Introduction to belief functions

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Third School on belief functions and their applications, Stella Plage, France, September 28, 2015

Contents of this lecture

- Historical perspective, motivations
- Fundamental concepts: belief, plausibility, commonality, Conditioning, basic combination rules
- Some more advanced concepts: cautious rule, multidimensional belief functions, belief functions in infinite spaces

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.)
- Different sources of uncertainty
 - Variability of entities in populations and outcomes of random (repeatable) experiments

 Aleatory uncertainty. Example: drawing a ball from an urn. Cannot be reduced
 - Lack of knowledge → Epistemic uncertainty. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced
- Classical ways of representing uncertainty
 - Using probabilities
 - 2 Using set (e.g., interval analysis), or propositional logic

Probability theory

Interpretations

- Probability theory can be used to represent
 - Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies
 - Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model)
 - Inability to represent ignorance
 - Not a plausibility model of how people make decisions based on weak information

Inability to represent ignorance

The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity X, we should assign equal probability to any possible value of X
- The wine/water paradox

There is a certain quantity of liquids. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between 1/3 and 3.

What is the probability that the ratio of wine to water is less than or equal to 2?

Inability to represent ignorance

The wine/water paradox (continued)

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. According to the PI, $X \sim \mathcal{U}_{[1/3, 3]}$. Consequently

$$P(X \le 2) = (2 - 1/3)/(3 - 1/3) = 5/8$$

• Now, let Y = 1/X denote the ratio of water to wine. All we know is that $Y \in [1/3,3]$. According to the PI, $Y \sim \mathcal{U}_{[1/3,3]}$. Consequently

$$P(Y \ge 1/2) = (3 - 1/2)/(3 - 1/3) = 15/16$$

• However, $P(X \le 2) = P(Y \ge 1/3)!$

Decision making

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
 - A: You receive 100 euros if you draw a red ball
 - B: You receive 100 euros if you draw a black ball
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
 - C: You receive 100 euros if you draw a red or yellow ball
 - D: You receive 100 euros if you draw a black or yellow ball
- Most people strictly prefer A to B, hence P(red) > P(black), but they strictly prefer D to C, hence P(black) > P(red)

Set-membership approach

- Partial knowledge about some variable X is described by a set E
 of possible values for X (constraint)
- Example:
 - Consider a system described by the equation

$$y = f(x_1, \ldots, x_n; \theta)$$

where y is the output, x_1, \ldots, x_n are the inputs and θ is a parameter

- Knowing that $x_i \in [\underline{x}_i, \overline{x}_i], i = 1, ..., n$ and $\theta \in [\underline{\theta}, \overline{\theta}],$ find a set \mathbb{Y} surely containing y
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis)
- Drawback: no way to express doubt, conservative approach

Theory of belief functions

- A formal framework for representing and reasoning with uncertain information
- Also known as Dempster-Shafer theory or Evidence theory
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence
- Popularized and developed by Smets in the 1980's and 1990's under the name Transferable Belief Model
- Starting from the 1990's, growing number of applications in information fusion, classification, reliability and risk analysis, etc.

Theory of belief functions

- The theory of belief functions extends both the set-membership approach and Probability Theory
 - A belief function may be viewed both as a generalized set and as a non additive measure
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)
- Dempter-Shafer reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

Representation of evidence

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

Mass function

 Let X be a variable taking values in a finite set Ω (frame of discernment)

• Evidence about X may be represented by a mass function $m: 2^{\Omega} \to [0,1]$ such that

$$\sum_{A \subseteq \Omega} m(A) = 1$$

- Every A of Ω such that m(A) > 0 is a focal set of m
- m is said to be normalized if $m(\emptyset) = 0$. This property will be assumed hereafter, unless otherwise specified

Example

- When traveling by train, you find a page of a used newspaper, with an article announcing rain for tomorrow
- The date of the newspaper is missing. If is today's newspaper, you know that it will rain tomorrow (assuming the forecast is perfectly reliable). If not, you know nothing
- Assume your subjective probability that this is today's paper is 0.8
- The frame of discernment is $\Omega = \{rain, \neg rain\}$
- The evidence can be represented by the following mass function

$$m(\{rain\}) = 0.8, \quad m(\{rain, \neg rain\}) = 0.2$$

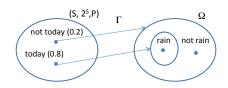
 The mass 0.2 is not committed to {¬rain}, because there is no evidence that it will not rain

4 D > 4 A > 4 B > 4 B > B | B | 9 Q P

Representation of evidence

Mass function

Source



- A mass function m on Ω may be viewed as arising from
 - A set $S = \{s_1, \dots, s_r\}$ of states (interpretations)
 - A probability measure P on S
 - A multi-valued mapping $\Gamma: S \to 2^{\Omega}$
- The four-tuple $(S, 2^S, P, \Gamma)$ is called a source for m
- Meaning: under interpretation s_i, the evidence tells us that X ∈ Γ(s_i), and nothing more. The probability P({s_i}) is transferred to A_i = Γ(s_i)
- m(A) is the probability of knowing only that X ∈ A, given the available evidence

Introduction to belief functions

Thierry Denœux

Representation of evidence

Mass functions

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_A such that $m_A(A) = 1$
 - *m_A* is equivalent to A
 - Special case: m₇, the vacuous mass function, represents total ignorance
- If each interpretation s_i of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution
- A Dempster-Shafer mass function can thus be seen as
 - a generalized set
 - a generalized probability distribution

Belief function

 The total degree of support for A can be defined as the probability that the evidence implies A

$$Bel(A) = P(\{s \in S | \Gamma(s) \subseteq A\}) = \sum_{B \subseteq A} m(B)$$

- Function $Bel: 2^{\Omega} \to [0,1]$ is called a belief function
- It is a completely monotone capacity: it verifies $Bel(\emptyset) = 0$, $Bel(\Omega) = 1$ and

$$Bel\left(\bigcup_{i=1}^{k}A_{i}\right)\geq\sum_{\emptyset\neq I\subseteq\{1,...,k\}}(-1)^{|I|+1}Bel\left(\bigcap_{i\in I}A_{i}\right)$$

for any $k \geq 2$ and for any family A_1, \ldots, A_k in 2^{Ω}

 Conversely, to any completely monotone capacity Bel corresponds a unique mass function m such that

$$m(A) = \sum_{\emptyset
eq B \subseteq A} (-1)^{|A|-|B|} Bel(B), \quad \forall A \subseteq \Omega$$

Plausibility function

 The plausibility of A is the probability that the evidence is consistent with A. It is defined as

$$PI(A) = P(\{s \in S | \Gamma(s) \cap A \neq \emptyset\}) = \sum_{B \cap A \neq \emptyset} m(B)$$

- Properties:
 - $PI(\emptyset) = 0, PI(\Omega) = 1$
 - $Bel(A) \leq Pl(A), \forall A \subseteq \Omega$
 - $PI(A) = 1 BeI(\overline{A}), \forall A \subseteq \Omega$
- If m is Bayesian, Bel = Pl (probability measure)

Basics

Example

A	Ø	{rain}	{¬rain}	{rain, ¬rain}
m(A)	0	0.8	0	0.2
Bel(A)	0	8.0	0	1
Bel(A) pl(A)	0	1	0.2	1

We observe that

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

 $Pl(A \cup B) \le Pl(A) + Pl(B) - Pl(A \cap B)$

Wine/water paradox revisited

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. This is modeled by the logical mass function m_X such that $m_X([1/3, 3]) = 1$. Consequently:

$$Bel_X([2,3]) = 0, Pl_X([2,3]) = 1$$

• Now, let Y = 1/X denote the ratio of water to wine. All we know is that $Y \in [1/3, 3]$. This is modeled by the logical mass function m_Y such that $m_Y([1/3, 3]) = 1$. Consequently:

$$Bel_Y([1/3, 1/2]) = 0, Pl_Y([1/3, 1/2]) = 1$$

Relations between m, Bel et Pl

- Let m be a mass function, Bel and Pl the corresponding belief and plausibility functions
- Relations:

$$Bel(A) = 1 - Pl(\overline{A}), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \forall A \subseteq \Omega$$

- m, Bel et Pl are thus three equivalent representations of
 - a piece of evidence or, equivalently
 - a state of belief induced by this evidence

Representation of evidence

- When the focal sets of m are nested: $A_1 \subset A_2 \subset ... \subset A_r$, m is said to be consonant
- The following relations then hold

$$PI(A \cup B) = \max(PI(A), PI(B)), \forall A, B \subseteq \Omega$$

- PI is this a possibility measure, and BeI is the dual necessity measure
- The possibility distribution is the contour function

$$pl(x) = Pl(\{x\}), \forall x \in \Omega$$

 The theory of belief function can thus be considered as more expressive than possibility theory

Credal set

• A probability measure P on Ω is said to be compatible with m if

$$\forall A \subseteq \Omega$$
, $Bel(A) \leq P(A) \leq Pl(A)$

 The set P(m) of probability measures compatible with m is called the credal set of m

$$\mathcal{P}(m) = \{P : \forall A \subseteq \Omega, Bel(A) \leq P(A)\}$$

• Bel is the lower envelope of $\mathcal{P}(m)$

$$\forall A \subseteq \Omega$$
, $Bel(A) = \min_{P \in \mathcal{P}(m)} P(A)$

 Not all lower envelopes of sets of probability measures are belief functions!

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

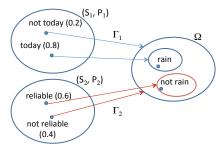
Dempster's rule

Rain example continued

- The first item of evidence gave us: $m_1(\{rain\}) = 0.8$, $m_1(\Omega) = 0.2$
- New piece of evidence: upon arriving in the train station, someone tells you that it will not rain tomorrow. Your probability that this prediction is reliable is 0.6
- This second piece if evidence can be represented by the mass funtion: $m_2(\{\neg rain\}) = 0.6$, $m_2(\Omega) = 0.4$
- How to combine these two pieces of evidence?

Dempster's rule

Justification



- If interpretations $s_1 \in S_1$ and $s_2 \in S_2$ both hold, then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$
- If the two pieces of evidence are independent, then the probability that s₁ and s₂ both hold is P₁({s₁})P₂({s₂})
- If $\Gamma_1(s_1) \cap \Gamma_2(s_2) = \emptyset$, we know that s_1 and s_2 cannot hold simultaneously
- The joint probability distribution on S₁ × S₂ must be conditioned to eliminate such pairs

Computation

	reliable	not reliable
	(0.6)	(0.4)
today (0.8)	∅, 0.48	{rain}, 0.32
not today (0.2)	{¬rain}, 0.12	Ω , 0.08

We then get the following combined mass function,

$$m(\{\text{rain}\}) = 0.32/0.52 \approx 0.62$$

 $m(\{\neg\text{rain}\}) = 0.12/0.52 \approx 0.23$
 $m(\Omega) = 0.08/0.52 \approx 0.15$

Dempster's rule

• Let m_1 and m_2 be two mass functions and

$$K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict

• If K < 1, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-K} \sum_{B \cap C = A} m_1(B) m_2(C), \quad \forall A \neq \emptyset$$

and
$$(m_1 \oplus m_2)(\emptyset) = 0$$

Dempster's rule Properties

- Commutativity, associativity. Neutral element: m_?
- Generalization of intersection: if m_A and m_B are categorical mass functions and $A \cap B \neq \emptyset$, then

$$m_A \oplus m_B = m_{A \cap B}$$

- Generalization of probabilistic conditioning: if m is a Bayesian mass function and m_A is a logical mass function, then $m \oplus m_A$ is a Bayesian mass function corresponding to the conditioning of m by A
- Notation for conditioning (special case):

$$m \oplus m_A = m(\cdot|A)$$

Dempster's rule

Expression using commonalities

• Commonality function: let $Q: 2^{\Omega} \to [0,1]$ be defined as

$$Q(A) = \sum_{B\supset A} m(B), \quad \forall A\subseteq \Omega$$

Conversely,

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

■ Expression of ⊕ using commonalities:

$$(Q_1 \oplus Q_2)(A) = \frac{1}{1-K}Q_1(A) \cdot Q_2(A), \quad \forall A \subseteq \Omega, A \neq \emptyset$$

 $(Q_1 \oplus Q_2)(\emptyset) = 1$

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule

), which may yield an unnormalized mass function
- He proposed to interpret $m(\emptyset)$ as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption)
- I now think that this interpretation is problematic, as $m(\emptyset)$ increases mechanically when combining more and more items of evidence
- Claim: unnormalized mass functions (and

 are convenient

 mathematically, but only normalized mass functions make sense
- In particular, Bel and Pl should always be computed from normalized mass functions

4 D > 4 A > 4 E > 4 E > E E 9 9 0

TBM disjunctive rule

- Let (S₁, P₁, Γ₁) and (S₂, P₂, Γ₂) be sources associated to two pieces of evidence
- If interpretation $s_k \in S_k$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_k(s_k)$
- If interpretation $s \in S_1$ and $s_2 \in S_2$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_1(s_1) \cup \Gamma_2(s_2)$
- This leads to the TBM disjunctive rule:

$$(m_1 \bigcirc m_2)(A) = \sum_{B \cup C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega$$

• $Bel_1 \bigcirc Bel_2 = Bel_1 \cdot Bel_2$

Informational orderings

Outline

- - Combination of evidence
- - Selected advanced topics
 - Informational orderings

Informational comparison of belief functions

- Let m_1 et m_2 be two mass functions on Ω
- In what sense can we say that m₁ is more informative (committed) than m₂?
- Special case:
 - Let m_A and m_B be two logical mass functions
 - m_A is more committed than m_B iff $A \subseteq B$
- Extension to arbitrary mass functions?

Informational orderings

• m_1 is pl-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if

$$Pl_1(A) \leq Pl_2(A), \quad \forall A \subseteq \Omega$$

or, equivalently,

$$Bel_1(A) \geq Bel_2(A), \quad \forall A \subseteq \Omega$$

Imprecise probability interpretation:

$$m_1 \sqsubseteq_{pl} m_2 \Leftrightarrow \mathcal{P}(m_1) \subseteq \mathcal{P}(m_2)$$

- Properties:
 - Extension of set inclusion:

$$m_A \sqsubseteq_{pl} m_B \Leftrightarrow A \subseteq B$$

Greatest element: vacuous mass function m₂

◄□▶◀률▶◀분▶◀분▶ 분|도 虳९♡

Informational orderings

Commonality ordering

- If $m_1 = m \oplus m_2$ for some m, and if there is no conflict between m and m_2 , then $Q_1(A) = Q(A)Q_2(A) \leq Q_2(A)$ for all $A \subseteq \Omega$
- This property suggests that smaller values of the commonality function are associated with richer information content of the mass function
- m_1 is q-more committed than m_2 (noted $m_1 \sqsubseteq_q m_2$) if

$$Q_1(A) \leq Q_2(A), \quad \forall A \subseteq \Omega$$

- Properties:
 - Extension of set inclusion:

$$m_A \sqsubseteq_q m_B \Leftrightarrow A \subseteq B$$

Greatest element: vacuous mass function m₂

Strong (specialization) ordering

• m_1 is a specialization of m_2 (noted $m_1 \sqsubseteq_s m_2$) if m_1 can be obtained from m_2 by distributing each mass $m_2(B)$ to subsets of B:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

where S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$

- S: specialization matrix
- Properties:
 - Extension of set inclusion
 - Greatest element: m?
 - $m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubseteq_q m_2 \end{cases}$

Informational orderings

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

A very powerful method for constructing belief functions!

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

- The basic rules \oplus and \bigcirc assume the sources of information to be independent, e.g.
 - experts with non overlapping experience/knowledge
 - non overlapping datasets
- What to do in case of non independent evidence?
 - Describe the nature of the interaction between sources (difficult, requires a lot of information)
 - Use a combination rule that tolerates redundancy in the combined information
- Such rules can be derived from the LCP using suitable informational orderings

- Two sources provide mass functions m₁ and m₂, and the sources are both considered to be reliable
- After receiving these m_1 and m_2 , the agent's state of belief should be represented by a mass function m_{12} more committed than m_1 , and more committed than m_2
- Let $S_x(m)$ be the set of mass functions m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, \dots\}$. We thus impose that

$$m_{12} \in \mathcal{S}_{\scriptscriptstyle X}(m_1) \cap \mathcal{S}_{\scriptscriptstyle X}(m_2)$$

• According to the LCP, we should select the *x*-least committed element in $S_x(m_1) \cap S_x(m_2)$, if it exists

- The above approach works for special cases
- Example (Dubois, Prade, Smets 2001): if m_1 and m_2 are consonant, then the q-least committed element in $S_q(m_1) \cap S_q(m_2)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12} = \min(Q_1, Q_2)$
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the *x*-orderings, $x \in \{pl, q, s\}$
- We need to define a new ordering relation

Simple and separable mass functions

Definition: m is simple mass function if it has the following form

$$m(A) = 1 - w(A)$$

 $m(\Omega) = w(A)$

for some $A \subset \Omega$, $A \neq \emptyset$ and $w(A) \in [0, 1]$. It is denoted by $A^{w(A)}$.

- Property: $A^{w_1(A)} \oplus A^{w_2(A)} = A^{w_1(A)w_2(A)}$
- A (normalized) mass function is separable if it can be written as the ⊕ combination of simple mass functions

$$m = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}$$

with
$$0 \le w(A) \le 1$$
 for all $A \subset \Omega$, $A \ne \emptyset$

The w-ordering

- Let m_1 and m_2 be two mass functions
- We say that m_1 is w-less committed than m_2 (denoted by $m_1 \sqsubseteq_w m_2$) if

$$m_1 = m_2 \oplus m$$

for some separable mass function *m*

• How to check this condition?

Weight function

Definition

- Let m be a non dogmatic mass function, i.e., $m(\Omega) > 0$
- The weight function $w: 2^{\Omega} \to (0, +\infty)$ is defined by $w(\Omega) = 1$ and

$$\ln w(A) = -\sum_{B\supset A} (-1)^{|B|-|A|} \ln Q(B), \quad \forall A \subset \Omega$$

It can be shown that Q can be recovered from w as follows

$$\ln Q(A) = -\sum_{\Omega \supset B \not\supset A} \ln w(B), \quad \forall A \subseteq \Omega$$

m can also be recovered from w by

$$m = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}$$

although $A^{w(A)}$ is not a proper mass function when w(A) > 1

Weight function Properties

• m is separable iff

$$w(A) \leq 1, \quad \forall A \subset \Omega, A \neq \emptyset$$

Dempster's rule can be computed using the w-function by

$$m_1 \oplus m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w_1(A)w_2(A)}$$

Characterization of the w-ordering

$$m_1 \sqsubseteq_W m_2 \Leftrightarrow w_1(A) \leq w_2(A), \quad \forall A \subset \Omega, A \neq \emptyset$$

- Let m₁ and m₂ be two non dogmatic mass functions with weight functions w₁ and w₂
- The w-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by:

$$m_1 \odot m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{\min(w_1(A), w_2(A))}$$

Cautious rule Computation

Cautious rule computation

$$\begin{array}{ccc} \underline{\textit{m-space}} & \underline{\textit{w-space}} \\ \hline m_1 & \longrightarrow & w_1 \\ \underline{\textit{m_2}} & \longrightarrow & w_2 \\ \hline m_1 \bigotimes m_2 & \longleftarrow & \min(w_1, w_2) \\ \end{array}$$

Cautious rule Properties

- Commutative, associative
- Idempotent : $\forall m, m \land m = m$
- Distributivity of ⊕ with respect to ∧

$$(m_1 \oplus m_2) \bigcirc (m_1 \oplus m_3) = m_1 \oplus (m_2 \bigcirc m_3), \forall m_1, m_2, m_3$$

The same item of evidence m_1 is not counted twice!

• No neutral element, but $m_? \otimes m = m$ iff m is separable

Basic rules

Sources	independent	dependent
All reliable	\oplus	\Diamond
At least one reliable	0	\bigcirc

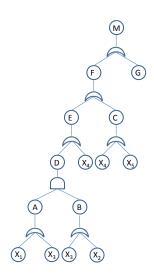
 $\ensuremath{\bigcirc}$ is the bold disjunctive rule

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

Belief functions on product spaces

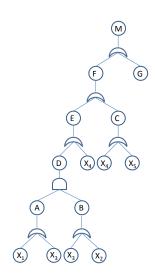
Motivation

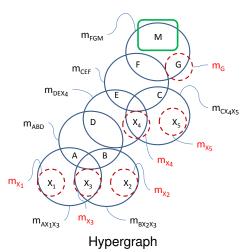


- In many applications, we need to express uncertain information about several variables taking values in different domains
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events)

Fault tree example

(Dempster & Kong, 1988)



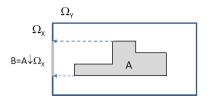


Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_X and Ω_Y
- Let $\Omega_{XY} = \Omega_X \times \Omega_Y$ be the product frame
- A mass function m^{XY} on Ω_{XY} can be seen as an generalized relation between variables X and Y
- Two basic operations on product frames
 - **1** Express a joint mass function m^{XY} in the coarser frame Ω_X or Ω_Y (marginalization)
 - Express a marginal mass function m^X on Ω_X in the finer frame Ω_{XY} (vacuous extension)

Marginalization



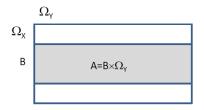
- Problem: express m^{XY} in Ω_X
- Solution: transfer each mass $m^{XY}(A)$ to the projection of A on Ω_X

Marginal mass function

$$m^{XY\downarrow X}(B) = \sum_{\{A\subseteq \Omega_{XY}, A\downarrow \Omega_X = B\}} m^{XY}(A) \quad \forall B\subseteq \Omega_X$$

Generalizes both set projection and probabilistic marginalization

Vacuous extension



- Problem: express m^X in Ω_{XY}
- Solution: transfer each mass $m^X(B)$ to the cylindrical extension of $B: B \times \Omega_Y$

Vacuous extension:

$$m^{X \uparrow XY}(A) = \begin{cases} m^X(B) & \text{if } A = B \times \Omega_Y \\ 0 & \text{otherwise} \end{cases}$$

Operations in product frames

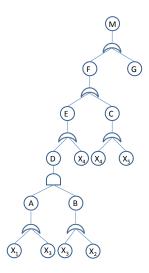
Application to approximate reasoning

- Assume that we have:
 - Partial knowledge of X formalized as a mass function m^X
 - A joint mass function m^{XY} representing an uncertain relation between X and Y
- What can we say about Y?
- Solution:

$$m^{Y} = \left(m^{X \uparrow XY} \oplus m^{XY}\right)^{\downarrow Y}$$

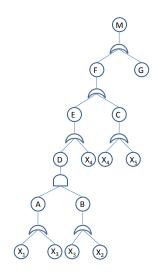
 Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions

Fault tree example



Cause	$m(\{1\})$	$m(\{0\})$	$m(\{0,1\})$
X_1	0.05	0.90	0.05
X_2	0.05	0.90	0.05
X_3	0.005	0.99	0.005
X_4	0.01	0.985	0.005
X_5	0.002	0.995	0.003
G	0.001	0.99	0.009
М	0.02	0.951	0.029
F	0.019	0.961	0.02

Fault tree example (continued)



Cause	$m(\{1\})$	$m(\{0\})$	$m(\{0,1\})$
М	1	0	0
G	0.197	0.796	0.007
F	0.800	0.196	0.004
:	:	:	:
X_1	0.236	0.724	0.040
X_2	0.236	0.724	0.040
<i>X</i> ₃	0.200	0.796	0.004
X_4	0.302	0.694	0.004
<i>X</i> ₅	0.099	0.898	0.003

Belief functions on infinite spaces

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Belief functions on product spaces
 - Belief functions on infinite spaces

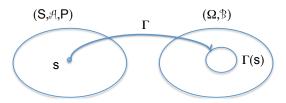
Belief function: general definition

- Let Ω be a set (finite or not) and $\mathcal B$ be an algebra of subsets of Ω
- A belief function (BF) on \mathcal{B} is a mapping $Bel : \mathcal{B} \to [0, 1]$ verifying $Bel(\emptyset) = 0$, $Bel(\Omega) = 1$ and the complete monotonicity property: for any $k \geq 2$ and any collection B_1, \ldots, B_k of elements of \mathcal{B} ,

$$Bel\left(\bigcup_{i=1}^{k}B_{i}\right)\geq\sum_{\emptyset\neq I\subseteq\{1,...,k\}}(-1)^{|I|+1}Bel\left(\bigcap_{i\in I}B_{i}\right)$$

• A function $PI: \mathcal{B} \to [0,1]$ is a plausibility function iff $B \to 1 - PI(\overline{B})$ is a belief function

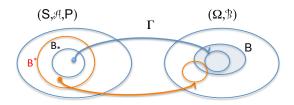
Source



- Let S be a state space, A an algebra of subsets of S, \mathbb{P} a finitely additive probability on (S, A)
- Let Ω be a set and \mathcal{B} an algebra of subsets of Ω
- Γ a multivalued mapping from S to $2^{\Omega} \setminus \{\emptyset\}$
- The four-tuple $(S, A, \mathbb{P}, \Gamma)$ is called a source
- Under some conditions, it induces a belief function on (Ω, \mathcal{B})

4□ > 4□ > 4□ > 4□ > 3□ = 40

Strong measurability



• Lower and upper inverses: for all $B \in \mathcal{B}$,

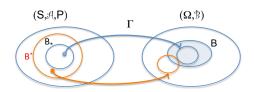
$$\Gamma_*(B) = B_* = \{ s \in S | \Gamma(s) \neq \emptyset, \Gamma(s) \subseteq B \}$$
$$\Gamma^*(B) = B^* = \{ s \in S | \Gamma(s) \cap B \neq \emptyset \}$$

- Γ is strongly measurable wrt A and B if, for all $B \in B$, $B^* \in A$
- $(\forall B \in \mathcal{B}, B^* \in \mathcal{A}) \Leftrightarrow (\forall B \in \mathcal{B}, B_* \in \mathcal{A})$

40 140 12 12 12 12 100

Belief function induced by a source

Lower and upper probabilities

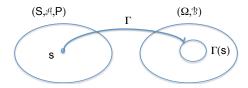


Lower and upper probabilities:

$$\forall B \in \mathcal{B}, \ \ \mathbb{P}_*(B) = \frac{\mathbb{P}(B_*)}{\mathbb{P}(\Omega^*)}, \quad \mathbb{P}^*(B) = \frac{\mathbb{P}(B^*)}{\mathbb{P}(\Omega^*)} = 1 - \textit{Bel}(\overline{B})$$

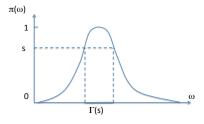
- ullet \mathbb{P}_* is a BF, and \mathbb{P}^* is the dual plausibility function
- Conversely, for any belief function, there is a source that induces it (Shafer's thesis, 1973)

Interpretation



- Typically, Ω is the domain of an unknown quantity ω , and S is a set of interpretations of a given piece of evidence about ω
- If $s \in S$ holds, then the evidence tells us that $\omega \in \Gamma(s)$, and nothing more
- Then
 - Bel(B) is the probability that the evidence supports B
 - PI(B) is the probability that the evidence is consistent with B

Consonant belief function



- Let π be a mapping from Ω to S = [0, 1] s.t. $\sup \pi = 1$
- Let Γ be the multi-valued mapping from S to 2^{Ω} defined by

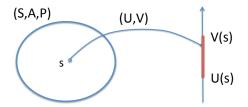
$$\forall s \in [0, 1], \quad \Gamma(s) = \{\omega \in \Omega | \pi(\omega) \geq s\}$$

- The source $(S, \mathcal{B}(S), \lambda, \Gamma)$ defines a consonant BF on Ω , such that $pl(\omega) = \pi(\omega)$ (contour function)
- The corresponding plausibility function is a possibility measure

$$\forall B \subseteq \Omega, \quad PI(B) = \sup_{\omega \in B} pI(\omega)$$

Belief functions on infinite spaces

Random closed interval



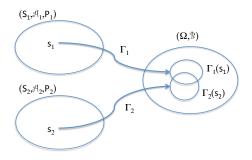
- Let (U, V) be a bi-dimensional random vector from a probability space (S, A, \mathbb{P}) to \mathbb{R}^2 such that $U \leq V$ a.s.
- Multi-valued mapping:

$$\Gamma: s \to \Gamma(s) = [U(s), V(s)]$$

• The source $(S, A, \mathbb{P}, \Gamma)$ is a random closed interval. It defines a BF on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

<□ > <률 > < 불 > < 불 ≥ 기 수 있다.

Dempster's rule



- Let (S_i, A_i, P_i, Γ_i), i = 1,2 be two sources representing independent items of evidence, inducing BF Bel₁ and Bel₂
- The combined BF $Bel = Bel_1 \oplus Bel_2$ is induced by the source $(S_1 \times S_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mathbb{P}_1 \otimes \mathbb{P}_2, \Gamma_{\cap})$ with

$$\Gamma_{\cap}(s_1,s_2) = \Gamma_1(s_1) \cap \Gamma_2(s_2)$$

Approximate computation

Monte Carlo simulation

```
Require: Desired number of focal sets N
    i \leftarrow 0
    while i < N do
        Draw s_1 in S_1 from \mathbb{P}_1
        Draw s_2 in S_2 from \mathbb{P}_2
        \Gamma_{\cap}(s_1,s_2) \leftarrow \Gamma_1(s_1) \cap \Gamma_2(s_2)
        if \Gamma_{\cap}(s_1, s_2) \neq \emptyset then
           i \leftarrow i + 1
            B_i \leftarrow \Gamma_{\cap}(s_1, s_2)
        end if
    end while
    Bel(B) \leftarrow \frac{1}{N} \# \{ i \in \{1, ..., N\} | B_i \subseteq B \}
    \widehat{PI}(B) \leftarrow \frac{1}{N} \# \{ i \in \{1, \dots, N\} | B_i \cap B \neq \emptyset \}
```

Summary

- The theory of belief functions: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks
 - Belief functions can be seen both as generalized sets and as generalized probability measures
 - Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.)
- The theory of belief function can also be seen as more geneal than Possibility theory (possibility measures are particular plausibility functions)
- The mathematical theory of belief functions in infinite spaces exists. We need practical models

References

cf. http://www.hds.utc.fr/~tdenoeux

G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

Ph. Smets and R. Kennes.

The Transferable Belief Model.

Artificial Intelligence, 66:191-243, 1994.

D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.

International Journal of General Systems, 12(3):193-226, 1986.

Introduction to belief functions

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.

Artificial Intelligence, Vol. 172, pages 234-264, 2008.

Thierry Denœux