Introduction to belief functions

Thierry Denœux¹

¹Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Spring School BFTA 2013 Carthage, Tunisia, May 20, 2013

Contents of this lecture

- Historical perspective, motivations.
- Fundamental concepts: belief, plausibility, commonality, Conditioning, basic combination rules.
- Some more advanced concepts: least commitment principle, cautious rule, multidimensional belief functions.

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.).
- Different sources of uncertainty:

 - Lack of knowledge → Epistemic uncertainty. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced.
- Classical frameworks for reasoning with uncertainty:
 - Probability theory;
 - Set-membership approach (e.g., interval analysis).

Probability theory

Interpretations

- Probability theory can be used to represent:
 - Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies;
 - Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief.
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model):
 - Inability to represent ignorance;
 - Not a plausibility model of how people make decisions based on weak information.

Inability to represent ignorance

The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity X, we should assign equal probability to any possible value of X.
- The wine/water paradox:

There is a certain quantity of liquids. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between 1/3 and 3.

What is the probability that the ratio of wine to water is less than or equal to 2?

Inability to represent ignorance

The wine/water paradox (continued)

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. According to the PI, $X \sim \mathcal{U}_{[1/3, 3]}$. Consequently:

$$P(X \le 2) = (2 - 1/3)/(3 - 1/3) = 5/8.$$

• Now, let Y = 1/X denote the ratio of water to wine. All we know is that $Y \in [1/3,3]$. According to the PI, $Y \sim \mathcal{U}_{[1/3,3]}$. Consequently:

$$P(Y \ge 1/2) = (3 - 1/2)/(3 - 1/3) = 15/16.$$

• However, $P(X \le 2) = P(Y \ge 1/3)!$

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
 - A: You receive 100 euros if you draw a red ball;
 - B: You receive 100 euros if you draw a black ball.
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
 - C: You receive 100 euros if you draw a red or yellow ball;
 - D: You receive 100 euros if you draw a black or yellow ball.
- Most people strictly prefer A to B, hence P(red) > P(black), but they strictly prefer D to C, hence P(black) > P(red).

Set-membership approach

- Partial knowledge about some variable X is described by a set of possible values E (constraint).
- Example:
 - Consider a system described by the equation

$$y = f(x_1, \ldots, x_n; \theta)$$

where y is the output, x_1, \ldots, x_n are the inputs and θ is a parameter.

- Knowing that $x_i \in [\underline{x}_i, \overline{x}_i]$, i = 1, ..., n and $\theta \in [\underline{\theta}, \overline{\theta}]$, find a set \mathbb{Y} surely containing y.
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis).
- Drawback: no way to express doubt, conservative approach.

Theory of belief functions History

- A formal framework for representing and reasoning with uncertain information.
- Also known as Dempster-Shafer theory or Evidence theory.
- Originates from the work of Dempster (1968) in the context of statistical inference.
- Formalized by Shafer (1976) as a theory of evidence.
- Popularized and developed by Smets in the 1980's and 1990's under the name Transferable Belief Model.
- Starting from the 1990's, growing number of applications in information fusion, classification, reliability and risk analysis, etc.

Theory of belief functions

- The theory of belief functions extends both the set-membership approach and Probability Theory:
 - A belief function may be viewed both as a generalized set and as a non additive measure.
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)
- Dempter-Shafer reasoning produces the same results as probabilistic reasoning or interval analysis when provided with the same information.
- However, the greater expressive power of the theory of belief functions allows us to represent what we know in a more faithful way.

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Introduction to belief functions

Mass function Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment).
- Evidence about X may be represented by a mass function $m: 2^{\Omega} \to [0,1]$ such that

$$\sum_{A\subset\Omega}m(A)=1.$$

Introduction to belief functions

- Every A of Ω such that m(A) > 0 is a focal set of m.
- m is said to be normalized if $m(\emptyset) = 0$. This property will be assumed hereafter, unless otherwise specified.

Murder example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away in the dark, and he can only assert that it was man. How, we know that the witness is drunk 20 % of the time.
- This piece of evidence can be represented by

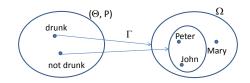
$$m(\{Peter, John\}) = 0.8,$$

 $m(\Omega) = 0.2$

 The mass 0.2 is not committed to {Mary}, because the testimony does not accuse Mary at all!

Mass function

Random set interpretation



- A mass function m on Ω may be viewed as arising from
 - A set $\Theta = \{\theta_1, \dots, \theta_r\}$ of interpretations;
 - A probability measure P on Θ;
 - A multi-valued mapping $\Gamma:\Theta\to 2^{\Omega}$.
- Meaning: under interpretation θ_i, the evidence tells us that X ∈ Γ(θ_i), and nothing more. The probability P({θ_i}) is transferred to A_i = Γ(θ_i).
- m(A) is the probability of knowing only that $X \in A$, given the available evidence.

Mass functions

Special cases

- If the evidence tells us that $X \in A$ for sure and nothing more, for some $A \subseteq \Omega$, then we have a logical mass function m_A such that $m_A(A) = 1$.
 - m_A is equivalent to A.
 - Special case: m_{Ω} , the vacuous mass function, represents total ignorance.
- If each interpretation θ_i of the evidence points to a single value of X, then all focal sets are singletons and m is said to be Bayesian. It is equivalent to a probability distribution.
- A Dempster-Shafer mass function can thus be seen as
 - a generalized set;
 - a generalized probability distribution.

Belief function

 The total degree of support for A can be defined as the probability that the evidence implies A:

$$Bel(A) = P(\{\theta \in \Theta | \Gamma(\theta) \subseteq A\}) = \sum_{B \subseteq A} m(B).$$

- Function $Bel: 2^{\Omega} \to [0,1]$ is called a belief function.
- It is a completely monotone capacity: it verifies $Bel(\emptyset) = 0$, $Bel(\Omega) = 1$ and

$$Bel\left(igcup_{i=1}^k A_i
ight) \geq \sum_{\emptyset
eq I \subseteq \{1,\dots,k\}} (-1)^{|I|+1} Bel\left(igcap_{i \in I} A_i
ight).$$

for any $k \geq 2$ and for any family A_1, \ldots, A_k in 2^{Ω} .

Plausibility function

 The plausibility of A is the probability that the evidence does not contradict A. It is defined as

$$PI(A) = P(\{\theta \in \Theta | \Gamma(\theta) \cap A \neq \emptyset\}) = \sum_{B \cap A \neq \emptyset} m(B)$$

- Properties:
 - $PI(\emptyset) = 0, PI(\Omega) = 1$;
 - $Bel(A) \leq Pl(A), \forall A \subseteq \Omega;$
 - $PI(A) = 1 BeI(\overline{A}), \forall A \subseteq \Omega.$
- If m is Bayesian, Bel = Pl (probability measure).

Murder example

A	Ø	{ P }	{ J }	{ <i>P</i> , <i>J</i> }	{ <i>M</i> }	{ <i>P</i> , <i>M</i> }	{ <i>J</i> , <i>M</i> }	Ω
$\overline{m(A)}$	0	0	0	0.8	0	0	0	0.2
Bel(A)	0	0	0	8.0	0	0	0	1
pI(A)	0	1	1	1	0.2	1	1	1

We observe that

$$Bel(A \cup B) \ge Bel(A) + Bel(B) - Bel(A \cap B)$$

 $Pl(A \cup B) \le Pl(A) + Pl(B) - Pl(A \cap B)$

Wine/water paradox revisited

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. This is modeled by the logical mass function m_X such that $m_X([1/3, 3]) = 1$. Consequently:

$$Bel_X([2,3]) = 0, Pl_X([2,3]) = 1.$$

• Now, let Y = 1/X denote the ratio of water to wine. All we know is that $Y \in [1/3,3]$. This is modeled by the logical mass function m_Y such that $m_Y([1/3,3]) = 1$. Consequently:

$$Bel_Y([1/3, 1/2]) = 0$$
, $Pl_Y([1/3, 1/2]) = 1$.

Introduction to belief functions

Relations between m, Bel et Pl

- Let m be a normalized mass function, Bel and Pl the corresponding belief and plausibility functions.
- Relations:

$$Bel(A) = 1 - Pl(\overline{A}), \quad \forall A \subseteq \Omega$$

$$m(A) = \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \forall A \subseteq \Omega$$

- m, Bel et Pl are thus three equivalent representations of
 - a piece of evidence or, equivalently,
 - a state of belief induced by this evidence.

Relationship with Possibility theory

- When the focal sets of m are nested: $A_1 \subset A_2 \subset ... \subset A_r$, m is said to be consonant.
- The following relations then hold:

$$PI(A \cup B) = \max(PI(A), PI(B)), \forall A, B \subseteq \Omega.$$

- PI is this a possibility measure, and BeI is the dual necessity measure.
- The possibility distribution is the contour function:

$$pl(x) = Pl(\{x\}), \forall x \in \Omega.$$

 The theory of belief function can thus be considered as more expressive than possibility theory.

Outline

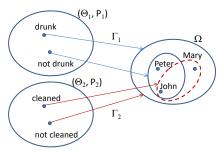
- Basics
 - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Murder example continued

- The first item of evidence gave us: $m_1(\{Peter, John\}) = 0.8$, $m_1(\Omega) = 0.2$.
- New piece of evidence: a blond hair has been found.
- There is a probability 0.6 that the room has been cleaned before the crime: $m_2(\{John, Mary\}) = 0.6$, $m_2(\Omega) = 0.4$.
- How to combine these two pieces of evidence?

Introduction to belief functions

Justification



- If interpretations $\theta_1 \in \Theta_1$ and $\theta_2 \in \Theta_2$ both hold, then $X \in \Gamma_1(\theta_1) \cap \Gamma_2(\theta_2)$.
- If the two pieces of evidence are independent, then the probability that θ_1 and θ_2 both hold is $P_1(\{\theta_1\})P_2(\{\theta_2\})$.
- If $\Gamma_1(\theta_1) \cap \Gamma_2(\theta_2) = \emptyset$, we know that θ_1 and θ_2 cannot hold simultaneously.
- The joint probability distribution on Θ₁ × Θ₂ must be conditioned to eliminate such pairs.

• Let m_1 and m_2 be two mass functions and

$$K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict.

• If K < 1, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-K} \sum_{B \cap C = A} m_1(B) m_2(C), \quad \forall A \neq \emptyset,$$

and $(m_1 \oplus m_2)(\emptyset) = 0$.

Properties

- Commutativity, associativity. Neutral element: m_{Ω} .
- Generalization of intersection: if m_A and m_B are categorical mass functions and $A \cap B \neq \emptyset$, then

$$m_A \oplus m_B = m_{A \cap B}$$

- Generalization of probabilistic conditioning: if m is a Bayesian mass function and m_A is a logical mass function, then $m \oplus m_A$ is a Bayesian mass function corresponding to the conditioning of m by A.
- Notation for conditioning (special case):

$$m \oplus m_A = m(\cdot|A).$$

Expression using commonalities

• Commonality function: let $Q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$Q(A) = \sum_{B\supseteq A} m(B), \quad \forall A\subseteq \Omega.$$

Conversely,

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} Q(B)$$

■ Expression of ⊕ using commonalities:

$$(Q_1 \oplus Q_2)(A) = \frac{1}{1-K}Q_1(A) \cdot Q_2(A), \quad \forall A \subseteq \Omega, A \neq \emptyset.$$

$$(Q_1 \oplus Q_2)(\emptyset) = 1.$$

Remarks on normalization

- Mass functions expressing pieces of evidence are always normalized.
- Smets introduced the unnormalized Dempster's rule (TBM conjunctive rule

), which may yield an unnormalized mass function.
- He proposed to interpret $m(\emptyset)$ as the mass committed to the hypothesis that X might not take its value in Ω (open-world assumption).
- We think that this interpretation is problematic, as $m(\emptyset)$ increases mechanically when combining more and more items of evidence.
- Our claim: unnormalized mass functions (and
 only normalized mass functions make sense.
- In particular, Bel and Pl should always be computed from normalized mass functions.

TBM disjunctive rule

- Let $(\Theta_1, P_1, \Gamma_1)$ and $(\Theta_2, P_2, \Gamma_2)$ be the random sets associated to two pieces of evidence.
- If interpretation $\theta_k \in \Theta_k$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_k(\theta_k)$.
- If interpretation $\theta_1 \in \Theta_1$ and $\theta_2 \in \Theta_2$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_1(\theta_1) \cup \Gamma_2(\theta_2)$.
- This leads to the TBM disjunctive rule:

$$(m_1 \bigcirc m_2)(A) = \sum_{B \cup C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega$$

• $Bel_1 \bigcirc Bel_2 = Bel_1 \cdot Bel_2$.

Selecting a combination rule

- All three rules ○, ⊕ and assume the pieces of evidence to be independent.
- The conjunctive rules
 ○ and ⊕ further assume that the pieces of evidence are both reliable;
- The TBM disjunctive rule
 only assumes that at least one of the items of evidence combined is reliable (weaker assumption).
- (vs. ⊕:
 - (no normalization).
 - heeps track of the conflict between items of evidence: very useful in some applications.
 - The conflict increases with the number of combined mass functions: normalization is often necessary at some point.
- What to do with dependent items of evidence? → Cautious rule

Introduction to belief functions

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Problem formulation

- A decision problem can be formalized by defining:
 - A set of acts $A = \{a_1, \ldots, a_s\}$;
 - A set of states of the world Ω;
 - A loss function $L: \mathcal{A} \times \Omega \to \mathbb{R}$, such that $L(a, \omega)$ is the loss incurred if we select act a and the true state is ω .
- Bayesian framework
 - Uncertainty on Ω is described by a probability measure P;
 - Define the risk of each act a as the expected loss if a is selected:

$$R_P(a) = \mathbb{E}_P[L(a,\cdot)] = \sum_{\omega \in \Omega} L(a,\omega)P(\{\omega\}).$$

- Select an act with minimal risk.
- Extension when uncertainty on Ω is described by a belief function?

Compatible probabilities

• Let m be a normalized mass function, and $\mathcal{P}(m)$ the set of probability measures on Ω such that

$$Bel(A) \leq P(A) \leq Pl(A), \quad \forall A \subseteq \Omega.$$

 The lower and upper expected risk of each act a are defined, respectively, as:

$$\underline{R}(a) = \underline{\mathbb{E}}_{m}[L(a,\cdot)] = \inf_{P \in \mathcal{P}(m)} R_{P}(a) = \sum_{A \subset \Omega} m(A) \min_{\omega \in A} L(a,\omega)$$

$$\overline{R}(a) = \overline{\mathbb{E}}_m[L(a,\cdot)] = \sup_{P \in \mathcal{P}(m)} R_P(a) = \sum_{A \subseteq \Omega} m(A) \max_{\omega \in A} L(a,\omega)$$

Thierry Denœux

Strategies

- For each act a we have a risk interval $[\underline{R}(a), \overline{R}(a)]$. How to compare these intervals?
- Three strategies:
 - **1** a is preferred to a' iff $\overline{R}(a) \leq \underline{R}(a')$ (conservative strategy);
 - 2 a is preferred to a' iff $\underline{R}(a) \leq \underline{R}(a')$ (optimistic strategy);
 - \bullet a is preferred to a' iff $\overline{R}(a) \leq \overline{R}(a')$ (pessimistic strategy).
- The conservative strategy yields only a partial preorder: a and a' are not comparable if $\overline{R}(a) > \underline{R}(a')$ and $\overline{R}(a') > \underline{R}(a)$.

Special case

- Let $\Omega = \{\omega_1, \dots, \omega_K\}$, $A = \{a_1, \dots, a_K\}$, where a_i is the act of selecting ω_i .
- Let

$$L(a_i, \omega_j) = \begin{cases} 0 & \text{if } i = j \text{ (the true state has been selected),} \\ 1 & \text{otherwise .} \end{cases}$$

- Then $\underline{R}(a_i) = 1 PI(\{\omega_i\})$ and $\overline{R}(a_i) = 1 BeI(\{\omega_i\})$.
- The lower (resp., upper) risk is minimized by selecting the hypothesis with the largest plausibility (resp., belief).

Introduction to belief functions

Introduction to belief functions

Decision making

Coming back to Ellsberg's paradox

We have $m({r}) = 1/3$, $m({b, y}) = 2/3$.

	r	b	У	<u>R</u>	\overline{R}
A	-100	0	0	-100/3	-100/3
В	0	-100	0	-200/3	0
C	-100	0	-100	-100	-100/3
D	0	-100	-100	-200/3	-200/3

The observed behavior (preferring A to B and D to C) is explained by the pessimistic strategy.

Other decision strategies

- How to find a compromise between the pessimistic strategy (minimizing the upper expected risk) and the optimistic one (minimizing the lower expected risk)?
- Two approaches:
 - Hurwicz criterion: a is preferred to a' iff $R_{\rho}(a) \leq R_{\rho}(a')$ with

$$R_{\rho}(a) = (1 - \rho)\underline{R}(a) + \rho\overline{R}(a).$$

and $\rho \in [0, 1]$ is a pessimism index describing the attitude of the decision maker in the face of ambiguity.

• Pignistic transformation (Transferable Belief Model).

TBM approach

- The "Dutch book" argument: in order to avoid Dutch books (sequences of bets resulting in sure loss), we have to base our decisions on a probability distribution on Ω.
- The TBM postulates that uncertain reasoning and decision making are two fundamentally different operations occurring at two different levels:
 - Uncertain reasoning is performed at the credal level using the formalism of belief functions.
 - Decision making is performed at the pignistic level, after the m on Ω has been transformed into a probability measure.

Pignistic transformation

 The pignistic transformation Bet transforms a normalized mass function m into a probability measure $P_m = Bet(m)$ as follows:

$$P_m(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \quad \forall A \subseteq \Omega.$$

It can be shown that:

$$Bel(A) \leq P_m(A) \leq Pl(A), \quad \forall A \subseteq \Omega.$$

Consequently,

$$\underline{R}(a) \leq R_{P_m}(a) \leq \overline{R}(a), \quad \forall a \in \mathcal{A}.$$

Example

- Let $m({John}) = 0.48$, $m({John, Mary}) = 0.12$, $m({Peter, John}) = 0.32$, $m(\Omega) = 0.08$.
- We have

$$P_m(\{John\}) = 0.48 + \frac{0.12}{2} + \frac{0.32}{2} + \frac{0.08}{3} \approx 0.73,$$
 $P_m(\{Peter\}) = \frac{0.32}{2} + \frac{0.08}{3} \approx 0.19$ $P_m(\{Mary\}) = \frac{0.12}{2} + \frac{0.08}{3} \approx 0.09$

Introduction to belief functions

Which decision rule to use?

- The two most widely used decision rules are: the maximum plausibility (optimistic strategy) and the maximum pignistic probability.
- Smets argued strongly in favor of the latter based (1) the avoidance of Dutch books and (2) the following requirement:

$$Bet(\alpha m_1 + (1 - \alpha)m_2) = \alpha Bet(m_1) + (1 - \alpha)Bet(m_2).$$

It is not clear, however, why this property should be required.

• A practical argument in favor of the maximum plausibility rule is as follows: if $m_{12} = m_1 \oplus m_2$, then

$$pl_{12}(\omega) \propto pl_1(\omega)pl_2(\omega)$$
.

When combining several mass functions, we do not need to compute the complete mass function to make a decision.

Outline

- Basics
 - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Informational comparison of belief functions

- Let m_1 et m_2 be two normalized mass functions on Ω .
- In what sense can we say that m₁ is more informative (committed) than m₂?
- Special case:
 - Let m_A and m_B be two logical mass functions.
 - m_A is more committed than m_B iff $A \subseteq B$.
- Extension to arbitrary mass functions?

Plausibility and commonality orderings

• m_1 is pl-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if $\mathcal{P}(m_1) \subseteq \mathcal{P}(m_2)$, which is equivalent to

$$Pl_1(A) \leq Pl_2(A), \forall A \subseteq \Omega.$$

• m_1 is q-more committed than m_2 (noted $m_1 \sqsubseteq_q m_2$) if

$$Q_1(A) \leq Q_2(A), \quad \forall A \subseteq \Omega.$$

- Properties:
 - Extension of set inclusion:

$$m_A \sqsubseteq_{pl} m_B \Leftrightarrow m_A \sqsubseteq_q m_B \Leftrightarrow A \subseteq B$$
.

• Greatest element: vacuous mass function m_{Ω} .

Strong (specialization) ordering

• m_1 is a specialization of m_2 (noted $m_1 \sqsubseteq_s m_2$) if m_1 can be obtained from m_2 by distributing each mass $m_2(B)$ to subsets of B:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

where S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$.

- S: specialization matrix.
- Properties:
 - Extension of set inclusion;
 - Greatest element: m_{Ω} ;

•
$$m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubseteq_q m_2. \end{cases}$$

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!

Outline

- - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Cautious rule

- The basic rules ⊕ and □ assume the sources of information to be independent, e.g.
 - experts with non overlapping experience/knowledge;
 - non overlapping datasets.
- What to do in case of non independent evidence?
 - Describe the nature of the interaction between sources (difficult, requires a lot of information);
 - Use a combination rule that tolerates redundancy in the combined information.
- Such rules can be derived from the LCP using suitable informational orderings.

Cautious rule Principle

- Two sources provide mass functions m₁ and m₂, and the sources are both considered to be reliable.
- After receiving these m_1 and m_2 , the agent's state of belief should be represented by a mass function m_{12} more committed than m_1 , and more committed than m_2 .
- Let $S_x(m)$ be the set of mass functions m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, \dots\}$. We thus impose that $m_{12} \in S_x(m_1) \cap S_x(m_2)$.
- According to the LCP, we should select the *x*-least committed element in $S_x(m_1) \cap S_x(m_2)$, if it exists.

Introduction to belief functions

Cautious rule

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m_1 and m_2 are consonant, then the q-least committed element in $S_q(m_1) \cap S_q(m_2)$ exists and it is unique: it is the consonant mass function with commonality function $Q_{12} = \min(Q_1, Q_2)$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the *x*-orderings, $x \in \{pl, q, s\}$.
- We need to define a new ordering relation.

Simple and separable mass functions

Definition: m is simple mass function if it has the following form

$$m(A) = 1 - w(A)$$

$$m(\Omega) = w(A),$$

for some $A \subset \Omega$, $A \neq \emptyset$ and $w(A) \in [0, 1]$. It is denoted by $A^{w(A)}$.

- Property: $A^{w_1(A)} \oplus A^{w_2(A)} = A^{w_1(A)w_2(A)}$.
- A normalized mass function is separable if it can be written as the ⊕ combination of simple mass functions:

$$m = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)}.$$

with 0 < w(A) < 1 for all $A \subset \Omega$, $A \neq \emptyset$.

The w-ordering

- Let m_1 and m_2 be two normalized mass functions.
- We say that m_1 is w-less committed than m_2 (denoted by $m_1 \sqsubseteq_w m_2$) if

$$m_1 = m_2 \oplus m$$
,

for some separable mass function *m*.

• How to check this condition?

Introduction to belief functions

Weight function

Definition

- Let m be a non dogmatic mass function, i.e., $m(\Omega) > 0$.
- The weight function $w: 2^{\Omega} \to (0, +\infty)$ is defined by $w(\Omega) = 1$ and

$$\ln w(A) = -\sum_{B\supset A} (-1)^{|B|-|A|} \ln Q(B), \quad \forall A \subset \Omega.$$

• It can be shown that Q can be recovered from w as follows:

$$\ln Q(A) = -\sum_{\Omega \supset B \supseteq A} \ln w(B), \quad \forall A \subseteq \Omega$$

m can also be recovered from w by

$$m = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w(A)},$$

although $A^{w(A)}$ is not a proper mass function when w(A) > 1. Theudiasyc

Weight function

Properties

m is separable iff

$$w(A) \leq 1, \quad \forall A \subset \Omega, A \neq \emptyset.$$

• Dempster's rule can be computed using the w-function by

$$m_1 \oplus m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{w_1(A)w_2(A)}.$$

• Characterization of the w-ordering:

$$m_1 \sqsubseteq_w m_2 \Leftrightarrow w_1(A) \leq w_2(A), \quad \forall A \subset \Omega, A \neq \emptyset.$$

Introduction to belief functions

Cautious rule

- Let m_1 and m_2 be two non dogmatic mass functions with weight functions w_1 and w_2 .
- The w-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by:

$$m_1 \odot m_2 = \bigoplus_{\emptyset \neq A \subset \Omega} A^{\min(w_1(A), w_2(A))}.$$

Cautious rule Computation

Cautious rule computation

m-space		w-space
m_1	\longrightarrow	<i>W</i> ₁
m_2	\longrightarrow	<i>W</i> ₂
$m_1 \otimes m_2$	←	$min(w_1, w_2)$

Cautious rule Properties

- Commutative, associative
- Idempotent : $\forall m, m \land m = m$
- Distributivity of ⊕ with respect to ⋈:

$$(m_1 \oplus m_2) \bigcirc (m_1 \oplus m_3) = m_1 \oplus (m_2 \bigcirc m_3), \forall m_1, m_2, m_3.$$

The same item of evidence m_1 is not counted twice!

• No neutral element, but $m_{\Omega} \odot m = m$ iff m is separable.

Introduction to belief functions

Basic rules

Sources	independent	dependent
All reliable	\oplus	\Diamond
At least one reliable	0	\bigcirc

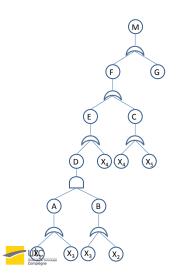
 $\ensuremath{\bigcirc}$ is the bold disjunctive rule.

Outline

- - Representation of evidence
 - Combination of evidence
 - Decision making
- Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Multidimensional belief functions

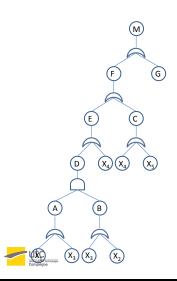
Motivations

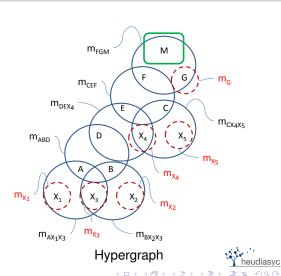


- In many applications, we need to express uncertain information about several variables taking values in different domains.
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events).

Fault tree example

(Dempster & Kong, 1988)



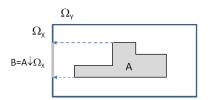


Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_X and Ω_Y .
- Let $\Omega_{XY} = \Omega_X \times \Omega_Y$ be the product frame.
- A mass function m^{XY} on Ω_{XY} can be seen as an generalized relation between variables X and Y.
- Two basic operations on product frames:
 - **1** Express a joint mass function m^{XY} in the coarser frame Ω_X or Ω_Y (marginalization);
 - **2** Express a marginal mass function m^X on Ω_X in the finer frame Ω_{XY} (vacuous extension).

Marginalization



• Problem: express m^{XY} in Ω_X .

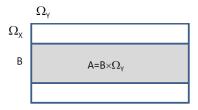
Introduction to belief functions

- Solution: transfer each mass $m^{XY}(A)$ to the projection of A on Ω_X .
- Marginal mass function

$$m^{XY\downarrow X}(B) = \sum_{\{A\subseteq \Omega_{XY}, A\downarrow \Omega_X = B\}} m^{XY}(A) \quad \forall B\subseteq \Omega_X.$$

Generalizes both set projection and probabilistic marginalization.

Vacuous extension



- Problem: express m^X in Ω_{XY} .
- Solution: transfer each mass m^X(B) to the cylindrical extension of B: B × Ω_Y.

Vacuous extension:

$$m^{X \uparrow XY}(A) = \begin{cases} m^X(B) & \text{if } A = B \times \Omega_Y \\ 0 & \text{otherwise.} \end{cases}$$

Operations in product frames

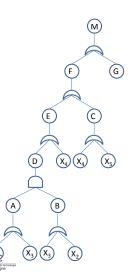
Application to approximate reasoning

- Assume that we have:
 - Partial knowledge of X formalized as a mass function m^X;
 - A joint mass function m^{XY} representing an uncertain relation between X and Y.
- What can we say about Y?
- Solution:

$$m^{Y} = (m^{X \uparrow XY} \oplus m^{XY})^{\downarrow Y}.$$

 Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

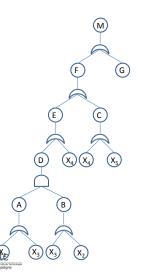
Fault tree example



Cause	<i>m</i> ({1})	$m(\{0\})$	$m(\{0,1\})$
<i>X</i> ₁	0.05	0.90	0.05
X_2	0.05	0.90	0.05
X_3	0.005	0.99	0.005
X_4	0.01	0.985	0.005
X_5	0.002	0.995	0.003
G	0.001	0.99	0.009
M	0.02	0.951	0.029
F	0.019	0.961	0.02

Introduction to belief functions

Fault tree example (continued)



Cause	<i>m</i> ({1})	$m(\{0\})$	$m(\{0,1\})$
M	1	0	0
G	0.197	0.796	0.007
F	0.800	0.196	0.004
:	:	:	:
X_1	0.236	0.724	0.040
X_2	0.236	0.724	0.040
X_3	0.200	0.796	0.004
X_4	0.302	0.694	0.004
<i>X</i> ₅	0.099	0.898	0.003

Summary

- The theory of belief functions: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks:
 - Belief functions can be seen both as generalized sets and as generalized probability measures;
 - Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.).
- The theory of belief function can also be seen as more general than Possibility theory (possibility measures are particular plausibility functions).

References I

cf. http://www.hds.utc.fr/~tdenoeux

G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

Ph. Smets and R. Kennes.

The Transferable Belief Model.

Artificial Intelligence, 66:191-243, 1994.

D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.

International Journal of General Systems, 12(3):193-226, 1986.

T. Denœux.

Analysis of evidence-theoretic decision rules for pattern classification.

Pattern Recognition, 30(7):1095-1107, 1997.

References II

cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.

Artificial Intelligence, Vol. 172, pages 234-264, 2008.

