Introduction to belief functions

Thierry Denœux ${ }^{1}$

${ }^{1}$ Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253)
https://www.hds.utc.fr/~tdenoeux
Spring School BFTA 2013
Carthage, Tunisia, May 20, 2013
heudiasyc

Contents of this lecture

(1) Historical perspective, motivations.
(2) Fundamental concepts: belief, plausibility, commonality, Conditioning, basic combination rules.
(3) Some more advanced concepts: least commitment principle, cautious rule, multidimensional belief functions.

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.).
- Different sources of uncertainty:
- Variability of entities in populations and outcomes of random (repeatable) experiments \rightarrow Aleatory uncertainty. Example: drawing a ball from an urn. Cannot be reduced;
- Lack of knowledge \rightarrow Epistemic uncertainty. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced.
- Classical frameworks for reasoning with uncertainty:
(1) Probability theory;
(2) Set-membership approach (e.g., interval analysis).

Probability theory

Interpretations

- Probability theory can be used to represent:
- Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies;
- Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief.
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model):
- Inability to represent ignorance;
- Not a plausibility model of how people make decisions based on weak information.

Inability to represent ignorance

The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity X, we should assign equal probability to any possible value of X.
- The wine/water paradox:

There is a certain quantity of liquids. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between $1 / 3$ and 3 .
What is the probability that the ratio of wine to water is less than or equal to 2 ?

Inability to represent ignorance

The wine/water paradox (continued)

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. According to the $\mathrm{PI}, X \sim \mathcal{U}_{[1 / 3,3]}$. Consequently:

$$
P(X \leq 2)=(2-1 / 3) /(3-1 / 3)=5 / 8 .
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. According to the $\mathrm{PI}, Y \sim \mathcal{U}_{[1 / 3,3]}$. Consequently:

$$
P(Y \geq 1 / 2)=(3-1 / 2) /(3-1 / 3)=15 / 16 .
$$

- However, $P(X \leq 2)=P(Y \geq 1 / 3)$!

Decision making

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
- A: You receive 100 euros if you draw a red ball;
- B: You receive 100 euros if you draw a black ball.
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
- C: You receive 100 euros if you draw a red or yellow ball;
- D: You receive 100 euros if you draw a black or yellow ball.
- Most people strictly prefer A to B, hence $P($ red $)>P($ black $)$, but they strictly prefer D to C, hence $P($ black $)>P($ red $)$.

Set-membership approach

- Partial knowledge about some variable X is described by a set of possible values E (constraint).
- Example:
- Consider a system described by the equation

$$
y=f\left(x_{1}, \ldots, x_{n} ; \theta\right)
$$

where y is the output, x_{1}, \ldots, x_{n} are the inputs and θ is a parameter.

- Knowing that $x_{i} \in\left[\underline{X}_{i}, \bar{x}_{i}\right], i=1, \ldots, n$ and $\theta \in[\underline{\theta}, \bar{\theta}]$, find a set \mathbb{Y} surely containing y.
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis).
- Drawback: no way to express doubt, conservative approach.

Theory of belief functions History

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer theory or Evidence theory.
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's under the name Transferable Belief Model.
- Starting from the 1990's, growing number of applications in information fusion, classification, reliability and risk analysis, etc.

Theory of belief functions
 Main idea

- The theory of belief functions extends both the set-membership approach and Probability Theory:
- A belief function may be viewed both as a generalized set and as a non additive measure.
- The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)
- Dempter-Shafer reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

Outline

(1) Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions
utc
Uswershed do Toch
Compiegne

Outline

(1) Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Mass function

- Let X be a variable taking values in a finite set Ω (frame of discernment).
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every A of Ω such that $m(A)>0$ is a focal set of m.
- m is said to be normalized if $m(\emptyset)=0$. This property will be assumed hereafter, unless otherwise specified..

Murder example

- A murder has been committed. There are three suspects: $\Omega=\{$ Peter, John, Mary $\}$.
- A witness saw the murderer going away in the dark, and he can only assert that it was man. How, we know that the witness is drunk 20% of the time.
- This piece of evidence can be represented by

$$
\begin{gathered}
m(\{\text { Peter }, \text { John }\})=0.8, \\
m(\Omega)=0.2
\end{gathered}
$$

- The mass 0.2 is not committed to \{Mary\}, because the testimony does not accuse Mary at all!

Mass function

- A mass function m on Ω may be viewed as arising from
- A set $\Theta=\left\{\theta_{1}, \ldots, \theta_{r}\right\}$ of interpretations;
- A probability measure P on Θ;
- A multi-valued mapping $\Gamma: \Theta \rightarrow 2^{\Omega}$.
- Meaning: under interpretation θ_{i}, the evidence tells us that $X \in \Gamma\left(\theta_{i}\right)$, and nothing more. The probability $P\left(\left\{\theta_{i}\right\}\right)$ is transferred to $A_{i}=\Gamma\left(\theta_{i}\right)$.
- $m(A)$ is the probability of knowing only that $X \in A$, given the available evidence.

Mass functions

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_{A} such that $m_{A}(A)=1$.
- m_{A} is equivalent to A.
- Special case: m_{Ω}, the vacuous mass function, represents total ignorance.
- If each interpretation θ_{i} of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution.
- A Dempster-Shafer mass function can thus be seen as
- a generalized set;
- a generalized probability distribution.

Belief function

- The total degree of support for A can be defined as the probability that the evidence implies A :

$$
B e l(A)=P(\{\theta \in \Theta \mid \Gamma(\theta) \subseteq A\})=\sum_{B \subseteq A} m(B) .
$$

- Function $\mathrm{Bel}: 2^{\Omega} \rightarrow[0,1]$ is called a belief function.
- It is a completely monotone capacity: it verifies $\operatorname{Bel}(\emptyset)=0$, $\operatorname{Bel}(\Omega)=1$ and

$$
\operatorname{BeI}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|I|+1} B e l\left(\bigcap_{i \in I} A_{i}\right) .
$$

for any $k \geq 2$ and for any family A_{1}, \ldots, A_{k} in 2^{Ω}.

Plausibility function

- The plausibility of A is the probability that the evidence does not contradict A. It is defined as

$$
P I(A)=P(\{\theta \in \Theta \mid \Gamma(\theta) \cap A \neq \emptyset\})=\sum_{B \cap A \neq \emptyset} m(B)
$$

- Properties:
- $P l(\emptyset)=0, P I(\Omega)=1$;
- $\operatorname{Bel}(A) \leq P l(A), \forall A \subseteq \Omega ;$
- $P l(A)=1-\operatorname{Bel}(\bar{A}), \forall A \subseteq \Omega$.
- If m is Bayesian, $B e l=P l$ (probability measure).

Murder example

A	\emptyset	$\{P\}$	$\{J\}$	$\{P, J\}$	$\{M\}$	$\{P, M\}$	$\{J, M\}$	Ω
$m(A)$	0	0	0	0.8	0	0	0	0.2
$\operatorname{Be}((A)$	0	0	0	0.8	0	0	0	1
$p l(A)$	0	1	1	1	0.2	1	1	1

- We observe that

$$
\begin{gathered}
B e l(A \cup B) \geq B e l(A)+B e l(B)-\operatorname{Bel}(A \cap B) \\
P l(A \cup B) \leq P I(A)+P l(B)-P l(A \cap B)
\end{gathered}
$$

Wine/water paradox revisited

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. This is modeled by the logical mass function m_{X} such that $m_{X}([1 / 3,3])=1$. Consequently:

$$
\operatorname{Be}_{X}([2,3])=0, \quad P I_{X}([2,3])=1 .
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. This is modeled by the logical mass function m_{Y} such that $m_{Y}([1 / 3,3])=1$. Consequently:

$$
\operatorname{Be}_{Y}([1 / 3,1 / 2])=0, \quad \operatorname{Pl} l_{Y}([1 / 3,1 / 2])=1 .
$$

Relations between $m, B e l$ et $P l$

- Let m be a normalized mass function, Be and $P /$ the corresponding belief and plausibility functions.
- Relations:

$$
\begin{gathered}
\operatorname{Be} l(A)=1-P l(\bar{A}), \quad \forall A \subseteq \Omega \\
m(A)=\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \operatorname{Be} l(B), \forall A \subseteq \Omega
\end{gathered}
$$

- $m, B e l$ et $P l$ are thus three equivalent representations of
- a piece of evidence or, equivalently,
- a state of belief induced by this evidence.

Relationship with Possibility theory

- When the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r}, m$ is said to be consonant.
- The following relations then hold:

$$
P l(A \cup B)=\max (P l(A), P l(B)), \quad \forall A, B \subseteq \Omega
$$

- $P l$ is this a possibility measure, and Be is the dual necessity measure.
- The possibility distribution is the contour function:

$$
p l(x)=P l(\{x\}), \quad \forall x \in \Omega .
$$

- The theory of belief function can thus be considered as more expressive than possibility theory.

Outline

(1) Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Dempster's rule

- The first item of evidence gave us: $m_{1}(\{$ Peter, John $\})=0.8$, $m_{1}(\Omega)=0.2$.
- New piece of evidence: a blond hair has been found.
- There is a probability 0.6 that the room has been cleaned before the crime: $m_{2}(\{$ John, Mary $\})=0.6, m_{2}(\Omega)=0.4$.
- How to combine these two pieces of evidence?

Dempster's rule

Justification

- If interpretations $\theta_{1} \in \Theta_{1}$ and $\theta_{2} \in \Theta_{2}$ both hold, then $X \in \Gamma_{1}\left(\theta_{1}\right) \cap \Gamma_{2}\left(\theta_{2}\right)$.
- If the two pieces of evidence are independent, then the probability that θ_{1} and θ_{2} both hold is $P_{1}\left(\left\{\theta_{1}\right\}\right) P_{2}\left(\left\{\theta_{2}\right\}\right)$.
- If $\Gamma_{1}\left(\theta_{1}\right) \cap \Gamma_{2}\left(\theta_{2}\right)=\emptyset$, we know that θ_{1} and θ_{2} cannot hold simultaneously.
- The joint probability distribution on $\Theta_{1} \times \Theta_{2}$ must be conditioned to eliminate such pairs.

Dempster's rule

Definition

- Let m_{1} and m_{2} be two mass functions and

$$
K=\sum_{B \cap C=\emptyset} m_{1}(B) m_{2}(C)
$$

their degree of conflict.

- If $K<1$, then m_{1} and m_{2} can be combined as

$$
\left(m_{1} \oplus m_{2}\right)(A)=\frac{1}{1-K} \sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \neq \emptyset
$$

and $\left(m_{1} \oplus m_{2}\right)(\emptyset)=0$.

Dempster's rule
 Properties

- Commutativity, associativity. Neutral element: m_{Ω}.
- Generalization of intersection: if m_{A} and m_{B} are categorical mass functions and $A \cap B \neq \emptyset$, then

$$
m_{A} \oplus m_{B}=m_{A \cap B}
$$

- Generalization of probabilistic conditioning: if m is a Bayesian mass function and m_{A} is a logical mass function, then $m \oplus m_{A}$ is a Bayesian mass function corresponding to the conditioning of m by A.
- Notation for conditioning (special case):

$$
m \oplus m_{A}=m(\cdot \mid A)
$$

Dempster's rule

Expression using commonalities

- Commonality function: let $Q: 2^{\Omega} \rightarrow[0,1]$ be defined as

$$
Q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} Q(B)
$$

- Expression of \oplus using commonalities:

$$
\begin{gathered}
\left(Q_{1} \oplus Q_{2}\right)(A)=\frac{1}{1-K} Q_{1}(A) \cdot Q_{2}(A), \quad \forall A \subseteq \Omega, A \neq \emptyset \\
\left(Q_{1} \oplus Q_{2}\right)(\emptyset)=1
\end{gathered}
$$

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized.
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule $®$), which may yield an unnormalized mass function.
- He proposed to interpret $m(\emptyset)$ as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption).
- We think that this interpretation is problematic, as $m(\emptyset)$ increases mechanically when combining more and more items of evidence.
- Our claim: unnormalized mass functions (and \cap) are convenient mathematically, but only normalized mass functions make sense.
- In particular, Bel and Pl should always be computed from normalized mass functions.

TBM disjunctive rule

- Let $\left(\Theta_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(\Theta_{2}, P_{2}, \Gamma_{2}\right)$ be the random sets associated to two pieces of evidence.
- If interpretation $\theta_{k} \in \Theta_{k}$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_{k}\left(\theta_{k}\right)$.
- If interpretation $\theta_{1} \in \Theta_{1}$ and $\theta_{2} \in \Theta_{2}$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_{1}\left(\theta_{1}\right) \cup \Gamma_{2}\left(\theta_{2}\right)$.
- This leads to the TBM disjunctive rule:

$$
\left(m_{1}\left(m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega\right.
$$

- $\mathrm{Bel}_{1}(1) \mathrm{Bel}_{2}=\mathrm{Bel}_{1} \cdot \mathrm{Bel}_{2}$.

Selecting a combination rule

- All three rules $๑, \oplus$ and (\subseteq) assume the pieces of evidence to be independent.
- The conjunctive rules $®$ and \oplus further assume that the pieces of evidence are both reliable;
- The TBM disjunctive rule (©) only assumes that at least one of the items of evidence combined is reliable (weaker assumption).
- © vs. \oplus :
- © is simpler to compute (no normalization).
- © keeps track of the conflict between items of evidence: very useful in some applications.
- The conflict increases with the number of combined mass functions: normalization is often necessary at some point.
- What to do with dependent items of evidence? \rightarrow Cautious rule

Outline

(1) Basics

- Representation of evidence
- Combination of evidence
- Decision making

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

Decision making

Problem formulation

- A decision problem can be formalized by defining:
- A set of acts $\mathcal{A}=\left\{a_{1}, \ldots, a_{s}\right\}$;
- A set of states of the world Ω;
- A loss function $L: \mathcal{A} \times \Omega \rightarrow \mathbb{R}$, such that $L(a, \omega)$ is the loss incurred if we select act a and the true state is ω.
- Bayesian framework
- Uncertainty on Ω is described by a probability measure P;
- Define the risk of each act a as the expected loss if a is selected:

$$
R_{P}(a)=\mathbb{E}_{P}[L(a, \cdot)]=\sum_{\omega \in \Omega} L(a, \omega) P(\{\omega\})
$$

- Select an act with minimal risk.
- Extension when uncertainty on Ω is described by a belief function?

Decision making

Compatible probabilities

- Let m be a normalized mass function, and $\mathcal{P}(m)$ the set of probability measures on Ω such that

$$
B e l(A) \leq P(A) \leq P l(A), \quad \forall A \subseteq \Omega
$$

- The lower and upper expected risk of each act a are defined, respectively, as:

$$
\begin{aligned}
& \underline{R}(a)=\underline{\mathbb{E}}_{m}[L(a, \cdot)]=\inf _{P \in \mathcal{P}(m)} R_{P}(a)=\sum_{A \subseteq \Omega} m(A) \min _{\omega \in A} L(a, \omega) \\
& \bar{R}(a)=\overline{\mathbb{E}}_{m}[L(a, \cdot)]=\sup _{P \in \mathcal{P}(m)} R_{P}(a)=\sum_{A \subseteq \Omega} m(A) \max _{\omega \in A} L(a, \omega)
\end{aligned}
$$

Decision making

Strategies

- For each act a we have a risk interval $[\underline{R}(a), \bar{R}(a)]$. How to compare these intervals?
- Three strategies:
(1) a is preferred to a^{\prime} iff $\bar{R}(a) \leq \underline{R}\left(a^{\prime}\right)$ (conservative strategy);
(2) a is preferred to a^{\prime} iff $\underline{R}(a) \leq \underline{R}\left(a^{\prime}\right)$ (optimistic strategy);
(3) a is preferred to a^{\prime} iff $\bar{R}(a) \leq \bar{R}\left(a^{\prime}\right)$ (pessimistic strategy).
- The conservative strategy yields only a partial preorder: a and a^{\prime} are not comparable if $\bar{R}(a)>\underline{R}\left(a^{\prime}\right)$ and $\bar{R}\left(a^{\prime}\right)>\underline{R}(a)$.

Decision making

Special case

- Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}, \mathcal{A}=\left\{a_{1}, \ldots, a_{K}\right\}$, where a_{i} is the act of selecting ω_{i}.
- Let

$$
L\left(a_{i}, \omega_{j}\right)= \begin{cases}0 & \text { if } i=j \text { (the true state has been selected) } \\ 1 & \text { otherwise }\end{cases}
$$

- Then $\underline{R}\left(a_{i}\right)=1-P l\left(\left\{\omega_{i}\right\}\right)$ and $\bar{R}\left(a_{i}\right)=1-\operatorname{Bel}\left(\left\{\omega_{i}\right\}\right)$.
- The lower (resp., upper) risk is minimized by selecting the hypothesis with the largest plausibility (resp., belief).

Decision making

Coming back to Ellsberg's paradox

We have $m(\{r\})=1 / 3, m(\{b, y\})=2 / 3$.

	r	b	y	\underline{R}	\bar{R}
A	-100	0	0	$-100 / 3$	$-100 / 3$
B	0	-100	0	$-200 / 3$	0
C	-100	0	-100	-100	$-100 / 3$
D	0	-100	-100	$-200 / 3$	$-200 / 3$

The observed behavior (preferring A to B and D to C) is explained by the pessimistic strategy.

Decision making

Other decision strategies

- How to find a compromise between the pessimistic strategy (minimizing the upper expected risk) and the optimistic one (minimizing the lower expected risk)?
- Two approaches:
- Hurwicz criterion: a is preferred to a^{\prime} iff $R_{\rho}(a) \leq R_{\rho}\left(a^{\prime}\right)$ with

$$
R_{\rho}(a)=(1-\rho) \underline{R}(a)+\rho \bar{R}(a) .
$$

and $\rho \in[0,1]$ is a pessimism index describing the attitude of the decision maker in the face of ambiguity.

- Pignistic transformation (Transferable Belief Model).

Decision making

TBM approach

- The "Dutch book" argument: in order to avoid Dutch books (sequences of bets resulting in sure loss), we have to base our decisions on a probability distribution on Ω.
- The TBM postulates that uncertain reasoning and decision making are two fundamentally different operations occurring at two different levels:
- Uncertain reasoning is performed at the credal level using the formalism of belief functions.
- Decision making is performed at the pignistic level, after the m on Ω has been transformed into a probability measure.

Decision making

Pignistic transformation

- The pignistic transformation Bet transforms a normalized mass function m into a probability measure $P_{m}=\operatorname{Bet}(m)$ as follows:

$$
P_{m}(A)=\sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \quad \forall A \subseteq \Omega .
$$

- It can be shown that:

$$
\operatorname{Bel}(A) \leq P_{m}(A) \leq P I(A), \quad \forall A \subseteq \Omega
$$

- Consequently,

$$
\underline{R}(a) \leq R_{P_{m}}(a) \leq \bar{R}(a), \quad \forall a \in \mathcal{A} .
$$

Decision making

Example

- Let $m(\{$ John $\})=0.48, m(\{$ John, Mary $\})=0.12$, $m(\{$ Peter,$J o h n\})=0.32, m(\Omega)=0.08$.
- We have

$$
\begin{gathered}
P_{m}(\{\text { John }\})=0.48+\frac{0.12}{2}+\frac{0.32}{2}+\frac{0.08}{3} \approx 0.73, \\
P_{m}(\{\text { Peter }\})=\frac{0.32}{2}+\frac{0.08}{3} \approx 0.19 \\
P_{m}(\{\text { Mary }\})=\frac{0.12}{2}+\frac{0.08}{3} \approx 0.09
\end{gathered}
$$

Which decision rule to use?

- The two most widely used decision rules are: the maximum plausibility (optimistic strategy) and the maximum pignistic probability.
- Smets argued strongly in favor of the latter based (1) the avoidance of Dutch books and (2) the following requirement:

$$
\operatorname{Bet}\left(\alpha m_{1}+(1-\alpha) m_{2}\right)=\alpha \operatorname{Bet}\left(m_{1}\right)+(1-\alpha) \operatorname{Bet}\left(m_{2}\right)
$$

It is not clear, however, why this property should be required.

- A practical argument in favor of the maximum plausibility rule is as follows: if $m_{12}=m_{1} \oplus m_{2}$, then

$$
p l_{12}(\omega) \propto p l_{1}(\omega) p l_{2}(\omega) .
$$

When combining several mass functions, we do not need to compute the complete mass function to make a decision.

Outline

Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Informational comparison of belief functions

- Let m_{1} et m_{2} be two normalized mass functions on Ω.
- In what sense can we say that m_{1} is more informative (committed) than m_{2} ?
- Special case:
- Let m_{A} and m_{B} be two logical mass functions.
- m_{A} is more committed than m_{B} iff $A \subseteq B$.
- Extension to arbitrary mass functions?

Plausibility and commonality orderings

- m_{1} is pl-more committed than $m_{2}\left(\right.$ noted $\left.m_{1} \sqsubseteq_{p l} m_{2}\right)$ if $\mathcal{P}\left(m_{1}\right) \subseteq \mathcal{P}\left(m_{2}\right)$, which is equivalent to

$$
P l_{1}(A) \leq P l_{2}(A), \quad \forall A \subseteq \Omega
$$

- m_{1} is q-more committed than $m_{2}\left(\right.$ noted $\left.m_{1} \sqsubseteq_{q} m_{2}\right)$ if

$$
Q_{1}(A) \leq Q_{2}(A), \quad \forall A \subseteq \Omega
$$

- Properties:
- Extension of set inclusion:

$$
m_{A} \sqsubseteq_{p l} m_{B} \Leftrightarrow m_{A} \sqsubseteq_{q} m_{B} \Leftrightarrow A \subseteq B .
$$

- Greatest element: vacuous mass function m_{Ω}.

Strong (specialization) ordering

- m_{1} is a specialization of m_{2} (noted $m_{1} \sqsubseteq_{s} m_{2}$) if m_{1} can be obtained from m_{2} by distributing each mass $m_{2}(B)$ to subsets of B :

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega
$$

where $S(A, B)=$ proportion of $m_{2}(B)$ transferred to $A \subseteq B$.

- S : specialization matrix.
- Properties:
- Extension of set inclusion;
- Greatest element: m_{Ω};
- $m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2} .\end{array}\right.$

Least Commitment Principle

Definition

Definition (Least Commitment Principle)
When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!
heudiasyc

Outline

Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Cautious rule

- The basic rules \oplus and (() assume the sources of information to be independent, e.g.
- experts with non overlapping experience/knowledge;
- non overlapping datasets.
- What to do in case of non independent evidence?
- Describe the nature of the interaction between sources (difficult, requires a lot of information);
- Use a combination rule that tolerates redundancy in the combined information.
- Such rules can be derived from the LCP using suitable informational orderings.

Cautious rule

- Two sources provide mass functions m_{1} and m_{2}, and the sources are both considered to be reliable.
- After receiving these m_{1} and m_{2}, the agent's state of belief should be represented by a mass function m_{12} more committed than m_{1}, and more committed than m_{2}.
- Let $\mathcal{S}_{x}(m)$ be the set of mass functions m^{\prime} such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, \cdots\}$. We thus impose that $m_{12} \in \mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$.
- According to the LCP, we should select the x-least committed element in $\mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists.

Cautious rule

Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m_{1} and m_{2} are consonant, then the q-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12}=\min \left(Q_{1}, Q_{2}\right)$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in\{p l, q, s\}$.
- We need to define a new ordering relation.

Simple and separable mass functions

- Definition: m is simple mass function if it has the following form

$$
\begin{aligned}
& m(A)=1-w(A) \\
& m(\Omega)=w(A)
\end{aligned}
$$

for some $A \subset \Omega, A \neq \emptyset$ and $w(A) \in[0,1]$. It is denoted by $A^{w(A)}$.

- Property: $A^{w_{1}(A)} \oplus A^{w_{2}(A)}=A^{w_{1}(A) w_{2}(A)}$.
- A normalized mass function is separable if it can be written as the \oplus combination of simple mass functions:

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}
$$

with $0 \leq w(A) \leq 1$ for all $A \subset \Omega, A \neq \emptyset$.

The w-ordering

- Let m_{1} and m_{2} be two normalized mass functions.
- We say that m_{1} is w-less committed than m_{2} (denoted by $m_{1} \sqsubseteq_{w} m_{2}$) if

$$
m_{1}=m_{2} \oplus m,
$$

for some separable mass function m.

- How to check this condition?

Weight function

Definition

- Let m be a non dogmatic mass function, i.e., $m(\Omega)>0$.
- The weight function $w: 2^{\Omega} \rightarrow(0,+\infty)$ is defined by $w(\Omega)=1$ and

$$
\ln w(A)=-\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln Q(B), \quad \forall A \subset \Omega \text {. }
$$

- It can be shown that Q can be recovered from w as follows:

$$
\ln Q(A)=-\sum_{\Omega \supset B \nsupseteq A} \ln w(B), \quad \forall A \subseteq \Omega
$$

- m can also be recovered from w by

$$
m=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)},
$$

utc
".
although $A^{w(A)}$ is not a proper mass function when $w(A)>1$.

Weight function

Properties

- m is separable iff

$$
w(A) \leq 1, \quad \forall A \subset \Omega, A \neq \emptyset .
$$

- Dempster's rule can be computed using the w-function by

$$
m_{1} \oplus m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{w_{1}(A) w_{2}(A)}
$$

- Characterization of the w-ordering:

$$
m_{1} \sqsubseteq_{w} m_{2} \Leftrightarrow w_{1}(A) \leq w_{2}(A), \quad \forall A \subset \Omega, A \neq \emptyset .
$$

Cautious rule

Definition

- Let m_{1} and m_{2} be two non dogmatic mass functions with weight functions w_{1} and w_{2}.
- The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by:

$$
m_{1} ® m_{2}=\bigoplus_{\emptyset \neq A \subset \Omega} A^{\min \left(w_{1}(A), w_{2}(A)\right)}
$$

- Operator $®$ is called the (normalized) cautious rule.

Cautious rule

Cautious rule computation

m-space		w-space
m_{1}	\longrightarrow	w_{1}
m_{2}	\longrightarrow	w_{2}
$m_{1} \otimes m_{2}$	\longleftarrow	$\min \left(w_{1}, w_{2}\right)$

Cautious rule

- Commutative, associative
- Idempotent : $\forall m, m ® m=m$
- Distributivity of \oplus with respect to \otimes :

$$
\left(m_{1} \oplus m_{2}\right) \bowtie\left(m_{1} \oplus m_{3}\right)=m_{1} \oplus\left(m_{2} ® m_{3}\right), \forall m_{1}, m_{2}, m_{3} .
$$

The same item of evidence m_{1} is not counted twice!

- No neutral element, but $m_{\Omega} ® m=m$ iff m is separable.

Basic rules

Sources	independent	dependent
All reliable	\oplus	\oplus
At least one reliable	\oplus	\otimes

(v) is the bold disjunctive rule.

Outline

Basics

- Representation of evidence
- Combination of evidence
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Multidimensional belief functions

Motivations

- In many applications, we need to express uncertain information about several variables taking values in different domains.
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events).

Fault tree example

(Dempster \& Kong, 1988)

Hypergraph

Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_{X} and Ω_{Y}.
- Let $\Omega_{X Y}=\Omega_{X} \times \Omega_{Y}$ be the product frame.
- A mass function $m^{X Y}$ on $\Omega_{X Y}$ can be seen as an generalized relation between variables X and Y.
- Two basic operations on product frames:
(1) Express a joint mass function $m^{X Y}$ in the coarser frame Ω_{X} or Ω_{Y} (marginalization);
(2) Express a marginal mass function m^{X} on Ω_{X} in the finer frame $\Omega_{X Y}$ (vacuous extension).

Marginalization

- Problem: express $m^{X Y}$ in Ω_{X}.
- Solution: transfer each mass $m^{X Y}(A)$ to the projection of A on Ω_{X}.
- Marginal mass function

$$
m^{X Y \downarrow X}(B)=\sum_{\left\{A \subseteq \Omega_{X Y}, A_{\downarrow} \downarrow \Omega_{X}=B\right\}} m^{X Y}(A) \quad \forall B \subseteq \Omega_{X} .
$$

- Generalizes both set projection and probabilistic marginalization.

Vacuous extension

- Problem: express m^{X} in $\Omega_{X Y}$.
- Solution: transfer each mass $m^{X}(B)$ to the cylindrical extension of B : $B \times \Omega_{Y}$.
- Vacuous extension:

$$
m^{X \uparrow X Y}(A)= \begin{cases}m^{X}(B) & \text { if } A=B \times \Omega_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Operations in product frames
 Application to approximate reasoning

- Assume that we have:
- Partial knowledge of X formalized as a mass function m^{X};
- A joint mass function $m^{X Y}$ representing an uncertain relation between X and Y.
- What can we say about Y ?
- Solution:

$$
m^{Y}=\left(m^{X \uparrow X Y} \oplus m^{X Y}\right)^{\downarrow Y}
$$

- Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

Fault tree example

Cause	$m(\{1\})$	$m(\{0\})$	$m(\{0,1\})$
X_{1}	0.05	0.90	0.05
X_{2}	0.05	0.90	0.05
X_{3}	0.005	0.99	0.005
X_{4}	0.01	0.985	0.005
X_{5}	0.002	0.995	0.003
G	0.001	0.99	0.009
M	0.02	0.951	0.029
F	0.019	0.961	0.02

Fault tree example (continued)

Cause	$m(\{1\})$	$m(\{0\})$	$m(\{0,1\})$
M	1	0	0
G	0.197	0.796	0.007
F	0.800	0.196	0.004
\vdots	\vdots	\vdots	\vdots
X_{1}	0.236	0.724	0.040
X_{2}	0.236	0.724	0.040
X_{3}	0.200	0.796	0.004
X_{4}	0.302	0.694	0.004
X_{5}	0.099	0.898	0.003

Summary

- The theory of belief functions: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks:
- Belief functions can be seen both as generalized sets and as generalized probability measures;
- Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.).
- The theory of belief function can also be seen as more general than Possibility theory (possibility measures are particular plausibility functions).

References I
 cf. http://www.hds.utc.fr/~tdenoeux

T G. Shafer.
A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.Ph. Smets and R. Kennes.
The Transferable Belief Model.
Artificial Intelligence, 66:191-243, 1994.D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.
International Journal of General Systems, 12(3):193-226, 1986.
\square T. Denœux.

Analysis of evidence-theoretic decision rules for pattern classification.
Pattern Recognition, 30(7):1095-1107, 1997.

References II
 cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux.Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.

Artificial Intelligence, Vol. 172, pages 234-264, 2008.

