable	\oplus	\oplus
At least one reliable	\oplus	\oplus

(v) is the bold disjunctive rule

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Belief functions on product spaces

Motivation

- In many applications, we need to express uncertain information about several variables taking values in different domains
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events)

Fault tree example

(Dempster \& Kong, 1988)

Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_{X} and Ω_{Y}
- Let $\Omega_{X Y}=\Omega_{X} \times \Omega_{Y}$ be the product frame
- A mass function $m_{X Y}$ on $\Omega_{X Y}$ can be seen as an generalized relation between variables X and Y
- Two basic operations on product frames
(1) Express a joint mass function $m_{X Y}$ in the coarser frame Ω_{X} or Ω_{Y} (marginalization)
(2) Express a marginal mass function m_{X} on Ω_{X} in the finer frame $\Omega_{X Y}$ (vacuous extension)

Marginalization

- Problem: express $m_{X Y}$ in Ω_{X}
- Solution: transfer each mass $m_{X Y}(A)$ to the projection of A on Ω_{X}
- Marginal mass function

$$
m_{X Y \downarrow X}(B)=\sum_{\left\{A \subseteq \Omega_{X Y}, A \downarrow \Omega_{X}=B\right\}} m_{X Y}(A) \quad \forall B \subseteq \Omega_{X}
$$

- Generalizes both set projection and probabilistic marginalization

Vacuous extension

- Problem: express m_{X} in $\Omega_{X Y}$
- Solution: transfer each mass $m_{X}(B)$ to the cylindrical extension of B : $B \times \Omega_{Y}$
- Vacuous extension:

$$
m_{X \uparrow X Y}(A)= \begin{cases}m_{X}(B) & \text { if } A=B \times \Omega_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Operations in product frames

Application to approximate reasoning

- Assume that we have:
- Partial knowledge of X formalized as a mass function m_{X}
- A joint mass function $m_{X Y}$ representing an uncertain relation between X and Y
- What can we say about Y ?
- Solution:

$$
m_{Y}=\left(m_{X \uparrow X Y} \oplus m_{X Y}\right)_{\downarrow Y}
$$

- Simpler notation:

$$
m_{Y}=\left(m_{X} \oplus m_{X Y}\right)_{\downarrow Y}
$$

- Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions

Outline

(1) Basic notions

- Mass functions
- Belief and plausibility functions
- Dempster's rule
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Belief functions on product spaces
- Belief functions on infinite spaces

Belief function: general definition

- Let Ω be a set (finite or not) and \mathcal{B} be an algebra of subsets of Ω (a nonempty family of subsets of Ω, closed under complementation and finite intersection).
- A belief function (BF) on \mathcal{B} is a mapping $\mathrm{Bel}: \mathcal{B} \rightarrow[0,1]$ verifying $\operatorname{Bel}(\emptyset)=0, \operatorname{Bel}(\Omega)=1$ and the complete monotonicity property: for any $k \geq 2$ and any collection B_{1}, \ldots, B_{k} of elements of \mathcal{B},

$$
\operatorname{Bel}\left(\bigcup_{i=1}^{k} B_{i}\right) \geq \sum_{\emptyset \neq \mid \subseteq\{1, \ldots, k\}}(-1)^{|| |+1} B e l\left(\bigcap_{i \in I} B_{i}\right)
$$

- A function $P I: \mathcal{B} \rightarrow[0,1]$ is a plausibility function iff $B \rightarrow 1-P I(\bar{B})$ is a belief function

Source

- Let S be a state space, \mathcal{A} an algebra of subsets of S, \mathbb{P} a finitely additive probability on (S, \mathcal{A})
- Let Ω be a set and \mathcal{B} an algebra of subsets of Ω
- 「 a multivalued mapping from S to $2^{\Omega} \backslash\{\emptyset\}$
- The four-tuple $(S, \mathcal{A}, \mathbb{P}, \Gamma)$ is called a source
- Under some conditions, it induces a belief function on (Ω, \mathcal{B})

Strong measurability

- Lower and upper inverses: for all $B \in \mathcal{B}$,

$$
\begin{gathered}
\Gamma_{*}(B)=B_{*}=\{s \in S \mid \Gamma(s) \neq \emptyset, \Gamma(s) \subseteq B\} \\
\Gamma^{*}(B)=B^{*}=\{s \in S \mid \Gamma(s) \cap B \neq \emptyset\}
\end{gathered}
$$

- Γ is strongly measurable wrt \mathcal{A} and \mathcal{B} if, for all $B \in \mathcal{B}, B^{*} \in \mathcal{A}$
- $\left(\forall B \in \mathcal{B}, B^{*} \in \mathcal{A}\right) \Leftrightarrow\left(\forall B \in \mathcal{B}, B_{*} \in \mathcal{A}\right)$

Belief function induced by a source

Lower and upper probabilities

- Lower and upper probabilities:

$$
\forall B \in \mathcal{B}, \quad \mathbb{P}_{*}(B)=\frac{\mathbb{P}\left(B_{*}\right)}{\mathbb{P}\left(\Omega^{*}\right)}, \quad \mathbb{P}^{*}(B)=\frac{\mathbb{P}\left(B^{*}\right)}{\mathbb{P}\left(\Omega^{*}\right)}=1-\operatorname{Bel}(\bar{B})
$$

- \mathbb{P}_{*} is a BF, and \mathbb{P}^{*} is the dual plausibility function
- Conversely, for any belief function, there is a source that induces it (Shafer's thesis, 1973)

Interpretation

- Typically, Ω is the domain of an unknown quantity ω, and S is a set of interpretations of a given piece of evidence about ω
- If $s \in S$ holds, then the evidence tells us that $\boldsymbol{\omega} \in \Gamma(s)$, and nothing more
- Then
- $\operatorname{Bel}(B)$ is the probability that the evidence supports B
- $P I(B)$ is the probability that the evidence is consistent with B

Consonant belief function

- Let π be a mapping from Ω to $S=[0,1]$ s.t. $\sup \pi=1$
- Let Γ be the multi-valued mapping from S to 2^{Ω} defined by

$$
\forall s \in[0,1], \quad \Gamma(s)=\{\omega \in \Omega \mid \pi(\omega) \geq s\}
$$

- The source $(S, \mathcal{B}(S), \lambda, \Gamma)$ defines a consonant BF on Ω, such that $p l(\omega)=\pi(\omega)$ (contour function)
- The corresponding plausibility function is a possibility measure

$$
\forall B \subseteq \Omega, \quad P l(B)=\sup _{\omega \in B} p l(\omega)
$$

Random closed interval

- Let (U, V) be a bi-dimensional random vector from a probability space $(S, \mathcal{A}, \mathbb{P})$ to \mathbb{R}^{2} such that $U \leq V$ a.s.
- Multi-valued mapping:

$$
\Gamma: s \rightarrow \Gamma(s)=[U(s), V(s)]
$$

- The source $(S, \mathcal{A}, \mathbb{P}, \Gamma)$ is a random closed interval. It defines a BF on ($\mathbb{R}, \mathcal{B}(\mathbb{R})$)

Dempster's rule

- Let $\left(S_{i}, \mathcal{A}_{i}, \mathbb{P}_{i}, \Gamma_{i}\right), i=1,2$ be two sources representing independent items of evidence, inducing BF Bel ${ }_{1}$ and Bel_{2}
- The combined BF Bel $=B e l_{1} \oplus B e l_{2}$ is induced by the source $\left(S_{1} \times S_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}, \mathbb{P}_{1} \otimes \mathbb{P}_{2}, \Gamma_{\cap}\right)$ with

$$
\Gamma_{\cap}\left(s_{1}, s_{2}\right)=\Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)
$$

Approximate computation

Monte Carlo simulation

Require: Desired number of focal sets N
$i \leftarrow 0$
while $i<N$ do
Draw s_{1} in S_{1} from \mathbb{P}_{1}
Draw s_{2} in S_{2} from \mathbb{P}_{2}
$\Gamma_{\cap}\left(s_{1}, s_{2}\right) \leftarrow \Gamma_{1}\left(s_{1}\right) \cap \Gamma_{2}\left(s_{2}\right)$
if $\Gamma_{\cap}\left(s_{1}, s_{2}\right) \neq \emptyset$ then
$i \leftarrow i+1$
$B_{i} \leftarrow \Gamma_{\cap}\left(s_{1}, s_{2}\right)$
end if
end while
$\widehat{B e l}(B) \leftarrow \frac{1}{N} \#\left\{i \in\{1, \ldots, N\} \mid B_{i} \subseteq B\right\}$
$\widehat{P} \left\lvert\,(B) \leftarrow \frac{1}{N} \#\left\{i \in\{1, \ldots, N\} \mid B_{i} \cap B \neq \emptyset\right\}\right.$

Summary

- The theory of belief functions: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks
- Belief functions can be seen both as generalized sets and as generalized probability measures
- Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.)
- The theory of belief function can also be seen as more geneal than Possibility theory (possibility measures are particular plausibility functions)
- The mathematical theory of belief functions in infinite spaces exists. We need practical models

References

cf. http://www.hds.utc.fr/~tdenoeux
G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.Ph. Smets and R. Kennes.
The Transferable Belief Model.
Artificial Intelligence, 66:191-243, 1994.
銞
D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.
International Journal of General Systems, 12(3):193-226, 1986.

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.
Artificial Intelligence, Vol. 172, pages 234-264, 2008.

