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Contents of this lecture

1 Historical perspective, motivations
2 Fundamental concepts: belief, plausibility, commonality, conditioning,

basic combination rules
3 Some more advanced concepts: cautious rule, multidimensional belief

functions, belief functions in infinite spaces
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Uncertain reasoning

In science and engineering we always need to reason with partial
knowledge and uncertain information (from sensors, experts, models,
etc.)
Different sources of uncertainty

Variability of entities in populations and outcomes of random (repeatable)
experiments→ Aleatory uncertainty. Example: drawing a ball from an urn.
Cannot be reduced
Lack of knowledge→ Epistemic uncertainty. Example: inability to
distinguish the color of a ball because of color blindness. Can be reduced

Classical ways of representing uncertainty
1 Using probabilities
2 Using set (e.g., interval analysis), or propositional logic
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Probability theory

Probability theory can be used to represent
Aleatory uncertainty: probabilities are considered as objective quantities and
interpreted as frequencies or limits of frequencies
Epistemic uncertainty: probabilities are subjective, interpreted as degrees of
belief

Main objections against the use of probability theory as a model
epistemic uncertainty (Bayesian model)

1 Inability to represent ignorance
2 Not a plausibility model of how people make decisions based on weak

information
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The wine/water paradox

Principle of Indifference (PI): in the absence of information about some
quantity X , we should assign equal probability to any possible value of X
The wine/water paradox
There is a certain quantity of liquids. All that we know about the liquid is
that it is composed entirely of wine and water, and the ratio of wine to

water is between 1/3 and 3.
What is the probability that the ratio of wine to water is less than or equal

to 2?
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The wine/water paradox (continued)

Let X denote the ratio of wine to water. All we know is that X ∈ [1/3,3].
According to the PI, X ∼ U[1/3,3]. Consequently

P(X ≤ 2) = (2− 1/3)/(3− 1/3) = 5/8

Now, let Y = 1/X denote the ratio of water to wine. All we know is that
Y ∈ [1/3,3]. According to the PI, Y ∼ U[1/3,3]. Consequently

P(Y ≥ 1/2) = (3− 1/2)/(3− 1/3) = 15/16

However, P(X ≤ 2) = P(Y ≥ 1/2)!
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Ellsberg’s paradox

Suppose you have an urn containing 30 red balls and 60 balls, either
black or yellow. You are given a choice between two gambles:

A: You receive 100 euros if you draw a red ball
B: You receive 100 euros if you draw a black ball

Also, you are given a choice between these two gambles (about a
different draw from the same urn):

C: You receive 100 euros if you draw a red or yellow ball
D: You receive 100 euros if you draw a black or yellow ball

Most people strictly prefer A to B, hence P(red) > P(black), but they
strictly prefer D to C, hence P(black) > P(red)
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Set-membership approach

Partial knowledge about some variable X is described by a set E of
possible values for X (constraint)
Example:

Consider a system described by the equation

y = f (x1, . . . , xn; θ)

where y is the output, x1, . . . , xn are the inputs and θ is a parameter
Knowing that xi ∈ [x i , x i ], i = 1, . . . , n and θ ∈ [θ, θ], find a set Y surely
containing y

Advantage: computationally simpler than the probabilistic approach in
many cases (interval analysis)
Drawback: no way to express doubt, conservative approach
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Theory of belief functions
History

A formal framework for representing and reasoning with uncertain
information
Also known as Dempster-Shafer theory or Evidence theory
Originates from the work of Dempster (1968) in the context of statistical
inference.
Formalized by Shafer (1976) as a theory of evidence
Popularized and developed by Smets in the 1980’s and 1990’s under the
name Transferable Belief Model
Starting from the 1990’s, growing number of applications in information
fusion, classification, reliability and risk analysis, etc.
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Theory of belief functions
Main idea

The theory of belief functions extends both the set-membership approach
and Probability Theory

A belief function may be viewed both as a generalized set and as a non
additive measure
The theory includes extensions of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection, union, inclusion,
etc.)

Dempter-Shafer reasoning produces the same results as probabilistic
reasoning or interval analysis when provided with the same information
However, the greater expressive power of the theory of belief functions
allows us to represent what we know in a more faithful way
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Relationships wth other theories

DS#theory#

Fuzzy#sets#&#
Possibility#theory#

Imprecise##
probability#

Rough#sets#

Probability##
theory#
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Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Belief functions on product spaces
Belief functions on infinite spaces
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Basic notions Mass functions

Mass function
Definition

Let X be a variable taking values in a finite set Ω (frame of discernment)
Evidence about X may be represented by a mass function m : 2Ω → [0,1]
such that ∑

A⊆Ω

m(A) = 1

Every A of Ω such that m(A) > 0 is a focal set of m
m is said to be normalized if m(∅) = 0. This property will be assumed
hereafter, unless otherwise specified
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Basic notions Mass functions

Example: the broken sensor

Let X be some physical quantity (e.g., a temperature), talking values in Ω.
A sensor returns a set of values A ⊂ Ω, for instance, A = [20,22].
However, the sensor may be broken, in which case the value it returns is
completely arbitrary.
There is a probability p = 0.1 that the sensor is broken.
What can we say about X? How to represent the available information
(evidence)?
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Basic notions Mass functions

Analysis

(S,	2S,P)	 ΩΓ	
broken	(0.1)	

working	(0.9)	

A	

Here, the probability p is not about X , but about the state of a sensor.
Let S = {working,broken} the set of possible sensor states.

If the state is “working”, we know that X ∈ A.
If the state is “broken”, we just know that X ∈ Ω, and nothing more.

This uncertain evidence can be represented by a mass function m on Ω,
such that

m(A) = 0.9, m(Ω) = 0.1
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Basic notions Mass functions

Source

A mass function m on Ω may be viewed as arising from
A set S = {s1, . . . , sr} of states (interpretations)
A probability measure P on S
A multi-valued mapping Γ : S → 2Ω

The four-tuple (S,2S,P, Γ) is called a source for m
Meaning: under interpretation si , the evidence tells us that X ∈ Γ(si ), and
nothing more. The probability P({si}) is transferred to Ai = Γ(si )

m(A) is the probability of knowing that X ∈ A, and nothing more, given
the available evidence
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Basic notions Mass functions

Special cases

If the evidence tells us that X ∈ A for sure and nothing more, for some
A ⊆ Ω, then we have a logical mass function m[A] such that m[A](A) = 1

m[A] is equivalent to A
Special case: m?, the vacuous mass function, represents total ignorance

If each interpretation si of the evidence points to a single value of X , then
all focal sets are singletons and m is said to be Bayesian. It is equivalent
to a probability distribution
A Dempster-Shafer mass function can thus be seen as

a generalized set
a generalized probability distribution

Total ignorance is represented by the vacuous mass function m? such
that m?(Ω) = 1
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Basic notions Belief and plausibility functions

Outline
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Basic notions Belief and plausibility functions

Belief function

If the evidence tells us that the truth is in A, and A ⊆ B, we say that the
evidence supports B.

Ω	
B	

A1	

A2	

A3	

A4	

Given a normalized mass function
m, the probability that the
evidence supports B is thus

Bel(B) =
∑
A⊆B

m(A)

The number Bel(B) is called the
degree of belief in B, and the
function B → Bel(B) is called a
belief function.
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Basic notions Belief and plausibility functions

Plausibility function

If the evidence does not support B, it is consistent with B.

Ω	
B	

A1	

A2	

A3	

A4	

The probability that the evidence
is consistent with B is thus

Pl(B) =
∑

A∩B 6=∅

m(A)

= 1− Bel(B).

The number Pl(B) is called the
plausibility of B, and the function
B → Pl(B) is called a plausibility
function.
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Basic notions Belief and plausibility functions

Two-dimensional representation

The uncertainty on a proposition B is represented by two numbers:
Bel(B) and Pl(B), with Bel(B) ≤ Pl(B).
The intervals [Bel(B),Pl(B)] have maximum length when m is the
vacuous mass function. Then,

[Bel(B),Pl(B)] = [0,1]

for all subset B of Ω, except ∅ and Ω.
The intervals [Bel(B),Pl(B)] are reduced to points when the focal sets of
m are singletons (m is then said to be Bayesian); then,

Bel(B) = Pl(B)

for all B, and Bel is a probability measure.
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Basic notions Belief and plausibility functions

Broken sensor example

From
m(A) = 0.9, m(Ω) = 0.1

we get
Bel(A) = m(A) = 0.9, Pl(A) = m(A) + m(Ω) = 1

Bel(A) = 0, Pl(A) = m(Ω) = 0.1

Bel(Ω) = Pl(Ω) = 1

We observe that
Bel(A ∪ A) ≥ Bel(A) + Bel(A)

Pl(A ∪ A) ≤ Pl(A) + Pl(A)

Bel and Pl are non additive measures.
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Basic notions Belief and plausibility functions

Characterization of belief functions

Function Bel : 2Ω → [0,1] is a completely monotone capacity: it verifies
Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity Bel corresponds a
unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Basic notions Belief and plausibility functions

Relations between m, Bel and Pl

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions
For all A ⊆ Ω,

Bel(A) = 1− Pl(A)

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B)

m, Bel and Pl are thus three equivalent representations of
a piece of evidence or, equivalently
a state of belief induced by this evidence
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Basic notions Belief and plausibility functions

Relationship with Possibility theory

When the focal sets of m are nested: A1 ⊂ A2 ⊂ . . . ⊂ Ar , m is said to be
consonant
The following relations then hold

Pl(A ∪ B) = max (Pl(A),Pl(B)) , ∀A,B ⊆ Ω

Pl is this a possibility measure, and Bel is the dual necessity measure
The possibility distribution is the contour function

pl(x) = Pl({x}), ∀x ∈ Ω

The theory of belief function can thus be considered as more expressive
than possibility theory (but the combination operations are different, see
later).
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Basic notions Belief and plausibility functions

Credal set

A probability measure P on Ω is said to be compatible with m if

∀A ⊆ Ω, Bel(A) ≤ P(A) ≤ Pl(A)

The set P(m) of probability measures compatible with m is called the
credal set of m

P(m) = {P : ∀A ⊆ Ω,Bel(A) ≤ P(A)}

Bel is the lower envelope of P(m)

∀A ⊆ Ω, Bel(A) = min
P∈P(m)

P(A)

Not all lower envelopes of sets of probability measures are belief
functions!
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Basic notions Dempster’s rule
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Basic notions Dempster’s rule

Broken sensor example continued

The first item of evidence gave us: m1(A) = 0.9, m1(Ω) = 0.1.
Another sensor returns another set of values B, and it is in working
condition with probability 0.8.
This second piece if evidence can be represented by the mass function:
m2(B) = 0.8, m2(Ω) = 0.2
How to combine these two pieces of evidence?
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Basic notions Dempster’s rule

Analysis

(S1,	P1)	

ΩΓ1	

broken	(0.1)	

working	(0.9)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If interpretations s1 ∈ S1 and s2 ∈ S2 both hold, then X ∈ Γ1(s1) ∩ Γ2(s2)

If the two pieces of evidence are independent, then the probability that s1
and s2 both hold is P1({s1})P2({s2})
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Basic notions Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) A ∩ B, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(A ∩ B) = 0.72
m(A) = 0.18
m(B) = 0.08
m(Ω) = 0.02
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Basic notions Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΩΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

A	

B	

If Γ1(s1) ∩ Γ2(s2) = ∅, we know that s1 and s2 cannot hold simultaneously
The joint probability distribution on S1 × S2 must be conditioned to
eliminate impossible pairs of interpretation
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Basic notions Dempster’s rule

Computation

S2 working S2 broken
(0.8) (0.2)

S1 working (0.9) ∅, 0.72 A, 0.18
S1 broken (0.1) B, 0.08 Ω, 0.02

We then get the following combined mass function,

m(∅) = 0
m(A) = 0.18/0.28 ≈ 0.64
m(B) = 0.08/0.28 ≈ 0.29
m(Ω) = 0.02/0.28 ≈ 0.07
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Basic notions Dempster’s rule

Dempster’s rule

Let m1 and m2 be two mass functions and

κ =
∑

B∩C=∅

m1(B)m2(C)

their degree of conflict
If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅

and (m1 ⊕m2)(∅) = 0
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Basic notions Dempster’s rule

Dempster’s rule
Properties

Commutativity, associativity. Neutral element: m?

Generalization of intersection: if m[A] and m[B] are logical mass functions
and A ∩ B 6= ∅, then

m[A] ⊕m[B] = m[A∩B]

If either m1 or m2 is Bayesian, then so is m1 ⊕m2 (as the intersection of a
singleton with another subset is either a singleton, or the empty set).
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Basic notions Dempster’s rule

Dempster’s conditioning

Conditioning is a special case, where a mass function m is combined with
a logical mass function m[A]. Notation:

m ⊕m[A] = m(·|A)

It can be shown that
Pl(B|A) =

Pl(A ∩ B)

Pl(A)
.

Generalization of Bayes’ conditioning: if m is a Bayesian mass function
and m[A] is a logical mass function, then m ⊕m[A] is a Bayesian mass
function corresponding to the conditioning of m by A
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Basic notions Dempster’s rule

Commonality function

Commonality function: let Q : 2Ω → [0,1] be defined as

Q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|Q(B)

Q is another equivalent representation of a belief function.
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Basic notions Dempster’s rule

Commonality function and Dempster’s rule

Let Q1 and Q2 be the commonality functions associated to m1 and m2.
Let Q1 ⊕Q2 be the commonality function associated to m1 ⊕m2.
We have

(Q1 ⊕Q2)(A) =
1

1− κ
Q1(A) ·Q2(A), ∀A ⊆ Ω,A 6= ∅

(Q1 ⊕Q2)(∅) = 1

In particular, pl(ω) = Q({ω}). Consequently,

pl1 ⊕ pl2 = (1− κ)−1pl1pl2.
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Basic notions Dempster’s rule

Remarks on normalization

Mass functions expressing pieces of evidence are always normalized
Smets introduced the unnormalized Dempster’s rule (TBM conjunctive
rule ∩©), which may yield an unnormalized mass function
He proposed to interpret m(∅) as the mass committed to the hypothesis
that X might not take its value in Ω (open-world assumption)
I now think that this interpretation is problematic, as m(∅) increases
mechanically when combining more and more items of evidence
Claim: unnormalized mass functions (and ∩©) are convenient
mathematically, but only normalized mass functions make sense
In particular, Bel and Pl should always be computed from normalized
mass functions
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Basic notions Dempster’s rule

TBM disjunctive rule

Let (S1,P1, Γ1) and (S2,P2, Γ2) be sources associated to two pieces of
evidence
If interpretation sk ∈ Sk holds and piece of evidence k is reliable, then we
can conclude that X ∈ Γk (sk )

If interpretation s ∈ S1 and s2 ∈ S2 both hold and we assume that at least
one of the two pieces of evidence is reliable, then we can conclude that
X ∈ Γ1(s1) ∪ Γ2(s2)

This leads to the TBM disjunctive rule:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω

Bel1 ∪©Bel2 = Bel1 · Bel2
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Selected advanced topics Informational orderings

Informational comparison of belief functions

Let m1 and m2 be two mass functions on Ω

In what sense can we say that m1 is more informative (committed) than
m2?
Special case:

Let m[A] and m[B] be two logical mass functions
m[A] is more committed than m[B] iff A ⊆ B

Extension to arbitrary mass functions?
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Selected advanced topics Informational orderings

Plausibility ordering

m1 is pl-more committed than m2 (noted m1 vpl m2) if

Pl1(A) ≤ Pl2(A), ∀A ⊆ Ω

or, equivalently,
Bel1(A) ≥ Bel2(A), ∀A ⊆ Ω

Imprecise probability interpretation:

m1 vpl m2 ⇔ P(m1) ⊆ P(m2)

Properties:
Extension of set inclusion:

m[A] vpl m[B] ⇔ A ⊆ B

Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Commonality ordering

If m1 = m ⊕m2 for some m, and if there is no conflict between m and m2,
then Q1(A) = Q(A)Q2(A) ≤ Q2(A) for all A ⊆ Ω

This property suggests that smaller values of the commonality function
are associated with richer information content of the mass function
m1 is q-more committed than m2 (noted m1 vq m2) if

Q1(A) ≤ Q2(A), ∀A ⊆ Ω

Properties:
Extension of set inclusion:

m[A] vq m[B] ⇔ A ⊆ B

Greatest element: vacuous mass function m?
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Selected advanced topics Informational orderings

Strong (specialization) ordering

m1 is a specialization of m2 (noted m1 vs m2) if m1 can be obtained from
m2 by distributing each mass m2(B) to subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B
S: specialization matrix
Properties:

Extension of set inclusion
Greatest element: m?

m1 vs m2 ⇒

{
m1 vpl m2

m1 vq m2
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Selected advanced topics Informational orderings

Least Commitment Principle
Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the
least informative according to some informational ordering (if it exists) should
be selected

A very powerful method for constructing belief functions!

Thierry Denœux Introduction to belief functions July 5, 2017 46 / 77



Selected advanced topics Cautious rule
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Selected advanced topics Cautious rule

Cautious rule
Motivations

The basic rules ⊕ and ∪© assume the sources of information to be
independent, e.g.

experts with non overlapping experience/knowledge
non overlapping datasets

What to do in case of non independent evidence?
Describe the nature of the interaction between sources (difficult, requires a
lot of information)
Use a combination rule that tolerates redundancy in the combined
information

Such rules can be derived from the LCP using suitable informational
orderings
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Cautious rule
Principle

Two sources provide mass functions m1 and m2, and the sources are
both considered to be reliable
After receiving these m1 and m2, the agent’s state of belief should be
represented by a mass function m12 more committed than m1, and more
committed than m2

Let Sx (m) be the set of mass functions m′ such that m′ vx m, for some
x ∈ {pl ,q, s, · · · }. We thus impose that

m12 ∈ Sx (m1) ∩ Sx (m2)

According to the LCP, we should select the x-least committed element in
Sx (m1) ∩ Sx (m2), if it exists
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Cautious rule
Problem

The above approach works for special cases
Example (Dubois, Prade, Smets 2001): if m1 and m2 are consonant, then
the q-least committed element in Sq(m1) ∩ Sq(m2) exists and it is unique:
it is the consonant mass function with commonality function
Q12 = min(Q1,Q2)

In general, neither existence nor uniqueness of a solution can be
guaranteed with any of the x-orderings, x ∈ {pl ,q, s}
We need to define a new ordering relation
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Simple and separable mass functions

Definition: m is simple mass function if it has the following form

m(A) = 1− w(A)

m(Ω) = w(A)

for some A ⊂ Ω, A 6= ∅ and w(A) ∈ [0,1]. It is denoted by Aw(A).
Property: Aw1(A) ⊕ Aw2(A) = Aw1(A)w2(A)

A (normalized) mass function is separable if it can be written as the ⊕
combination of simple mass functions

m =
⊕
∅6=A⊂Ω

Aw(A)

with 0 ≤ w(A) ≤ 1 for all A ⊂ Ω, A 6= ∅
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The w-ordering

Let m1 and m2 be two mass functions
We say that m1 is w-less committed than m2 (denoted by m1 vw m2) if

m1 = m2 ⊕m

for some separable mass function m
How to check this condition?
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Weight function
Definition

Let m be a non dogmatic mass function, i.e., m(Ω) > 0
The weight function w : 2Ω → (0,+∞) is defined by w(Ω) = 1 and

ln w(A) = −
∑
B⊇A

(−1)|B|−|A| ln Q(B), ∀A ⊂ Ω

It can be shown that Q can be recovered from w as follows

ln Q(A) = −
∑

Ω⊃B 6⊇A

ln w(B), ∀A ⊆ Ω

m can also be recovered from w by

m =
⊕
∅6=A⊂Ω

Aw(A)

although Aw(A) is not a proper mass function when w(A) > 1
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Weight function
Properties

m is separable iff
w(A) ≤ 1, ∀A ⊂ Ω,A 6= ∅

Dempster’s rule can be computed using the w-function by

m1 ⊕m2 =
⊕
∅6=A⊂Ω

Aw1(A)w2(A)

Characterization of the w-ordering

m1 vw m2 ⇔ w1(A) ≤ w2(A), ∀A ⊂ Ω,A 6= ∅
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Cautious rule
Definition

Let m1 and m2 be two non dogmatic mass functions with weight functions
w1 and w2

The w-least committed element in Sw (m1) ∩ Sw (m2) exists and is unique.
It is defined by:

m1 ∧©m2 =
⊕
∅6=A⊂Ω

Amin(w1(A),w2(A))

Operator ∧© is called the (normalized) cautious rule
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Computation

Cautious rule computation

m-space w-space
m1 −→ w1
m2 −→ w2

m1 ∧©m2 ←− min(w1,w2)

Remark: we often have simple mass functions in the first place, so that the w
function is readily available.
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Cautious rule
Properties

Commutative, associative
Idempotent : ∀m, m ∧©m = m
Distributivity of ⊕ with respect to ∧©

(m1 ⊕m2) ∧©(m1 ⊕m3) = m1 ⊕ (m2 ∧©m3),∀m1,m2,m3

The common item of evidence m1 is not counted twice!
No neutral element, but m? ∧©m = m iff m is separable
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Basic rules

Sources independent dependent
All reliable ⊕ ∧©
At least one reliable ∪© ∨©

∨© is the bold disjunctive rule
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Outline

1 Basic notions
Mass functions
Belief and plausibility functions
Dempster’s rule

2 Selected advanced topics
Informational orderings
Cautious rule
Belief functions on product spaces
Belief functions on infinite spaces
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Belief functions on product spaces
Motivation

B	

E
E
E

C

M	
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D	 X4	 X5	

X3	 X2	X1	

A	

X4	

X3	

OR	

AND	

In many applications, we need to
express uncertain information about
several variables taking values in
different domains
Example: fault tree (logical relations
between Boolean variables and
probabilistic or evidential information
about elementary events)
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Fault tree example
(Dempster & Kong, 1988)
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Multidimensional belief functions
Marginalization, vacuous extension

Let X and Y be two variables defined on frames ΩX and ΩY

Let ΩXY = ΩX × ΩY be the product frame
A mass function mXY on ΩXY can be seen as an generalized relation
between variables X and Y
Two basic operations on product frames

1 Express a joint mass function mXY in the coarser frame ΩX or ΩY

(marginalization)
2 Express a marginal mass function mX on ΩX in the finer frame ΩXY (vacuous

extension)
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Marginalization

Problem: express mXY in ΩX

Solution: transfer each mass mXY (A) to
the projection of A on ΩX

Marginal mass function

mXY↓X (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mXY (A) ∀B ⊆ ΩX

Generalizes both set projection and probabilistic marginalization
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Vacuous extension

Problem: express mX in ΩXY

Solution: transfer each mass mX (B) to
the cylindrical extension of B: B × ΩY

Vacuous extension:

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise
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Operations in product frames
Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX

A joint mass function mXY representing an uncertain relation between X and
Y

What can we say about Y ?
Solution:

mY = (mX↑XY ⊕mXY )↓Y

Simpler notation:
mY = (mX ⊕mXY )↓Y

Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions
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Outline
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Belief function: general definition

Let Ω be a set (finite or not) and B be an algebra of subsets of Ω (a
nonempty family of subsets of Ω, closed under complementation and
finite intersection).
A belief function (BF) on B is a mapping Bel : B → [0,1] verifying
Bel(∅) = 0, Bel(Ω) = 1 and the complete monotonicity property: for any
k ≥ 2 and any collection B1, . . . ,Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)

A function Pl : B → [0,1] is a plausibility function iff B → 1− Pl(B) is a
belief function
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Source

s Γ(s)

Γ
(S,A,P) (Ω,B)

Let S be a state space, A an algebra of subsets of S, P a finitely additive
probability on (S,A)

Let Ω be a set and B an algebra of subsets of Ω

Γ a multivalued mapping from S to 2Ω \ {∅}
The four-tuple (S,A,P, Γ) is called a source
Under some conditions, it induces a belief function on (Ω,B)
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Strong measurability

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper inverses: for all B ∈ B,

Γ∗(B) = B∗ = {s ∈ S|Γ(s) 6= ∅, Γ(s) ⊆ B}

Γ∗(B) = B∗ = {s ∈ S|Γ(s) ∩ B 6= ∅}

Γ is strongly measurable wrt A and B if, for all B ∈ B, B∗ ∈ A
(∀B ∈ B,B∗ ∈ A)⇔ (∀B ∈ B,B∗ ∈ A)
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Belief function induced by a source
Lower and upper probabilities

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper probabilities:

∀B ∈ B, P∗(B) =
P(B∗)
P(Ω∗)

, P∗(B) =
P(B∗)
P(Ω∗)

= 1− Bel(B)

P∗ is a BF, and P∗ is the dual plausibility function
Conversely, for any belief function, there is a source that induces it
(Shafer’s thesis, 1973)
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Interpretation

s Γ(s)

Γ
(S,A,P) (Ω,B)

Typically, Ω is the domain of an unknown quantity ω, and S is a set of
interpretations of a given piece of evidence about ω
If s ∈ S holds, then the evidence tells us that ω ∈ Γ(s), and nothing more
Then

Bel(B) is the probability that the evidence supports B
Pl(B) is the probability that the evidence is consistent with B
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Consonant belief function

ω"

π(ω)#

Γ(s)#

s#

1#

0#

Let π be a mapping from Ω to S = [0,1] s.t. supπ = 1
Let Γ be the multi-valued mapping from S to 2Ω defined by

∀s ∈ [0,1], Γ(s) = {ω ∈ Ω|π(ω) ≥ s}

The source (S,B(S), λ, Γ) defines a consonant BF on Ω, such that
pl(ω) = π(ω) (contour function)
The corresponding plausibility function is a possibility measure

∀B ⊆ Ω, Pl(B) = sup
ω∈B

pl(ω)
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Random closed interval

(S,A,P)'

U(s)'

V(s)'

s'

(U,V)'

Let (U,V ) be a bi-dimensional random vector from a probability space
(S,A,P) to R2 such that U ≤ V a.s.
Multi-valued mapping:

Γ : s → Γ(s) = [U(s),V (s)]

The source (S,A,P, Γ) is a random closed interval. It defines a BF on
(R,B(R))
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Dempster’s rule

s1!

Γ1(s1)!

Γ1!

(S1,A1,P1)!

(Ω,B)!

s2!

Γ2!

(S2,A2,P2)! Γ2(s2)!

Let (Si ,Ai ,Pi , Γi ), i = 1,2 be two sources representing independent items
of evidence, inducing BF Bel1 and Bel2
The combined BF Bel = Bel1 ⊕ Bel2 is induced by the source
(S1 × S2,A1 ⊗A2,P1 ⊗ P2, Γ∩) with

Γ∩(s1, s2) = Γ1(s1) ∩ Γ2(s2)
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Approximate computation
Monte Carlo simulation

Require: Desired number of focal sets N
i ← 0
while i < N do

Draw s1 in S1 from P1
Draw s2 in S2 from P2
Γ∩(s1, s2)← Γ1(s1) ∩ Γ2(s2)
if Γ∩(s1, s2) 6= ∅ then

i ← i + 1
Bi ← Γ∩(s1, s2)

end if
end while
B̂el(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ⊆ B}
P̂l(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ∩ B 6= ∅}
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Summary

The theory of belief functions: a very general formalism for representing
imprecision and uncertainty that extends both probabilistic and
set-theoretic frameworks

Belief functions can be seen both as generalized sets and as generalized
probability measures
Reasoning mechanisms extend both set-theoretic notions (intersection,
union, cylindrical extension, inclusion relations, etc.) and probabilistic
notions (conditioning, marginalization, Bayes theorem, stochastic ordering,
etc.)

The theory of belief function can also be seen as more geneal than
Possibility theory (possibility measures are particular plausibility
functions)
The mathematical theory of belief functions in infinite spaces exists. We
need practical models
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