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Building belief functions

The basic theory tells us how to reason and compute with belief
functions, but it does not tell us where belief functions come from.
To use DS theory in real applications, we need methods for modeling
evidence from

expert opinions or
statistical information

Two main strategies, often combined in applications:
1 Decomposition: Start with elementary (often, simple) mass functions and

transform/combine them using extension, marginalization and Dempster’s
rule (original DS approach).

2 Global approach: Find the least (or the most) committed belief function
compatible with given constraints.

In this lecture, we will see several applications of these strategies.
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Least Commitment Principle

Least Commitment Principle
Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the
least informative according to some informational ordering (if it exists) should
be selected

General approach
1 Express partial information (provided, e.g., by an expert) as a set of

constraints on an unknown mass function
2 Find the least-committed mass function (according to some informational

ordering), compatible with the constraints

Examples of partial information
1 contour function
2 conditional mass function

Thierry Denœux Methods for building belief functions July 5, 2017 5 / 76



Least Commitment Principle

Example: LC mass function with given contour
function
Problem statement

Assume we ask an expert for the plausibility π(ω) of each ω ∈ Ω

We get a function π : Ω→ [0,1]. We assume that maxω∈Ω π(ω) = 1
LetM(π) be the set of mass functions m such that pl = π

What is the least committed mass function inM(π)?
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Least Commitment Principle

LC mass function with given contour function
Solution

Let m ∈M(π) and Q its commonality function. We have

Q({ω}) = pl(ω) = π(ω), ∀ω ∈ Ω

and
Q(A) ≤ min

ω∈A
Q({ω}) = min

ω∈A
π(ω), ∀A ⊆ Ω,A 6= ∅,

Let Q∗ be defined as Q∗(∅) = 1 and

Q∗(A) = min
ω∈A

π(ω), ∀A ⊆ Ω,A 6= ∅.

Q∗ is the commonality function of consonant mass function m∗, which is
the q-least committed element inM(π).
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Least Commitment Principle

LC mass function with given contour function
Recovering the mass function

ω(1)	 ω(2)	 ω(3)	 ω(4)	

π(1)	

π(2)	

π(3)	

π(4)	

m*(A(1))	

m*(A(2))	

m*(A(3))	

m*(A(4))	

A(1)	
A(2)	
A(3)	
A(4)	
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Least Commitment Principle Deconditioning and the GBT
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Least Commitment Principle Deconditioning and the GBT

Deconditioning

Ω
B

A
C

Let m0 be a mass function on Ω
expressing our beliefs about X in a
context where we know that X ∈ B
We want to build a mass function m
verifying the constraint m(·|B) = m0

Any m built from m0 by transferring each
mass m0(A) to A ∪ C for some C ⊆ B
satisfies the constraint

s-least committed solution: transfer m0(A) to the largest such set, which
is A ∪ B

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B
0 otherwise
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Least Commitment Principle Deconditioning and the GBT

Deconditioning
Conditional embedding

More complex situation: two frames ΩX and ΩY

Let m0
X be a mass function on ΩX expressing our beliefs about X in a

context where we know that Y ∈ B for some B ⊆ ΩY

We want to find mXY such that
(
mXY ⊕mY [B]

)↓X
= m0

X

s-least committed solution: transfer m0
X (A) to (A× ΩY ) ∪ (ΩX × B)

Notation mXY = (m0
X )⇑XY (conditional embedding)
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Least Commitment Principle Deconditioning and the GBT

Generalized Bayes Theorem
Problem statement

Consider, for instance, a classification problem, where X ∈ ΩX is a
measurement vector and Y ∈ ΩY = {y1, . . . , yK} is the class variable.
Partial knowledge of X given each Y = yk

mX (·|yk ), k = 1, . . . ,K

Prior knowledge about Y : m0
Y (may be vacuous)

We observe X ∈ A
Belief function on Y?
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Least Commitment Principle Deconditioning and the GBT

Generalized Bayes Theorem
Solution

Solution:

mY (·|A) =

(
K⊕

k=1

mX (·|yk )⇑XY ⊕mX [A] ⊕m0
Y

)
↓Y

Expression

mY (·|A) =
K⊕

k=1

{yk}
PlX (A|yk )

⊕m0
Y

where {yk}
PlX (A|θk )

is the simple mass function that assigns the mass
1− PlX (A|yk ) to {yk} and PlX (A|yk ) to ΩY
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Least Commitment Principle Deconditioning and the GBT

Generalized Bayes Theorem
Properties

Property 1: Bayes’ theorem is recovered as a special case when the
conditional mass functions mX (·|yk ) and m0

Y are Bayesian
Property 2: If X1 and X2 are cognitively independent conditionally on Y ,
i.e.,

plX1X2 (A1 × A2|yk ) = plX1 (A1|yk ) · plX2 (A2|yk )

for all A1 ⊆ ΩX1 , A2 ⊆ ΩX2 and yk ∈ ΩY , then

mY (·|X1 ∈ A1,X2 ∈ A2) = mY (·|X1 ∈ A1)⊕mY (·|X2 ∈ A2)
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Least Commitment Principle Uncertainty measures

Uncertainty measures
Motivation

In some cases, the least committed mass function compatible with some
constraints does not exist, or cannot be found, for any informational
ordering
An alternative approach is then to maximize a measure of uncertainty,
i.e., find the most uncertain mass function satisfying some constraints
Many uncertainty measures have been proposed, some of which
generalize the Shannon entropy. They can be classified in three
categories

1 Measures of imprecision
2 Measures of conflict
3 Measures of total uncertainty
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Least Commitment Principle Uncertainty measures

Measures of imprecision

Idea: imprecision is higher when masses are assigned to larger focal sets

I(m) =
∑
∅6=A⊆Ω

m(A)f (|A|)

with f = Id (expected cardinality), f (x) = −1/x (opposite of Yager’s
specificity), f = log2 (nonspecificy)
Nonspecificity N(m) generalizes the Hartley function for set
(H(A) = log2(|A|)) and was shown by Ramer (1987) to be the unique
measure verifying some axiomatic requirements such as

Additivity for non-interactive mass functions: N(mXY ) = N(mX ) + N(mY )
Subadditivity for interactive mass functions: N(mXY ) ≤ N(mX ) + N(mY )
...

Nonspecificity is minimal for Bayesian mass function: we need to
measure another dimension of uncertainty
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Least Commitment Principle Uncertainty measures

Measures of conflict

Idea: should be higher when masses are assigned to disjoint (or non
nested) focal sets
Example: dissonance (Yager, 1983) is defined as

E(m) = −
∑
A⊆Ω

m(A) log2 Pl(A) = −
∑
A⊆Ω

m(A) log2 (1− K (A))

where K (A) =
∑

B∩A=∅m(B) can be interpreted as measuring the degree
to which the evidence conflicts with focal set A
Replacing K (A) by

CON(A) =
∑
∅6=B⊆Ω

m(B)
|A \ B|
|A|

,

we get another conflict measure, called strife (Klir and Yuan, 1993)
Both dissonance and strife generalize the Shannon entropy
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Least Commitment Principle Uncertainty measures

Measures of total uncertainty (1/2)

Measure the degree of uncertainty of a belief function, taking into
account the two dimensions of imprecision and conflict
Composite measures, e.g.,

N(m) + S(m)
Total uncertainty (Pal et al., 1993)

H(m) = −
∑
∅6=A⊆Ω

m(A) log2
|A|

m(A)
= N(m)−

∑
∅6=A⊆Ω

m(A) log2 m(A)

Agregate uncertainty

AU(m) = max
p∈P(m)

(
−
∑
ω∈Ω

p(ω) log2 p(ω)

)

where P(m) is the credal set of m
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Least Commitment Principle Uncertainty measures

Measures of total uncertainty (2/2)

Other idea: transform m into a probability distribution and compute the
corresponding Shannon entropy. Examples:

1 Jousselme et al. (2006):

EP(m) = −
∑
ω∈Ω

betpm(ω) log2 betpm(ω)

where betpm the pignistic probability distribution is defined by

betpm(ω) =
∑

A⊆Ω:ω∈A

m(A)

|A|

2 Jirousek and Shenoy (2017)

Hjs(m) = −
∑
ω∈Ω

pl∗(ω) log2 pl∗(ω) + N(m)

where pl∗(ω) = pl(ω)/
∑

ω′∈Ω pl(ω′) is the normalized plausibility.

Both measures extend the Hartley measure and the Shannon entropy.
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Least Commitment Principle Uncertainty measures

Application of uncertainty measures

Assume we are given (e.g., by an expert) some constraints that an
unknown mass function m should satisfy, e.g., Pl(Ai ) = αi , Bel(Ai ) ≥ βj ,
etc.
A minimally committed mass function can be found by maximizing some
uncertainty measure U(m), under the given constraints
With U(m) = N(m) and linear constraints of the form Bel(Ai ) ≥ βj ,
Bel(Ai ) ≤ βj or Bel(Ai ) = βj , we have a linear optimization problem, but
the solution is generally not unique
With other measures and arbitrary constraints, we have a non linear
optimization problem
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Least Commitment Principle Uncertainty measures

Combination under unknown dependence (1/2)

Consider two sources (S1,P1, Γ1) and (S2,P2, Γ2) generating mass
functions m1 and m2

Let P12 on S1 × S2 be a joint probability measure with marginals P1 and
P2

Let A1, . . . ,Ar denote the focal sets of m1, B1, . . . ,Bs the focal sets of m2,
pi = m1(Ai ), qj = m2(Bj ), and

pij = P12({(s1, s2) ∈ S1 × S2|Γ1(s1) = Ai , Γ2(s2) = Bj})

Assuming both sources to be reliable, the combined mass function m has
the following expression

m(A) =
∑

Ai∩Bj =A

p∗ij ,

for all A ⊆ Ω, A 6= ∅, with p∗ij = pij/(1− κ), κ = degree of conflict
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Least Commitment Principle Uncertainty measures

Combination under unknown dependence (2/2)

When the dependence between the two sources is unknown, the pij ’s are
unknown
Maximizing the Shannon entropy yields Dempster’s rule
The least specific combined mass function can be found by solving the
following linear optimization problem:

max
p∗ij

∑
{(i,j)|Ai∩Bi 6=∅}

p∗ij log2 |Ai ∩ Bj |

under the constraints
∑

i,j p∗ij = 1 and∑
i

p∗ij = qj , j = 1, . . . , s

∑
j

p∗ij = pi , i = 1, . . . , r

p∗ij = 0 for all (i , j) s.t. Ai ∩ Bj = ∅
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Predictive belief function

Most Commitment Principle

Assume that the constraints imposed on a belief function by a certain
problem are of the form

Bel(A) ≤ f (A), ∀A ⊂ Ω,

for some function f .
The pl-least committed belief function verifying these constraints is
vacuous: consequently, the LCP is ineffective in that case.
Instead, it makes sense to select the most committed belief function
verifying the constraints, if it exists.
This principle can be called the Most Commitment Principle.
Example: construction of a predictive belief function.
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Predictive belief function

Motivation

Let X be random variable (defined from a repeatable random
experiment), with unknown probability PX .
We have observed n independent replicates of X :

X = (X1, . . . ,Xn).

Problem: quantify our beliefs regarding a future realization of X using a
belief function Bel(·; X ): predictive belief function.
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Predictive belief function

Examples

1 Example 1:
We have drawn r black balls in n draws from an urn with replacement:
What is our belief that the next ball to be drawn from the urn will be black?

2 Example 2:
The lifetimes of 20 bearings have been observed:

2398, 2812, 3113, 3212, 3523, 5236, 6215,
6278, 7725, 8604, 9003, 9350, 9460, 11584,
11825, 12628, 12888, 13431, 14266, 17809.

Let X be the lifetime of a bearing taken at random from the same population.
Belief function on X?
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Predictive belief function

Approach

If we knew the conditional distribution PX , it would be natural to equate
our degrees of belief BelX (A|x) with degrees of chance PX (A) for any
event A, i.e., we would impose

BelX (·|x) = PX .

In real situations, however, we only have limited information about PX in
the form of the observed data x . Our predictive belief function should
thus be less committed than PX , which can be expressed by the following
inequalities

BelX (A|x) ≤ PX (A) (1)

for all A ⊆ X
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Predictive belief function

Approach (continued)

However, after observing x , each probability PX (A) can still be arbitrarily
small.
Consequently, the condition BelX (·|x) ≤ PX can only be guaranteed for
the vacuous belief function, such that BelX (A|x) = 0 for all A ⊂ X .
Solution: weaken condition (1) by imposing only that it hold for at least a
proportion 1− α ∈ (0,1) of the samples x , under repeated sampling. We
then have the following requirement,

PX {BelX (·|X ) ≤ PX} ≥ 1− α, (2)

for all θ ∈ Θ.
A belief function verifying (2) is called a predictive belief function at
confidence level 1− α. It is an approximate 1− α-level predictive belief
function if Property (2) holds only in the limit as the sample size tends to
infinity.
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Predictive belief function

Meaning of Property (2)

x = (x1, . . . , xn)→ Bel(·|x)

x ′ = (x ′1, . . . , x
′
n)→ Bel(·|x ′)

x ′′ = (x ′′1 , . . . , x
′′
n )→ Bel(·|x ′′)
...

As the number of realizations of the random sample tends to∞, the
proportion of belief functions less committed than PX should tend to 1−α.
To achieve this property, we use

multinomial confidence regions in the discrete case
confidence bands in the continuous case
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Predictive belief function Discrete Case
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Predictive belief function Discrete Case

Multinomial Confidence Region

Discrete random variable X ∈ X = {ξ1, . . . , ξK}.
Let pk = PX ({ξk}) and p = (p1, . . . ,pK )

Let R(X ) ⊆ [0,1]K be a random region of [0,1]K . It is a confidence
region for p at level 1− α if

PX {R(X ) 3 p} ≥ 1− α.

R(X ) is an asymptotic confidence region if the above inequality holds in
the limit as n→∞.
We consider a special kind of confidence regions: simultaneous
confidence intervals:

R(X ) = [P−1 ,P
+
1 ]× . . .× [P−K ,P

+
K ]
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Predictive belief function Discrete Case

Goodman’s simultaneous confidence intervals

Goodman’s simultaneous confidence intervals:

P−k =
b + 2Nk −

√
∆k

2(n + b)
,

P+
k =

b + 2Nk +
√

∆k

2(n + b)
,

with Nk = #{i |Xi = ξk}, b = χ2
1;1−α/K and ∆k = b

(
b + 4Nk (n−Nk )

n

)
.
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Predictive belief function Discrete Case

Example

220 psychiatric patients from some population, categorized as either
neurotic, depressed, schizophrenic or having a personality disorder.
Observed counts: 91,49,37,43.
Goodman’ confidence intervals at confidence level 1− α = 0.95:

Diagnosis nk/n P−k P+
k

Neurotic 0.41 0.33 0.50
Depressed 0.22 0.16 0.30
Schizophrenic 0.17 0.11 0.24
Personality disorder 0.20 0.14 0.27
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Predictive belief function Discrete Case

From Confidence Regions to Lower Probabilities

To each p = (p1, . . . ,pK ) corresponds a probability measure PX .
Consequently, R(X ) may be seen as defining a family of probability
measures, uniquely defined by the following lower probability measure:

P−(A) = min
p∈R(X )

∑
ξk∈A

pk = max

∑
ξk∈A

P−k ,1−
∑
ξk 6∈A

P+
k


P− is verifies the following property,

PX
{

P− ≤ PX
}
≥ 1− α.

P− is 2-monotone, i.e., we have

P−(A ∪ B) ≥ P−(A) + P−(B)− P−(A ∩ B), ∀A,B ⊆ X .

However, it is not always completely monotone!
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Predictive belief function Discrete Case

From Lower Probabilities to Belief Functions
Cases K = 2 and K = 3

If K = 2 or K = 3, P− is a belief function.
Case K = 2:

m({ξ1}) = P−1 , m({ξ2}) = P−2 , m(X ) = 1− P−1 − P−2 .

Case K = 3:

m({ξk}) = P−k , k = 1,2,3

m({ξ1, ξ2}) = 1− P+
3 − P−1 − P−2

m({ξ1, ξ3}) = 1− P+
2 − P−1 − P−3

m({ξ2, ξ3}) = 1− P+
1 − P−2 − P−3

m(X ) =
3∑

k=1

(P+
k + P−k )− 2
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Predictive belief function Discrete Case

From Lower Probabilities to Belief Functions
Case K > 3

When K > 3, P− is no longer guaranteed to be a belief function. We thus
have to approximate P− by a belief function.
Let B(P−) denote the set of belief functions Bel on X verifying Bel ≤ P−.
We have, for any Bel ∈ BX (P−):

P(Bel ≤ PX ) ≥ P(P− ≤ PX ) ≥ 1− α.

Most Commitment Principle: find a belief function B(P−) as committed as
possible, by maximizing a measure of specificity.

Thierry Denœux Methods for building belief functions July 5, 2017 37 / 76



Predictive belief function Discrete Case

Optimization problem

For instance, we can maximize criterion

J(m) =
∑
A⊆X

Bel(A) = 2K
∑
B⊆X

2−|B|m(B).

subject to the constaints∑
B⊆A

m(B) ≤ P−(A), ∀A ⊂ X ,

∑
A⊆X

m(A) = 1,

m(A) ≥ 0, ∀A ⊆ X .

This is a linear optimization problem.
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Predictive belief function Discrete Case

Example: Psychiatric Data

A P−(A) Bel∗(A) m∗(A)
{ξ1} 0.33 0.33 0.33
{ξ2} 0.16 0.14 0.14
{ξ1, ξ2} 0.50 0.50 0.021
{ξ3} 0.11 0.097 0.097
{ξ1, ξ3} 0.45 0.45 0.020
{ξ2, ξ3} 0.28 0.28 0.036

...
...

...
...

{ξ1, ξ3, ξ4} 0.70 0.66 0.038
{ξ2, ξ3, ξ4} 0.50 0.48 0.019
X 1 1 0
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Predictive belief function Discrete Case

Case of ordered data

Assume X is ordered: ξ1 < . . . < ξK .
The focal sets of Bel(·|x) can be constrained to be intervals
Ak,r = {ξk , . . . , ξr}.
Under this additional constraint, an analytical solution to the previous
optimization problem can be found:

m∗(Ak,k ) = P−k ,

m∗(Ak,k+1) = P−(Ak,k+1)− P−(Ak+1,k+1)− P−(Ak,k ),

m∗(Ak,r ) = P−(Ak,r )− P−(Ak+1,r )− P−(Ak,r−1) + P−(Ak+1,r−1)

for r > k + 1, and m∗(B) = 0, for all B 6∈ I.

Thierry Denœux Methods for building belief functions July 5, 2017 40 / 76



Predictive belief function Discrete Case

Example: rain data

January precipitation in Arizona (in inches), recorded during the period
1895-2004.

class ξk nk nk/n p−k p+
k

< 0.75 48 0.44 0.32 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.17 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,2.75) 6 0.055 0.020 0.14
≥ 2.75 9 0.082 0.035 0.18

Degree of belief that the precipitation in Arizona next January will exceed,
say, 2.25 inches?
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Predictive belief function Discrete Case

Rain data: Result

m(Ak,r ) 1 2 3 4 5 6
1 0.32 0 0 0.13 0.11 0
2 - 0.085 0 0 0.012 0.14
3 - - 0.098 0 0 0
4 - - - 0.047 0 0
5 - - - - 0.020 0
6 - - - - - 0.035

We get Bel(X ≥ 2.25) = Bel∗({ξ5, ξ6}) = 0.055 and
Pl(X ≥ 2.25) = 0.317.
In 95 % of cases, the intervals [Bel∗(A),Pl∗(A)] computed using this
method simultaneously contain PX (A) for all A ⊆ X .
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Predictive belief function Continuous Case
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Predictive belief function Continuous Case

Continuous case

If X is absolutely continuous, Ω = R
A solution can be obtained using a confidence band on the cumulative
distribution function FX of X .
Let X = (X1, . . . ,Xn) be an iid sample from X with cdf FX .
A pair of functions (F (·; X ),F (·; X )) computed from X and such that
F (·; X ) ≤ F (·; X ) is a confidence band at level α ∈ (0,1) if

P
{

F (x ; X ) ≤ FX (x) ≤ F (x ; X ), ∀x ∈ R
}

= 1− α,
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Predictive belief function Continuous Case

Kolmogorov Confidence band

A non parametric confidence band can be computed using the
Kolmogorov statistic:

Dn = sup
x
|Sn(x ; X )− FX (x)|,

where Sn(·; X ) is the sample cdf.
The probability distribution of Dn can be computed exactly. Let dn,α by the
α-critical value of Dn, i.e., P(Dn ≥ dn,α) = α.
The two step functions

F (x ; X ) = max(0,Sn(x ; X )− dn,α),

F (x ; X ) = min(1,Sn(x ; X ) + dn,α)

form a confidence band at level 1− α.
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Predictive belief function Continuous Case

Bearings data (1− α = 0.95)
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Predictive belief function Continuous Case

p-boxes and belief functions
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A Kolmogorov confidence band defines
a p-box (a set of probability measures
with cdf constrained by 2 step functions).
A p-box is equivalent to a discrete
random interval.
The belief function constructed from a
Kolmogorov confidence band at level
1− α is a predictive belief function at
level 1− α.
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Predictive belief function Continuous Case

Bearings data: Construction of a mass function from a
p-box
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Predictive belief function Continuous Case

Bearings data: Contour function
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Predictive belief function Continuous Case

Bearings data: Belief and plausibility functions
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Belief functions on very large frames

Outline

1 Least Commitment Principle
Deconditioning and the GBT
Uncertainty measures

2 Predictive belief function
Discrete Case
Continuous Case

3 Belief functions on very large frames
Clustering
Object Association
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Belief functions on very large frames

Decomposition approach

In the original approach introduced by Dempster and Shafer, the available
evidence is broken down into elementary items, each modeled by a mass
function. The mass functions are then combined by Dempster’s rule.
Contrary to a common opinion, this approach can be applied even in
situations where the frame of discernment is very large, provided

The combined mass functions have a simple form
We do not need to compute the full combined belief function, but only some
partial information useful, e.g., for decision making.

Two examples:
1 Clustering
2 Association
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Belief functions on very large frames Clustering

Outline

1 Least Commitment Principle
Deconditioning and the GBT
Uncertainty measures

2 Predictive belief function
Discrete Case
Continuous Case

3 Belief functions on very large frames
Clustering
Object Association
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Belief functions on very large frames Clustering

Clustering

Finding a meaningful partition of a
dataset
Assuming there is a true unknown
partition, our frame of discernment
should be the set R of all partitions of
the set of n objects.
But this set is huge!
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Belief functions on very large frames Clustering

Number of partitions of n objects
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Number of atoms in the universe ≈ 1080

Can we implement evidential reasoning in such a large space?
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Belief functions on very large frames Clustering

Model

Evidence: n × n matrix D = (dij ) of dissimilarities between the n objects.
For any i < j , let Θij = {sij , tij}, where sij means “objects i and j belong to
the same class” and tij means “objects i and j do not belong to the same
group”.
Assumptions:

1 Two objects have all the more chance to belong to the same group, that they
are more similar. Each dissimilarity is a piece of evidence represented by
the following mass function on Θij ,

mij ({sij}) = ϕ(dij ),

mij (Θij ) = 1− ϕ(dij ),

where ϕ is a non-increasing mapping from [0,+∞) to [0, 1).
2 The mass functions mij encode independent pieces of evidence (not true,

but maybe acceptable as an approximation).

How to combine these n(n − 1)/2 mass functions to find the most
plausible partition of the n objects?
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Belief functions on very large frames Clustering

Vacuous extension

To be combined, the mass functions mij must be carried to the same
frame, which will be the set R of all partitions of the dataset

Θij	

sij	

tij	

R 

Rij	

Rij	

Let Rij denote the set of partitions
of the n objects such that objects
oi and oj are in the same group
(rij = 1).
Each mass function mij can be
vacuously extended to the R of all
partitions:

mij ({sij}) −→ Rij
mij (Θ) −→ R
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Belief functions on very large frames Clustering

Combination

The extended mass functions can then be combined by Dempster’s rule.
We will only combine the contour functions. The contour function of mij is

plij (R) =

{
mij (Rij ) + mij (R) if R ∈ Rij ,

mij (R) otherwise,

=

{
1 if rij = 1,
1− ϕ(dij ) otherwise,

= (1− ϕ(dij ))1−rij

Combined contour function:

pl(R) ∝
∏
i<j

(1− ϕ(dij ))1−rij

for any R ∈ R.
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Belief functions on very large frames Clustering

Decision

The logarithm of the contour function can be written as

log pl(R) = −
∑
i<j

rij log(1− ϕ(dij )) + C

Finding the most plausible partition is thus a binary linear programming
problem. It can be solved exactly only for small n.
However, the problem can be solved approximately using a heuristic
greedy search procedure: the Ek -NNclus algorithm.
This is a decision-directed clustering procedure, using the evidential
k -nearest neighbor (Ek -NN) rule as a base classifier.
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Belief functions on very large frames Clustering

Example
Toy dataset
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Belief functions on very large frames Clustering

Example
Iteration 1
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Belief functions on very large frames Clustering

Example
Iteration 1 (continued)

Thierry Denœux Methods for building belief functions July 5, 2017 62 / 76



Belief functions on very large frames Clustering

Example
Iteration 2
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Belief functions on very large frames Clustering

Example
Iteration 2 (continued)
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Belief functions on very large frames Clustering

Example
Result
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Belief functions on very large frames Clustering

Ek -NNclus

Starting from a random initial partition, classify each object in turn, using
the Ek -NN rule.
The algorithm converges to a local maximum of the contour function
pl(R) if k = n − 1.
With k < n − 1, the algorithm converges to a local maximum of an
objective function that approximates pl(R).
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Belief functions on very large frames Clustering

Example
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Belief functions on very large frames Object Association

Outline

1 Least Commitment Principle
Deconditioning and the GBT
Uncertainty measures

2 Predictive belief function
Discrete Case
Continuous Case

3 Belief functions on very large frames
Clustering
Object Association
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Belief functions on very large frames Object Association

Problem description

Let E = {e1, . . . ,en} and F = {f1, . . . , fp} be two sets of objects perceived
by two sensors.
Problem: find a matching between the two sets, in such a way that each
object in one set is matched with at most one object in the other set.
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Belief functions on very large frames Object Association

Formalization

Let Rij be a binary variable equal to 1 if ei and fj are the same object, 0
otherwise.
We know the distances dij between the positions of each objects ei and fj .
Each distance dij that induces a mass function mij on Θij , for instance,

mij ({1}) = ρϕ(dij ) = αij

mij ({0}) = ρ (1− ϕ(dij )) = βij

mij (Θij ) = 1− ρ = 1− αij − βij ,

where ρ ∈ [0,1] is a degree of confidence in the sensor information and ϕ
is a decreasing function taking values in [0,1].
As before these np mass functions can be carried to the same frame and
combine by Dempster’s rule.
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Belief functions on very large frames Object Association

Vacuous extension

Let R be the set of matching relations between sets E and F (each object
in E can be matched to at most one object in F , and conversely).
Let Rij be the set of matching relations where object ei is matched to
object fj .
As before, each mij is vacuously extended to R,

mij ({1}) −→ Rij

mij ({0}) −→ Rij
mij (Θ) −→ R
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Belief functions on very large frames Object Association

Combination

The contour function of mij is

plij (R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,

= (1− βij )
Rij (1− αij )

1−Rij .

The combined contour function is thus

pl(R) ∝
∏
i,j

(1− βij )
Rij (1− αij )

1−Rij ,

and its logarithm is

ln pl(R) =
∑
i,j

[Rij ln(1− βij ) + (1− Rij ) ln(1− αij )] + C

=
∑
i,j

wijRij + C
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Belief functions on very large frames Object Association

Decision

To find the matching relation R with greatest plausibility, we need to solve
the following linear optimization problem,

max
∑
i,j

wijRij + C

subject to ∑p
j=1 Rij ≤ 1 ∀i ∈ {1, . . . ,n}∑n
i=1 Rij ≤ 1 ∀j ∈ {1, . . . ,p}

Rij ∈ {0,1} ∀i ∈ {1, . . . ,n},∀j ∈ {1, . . . ,p},

This is a linear assignment problem, which can be solved in
o(max(n,m)3) time.
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Belief functions on very large frames Object Association

Summary

Developing practical applications using the Dempster-Shafer framework
requires modeling expert knowledge and statistical information using
belief functions
Systematic and principled methods now exist

Least-commitment principle
GBT
Predictive belief function
Likelihood-based belief functions
etc.

Specific methods will be studied in following lectures (correction
mechanisms, classification, clustering, etc.)
More research on expert knowledge elicitation and statistical inference is
needed

Thierry Denœux Methods for building belief functions July 5, 2017 74 / 76



References

References I
cf. https://www.hds.utc.fr/˜tdenoeux

T. Denoeux and P. Smets.
Classification using Belief Functions: the Relationship between the Case-based
and Model-based Approaches
IEEE Transactions on Systems, Man and Cybernetics B, 36(6):1395–1406, 2006.

T. Denoeux.
Constructing Belief Functions from Sample Data Using Multinomial Confidence
Regions.
International Journal of Approximate Reasoning, 42(3):228–252, 2006.

A. Aregui and T. Denoeux.
Constructing Predictive Belief Functions from Continuous Sample Data Using
Confidence Bands.
In G. De Cooman and J. Vejnarova and M. Zaffalon (Eds), Proceedings of the
Fifth International Symposium on Imprecise Probability: Theories and
Applications (ISIPTA ’07), pages 11-20, Prague, Czech Republic, July 2007.

Thierry Denœux Methods for building belief functions July 5, 2017 75 / 76



References

References II
cf. https://www.hds.utc.fr/˜tdenoeux

O. Kanjanatarakul, T. Denoeux and S. Sriboonchitta.
Prediction of future observations using belief functions: a likelihood-based
approach.
International Journal of Approximate Reasoning, 72:71–94, 2016.

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta.
EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor
rule.
Knowledge-Based Systems, 88:57–69, 2015.

T. Denoeux, N. El Zoghby, V. Cherfaoui and A. Jouglet.
Optimal object association in the Dempster-Shafer framework.
IEEE Transactions on Cybernetics, 44(22):2521–2531, 2014.

Thierry Denœux Methods for building belief functions July 5, 2017 76 / 76


	Least Commitment Principle
	Deconditioning and the GBT
	Uncertainty measures

	Predictive belief function
	Discrete Case
	Continuous Case

	Belief functions on very large frames
	Clustering
	Object Association

	Appendix

