Methods for building belief functions

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Fourth School on Belief Functions and their Applications Xi'An, China, July 5, 2017

Thierry Denœux

Methods for building belief functions

July 5, 2017 1 / 76

= nar

イロト イポト イヨト イヨト

Building belief functions

- The basic theory tells us how to reason and compute with belief functions, but it does not tell us where belief functions come from.
- To use DS theory in real applications, we need methods for modeling evidence from
 - expert opinions or
 - statistical information
- Two main strategies, often combined in applications:
 - Decomposition: Start with elementary (often, simple) mass functions and transform/combine them using extension, marginalization and Dempster's rule (original DS approach).
 - Global approach: Find the least (or the most) committed belief function compatible with given constraints.
- In this lecture, we will see several applications of these strategies.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Outline

Least Commitment Principle

- Deconditioning and the GBT
- Uncertainty measures
- Predictive belief function
 - Discrete Case
 - Continuous Case

Belief functions on very large frames

- Clustering
- Object Association

Outline

Least Commitment Principle • Deconditioning and the GBT

Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case
- 3 Belief functions on very large fram
 - Clustering
 - Object Association

.

Least Commitment Principle

Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

• General approach

- Express partial information (provided, e.g., by an expert) as a set of constraints on an unknown mass function
- Find the least-committed mass function (according to some informational ordering), compatible with the constraints
- Examples of partial information
 - contour function
 - 2 conditional mass function

= nar

・ロト ・同ト ・ヨト ・ヨト

Example: LC mass function with given contour function

Problem statement

- Assume we ask an expert for the plausibility $\pi(\omega)$ of each $\omega \in \Omega$
- We get a function $\pi: \Omega \to [0, 1]$. We assume that $\max_{\omega \in \Omega} \pi(\omega) = 1$
- Let $\mathcal{M}(\pi)$ be the set of mass functions *m* such that $pl = \pi$
- What is the least committed mass function in $\mathcal{M}(\pi)$?

LC mass function with given contour function

• Let $m \in \mathcal{M}(\pi)$ and Q its commonality function. We have

$$oldsymbol{Q}(\{\omega\})=oldsymbol{pl}(\omega)=\pi(\omega), \quad orall \omega\in \Omega$$

and

$$Q(A) \leq \min_{\omega \in A} Q(\{\omega\}) = \min_{\omega \in A} \pi(\omega), \quad \forall A \subseteq \Omega, A \neq \emptyset,$$

• Let Q^* be defined as $Q^*(\emptyset) = 1$ and

$$Q^*(A) = \min_{\omega \in A} \pi(\omega), \quad \forall A \subseteq \Omega, A \neq \emptyset.$$

 Q^{*} is the commonality function of consonant mass function m^{*}, which is the q-least committed element in M(π).

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

LC mass function with given contour function

Recovering the mass function

July 5, 2017 8 / 76

Outline

Least Commitment PrincipleDeconditioning and the GBT

Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case
- 3

Belief functions on very large frames

- Clustering
- Object Association

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Deconditioning

- Let m₀ be a mass function on Ω expressing our beliefs about X in a context where we know that X ∈ B
- We want to build a mass function m verifying the constraint $m(\cdot|B) = m_0$
- Any *m* built from *m*₀ by transferring each mass *m*₀(*A*) to *A* ∪ *C* for some *C* ⊆ *B* satisfies the constraint

イロト イヨト イヨト イヨト

• s-least committed solution: transfer $m_0(A)$ to the largest such set, which is $A \cup \overline{B}$

$$m(D) = \begin{cases} m_0(A) & \text{if } D = A \cup \overline{B} \text{ for some } A \subseteq B \\ 0 & \text{otherwise} \end{cases}$$

Deconditioning

Conditional embedding

- More complex situation: two frames Ω_X and Ω_Y
- Let m⁰_X be a mass function on Ω_X expressing our beliefs about X in a context where we know that Y ∈ B for some B ⊆ Ω_Y
- We want to find m_{XY} such that $(m_{XY} \oplus m_{Y[B]})^{\downarrow X} = m_X^0$
- s-least committed solution: transfer $m_X^0(A)$ to $(A \times \Omega_Y) \cup (\Omega_X \times \overline{B})$
- Notation $m_{XY} = (m_X^0)_{\uparrow XY}$ (conditional embedding)

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Generalized Bayes Theorem

Problem statement

- Consider, for instance, a classification problem, where X ∈ Ω_X is a measurement vector and Y ∈ Ω_Y = {y₁,..., y_K} is the class variable.
- Partial knowledge of X given each $Y = y_k$

$$m_X(\cdot|y_k), \quad k=1,\ldots,K$$

- Prior knowledge about Y: m_Y^0 (may be vacuous)
- We observe $X \in A$
- Belief function on Y?

Generalized Bayes Theorem

Solution

Solution:

$$m_Y(\cdot|A) = \left(\bigoplus_{k=1}^K m_X(\cdot|y_k)_{\Uparrow XY} \oplus m_{X[A]} \oplus m_Y^0
ight)_{\downarrow Y}$$

Expression

$$m_Y(\cdot|A) = \bigoplus_{k=1}^K \overline{\{y_k\}}^{Pl_X(A|y_k)} \oplus m_Y^0$$

where $\overline{\{y_k\}}^{Pl_X(A|\theta_k)}$ is the simple mass function that assigns the mass $1 - Pl_X(A|y_k)$ to $\overline{\{y_k\}}$ and $Pl_X(A|y_k)$ to Ω_Y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generalized Bayes Theorem

Properties

- Property 1: Bayes' theorem is recovered as a special case when the conditional mass functions m_X(·|y_k) and m⁰_Y are Bayesian
- Property 2: If X₁ and X₂ are cognitively independent conditionally on Y, i.e.,

$$pl_{X_1X_2}(A_1 \times A_2 | y_k) = pl_{X_1}(A_1 | y_k) \cdot pl_{X_2}(A_2 | y_k)$$

for all $A_1 \subseteq \Omega_{X_1}$, $A_2 \subseteq \Omega_{X_2}$ and $y_k \in \Omega_Y$, then

$$m_Y(\cdot|X_1 \in A_1, X_2 \in A_2) = m_Y(\cdot|X_1 \in A_1) \oplus m_Y(\cdot|X_2 \in A_2)$$

EL OQO

イロト イヨト イヨト イヨト

Outline

Least Commitment PrincipleDeconditioning and the GBT

• Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case

Belief functions on very large frames

- Clustering
- Object Association

ELE NOR

イロト イヨト イヨト イヨト

Uncertainty measures

Motivation

- In some cases, the least committed mass function compatible with some constraints does not exist, or cannot be found, for any informational ordering
- An alternative approach is then to maximize a measure of uncertainty, i.e., find the most uncertain mass function satisfying some constraints
- Many uncertainty measures have been proposed, some of which generalize the Shannon entropy. They can be classified in three categories
 - Measures of imprecision
 - Measures of conflict
 - Measures of total uncertainty

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Measures of imprecision

• Idea: imprecision is higher when masses are assigned to larger focal sets

$$I(m) = \sum_{\emptyset \neq A \subseteq \Omega} m(A) f(|A|)$$

with f = Id (expected cardinality), f(x) = -1/x (opposite of Yager's specificity), $f = \log_2$ (nonspecificy)

- Nonspecificity N(m) generalizes the Hartley function for set (H(A) = log₂(|A|)) and was shown by Ramer (1987) to be the unique measure verifying some axiomatic requirements such as
 - Additivity for non-interactive mass functions: $N(m_{XY}) = N(m_X) + N(m_Y)$
 - Subadditivity for interactive mass functions: N(m_{XY}) ≤ N(m_X) + N(m_Y)
 ...
- Nonspecificity is minimal for Bayesian mass function: we need to measure another dimension of uncertainty

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Measures of conflict

- Idea: should be higher when masses are assigned to disjoint (or non nested) focal sets
- Example: dissonance (Yager, 1983) is defined as

$$E(m) = -\sum_{A \subseteq \Omega} m(A) \log_2 PI(A) = -\sum_{A \subseteq \Omega} m(A) \log_2 (1 - K(A))$$

where $K(A) = \sum_{B \cap A = \emptyset} m(B)$ can be interpreted as measuring the degree to which the evidence conflicts with focal set *A*

• Replacing *K*(*A*) by

$$CON(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \setminus B|}{|A|},$$

we get another conflict measure, called strife (Klir and Yuan, 1993)

• Both dissonance and strife generalize the Shannon entropy

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Measures of total uncertainty (1/2)

- Measure the degree of uncertainty of a belief function, taking into account the two dimensions of imprecision and conflict
- Composite measures, e.g.,
 - N(m) + S(m)
 - Total uncertainty (Pal et al., 1993)

$$H(m) = -\sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 \frac{|A|}{m(A)} = N(m) - \sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 m(A)$$

Agregate uncertainty

$$AU(m) = \max_{p \in \mathcal{P}(m)} \left(-\sum_{\omega \in \Omega} p(\omega) \log_2 p(\omega) \right)$$

where $\mathcal{P}(m)$ is the credal set of m

= nan

Measures of total uncertainty (2/2)

- Other idea: transform *m* into a probability distribution and compute the corresponding Shannon entropy. Examples:
 - Jousselme et al. (2006):

$$EP(m) = -\sum_{\omega \in \Omega} betp_m(\omega) \log_2 betp_m(\omega)$$

where *betp_m* the pignistic probability distribution is defined by

$$betp_m(\omega) = \sum_{A \subseteq \Omega: \omega \in A} \frac{m(A)}{|A|}$$

2 Jirousek and Shenoy (2017)

$$H_{js}(m) = -\sum_{\omega \in \Omega} p l^*(\omega) \log_2 p l^*(\omega) + N(m)$$

where $pl^*(\omega) = pl(\omega) / \sum_{\omega' \in \Omega} pl(\omega')$ is the normalized plausibility.

Both measures extend the Hartley measure and the Shannon entropy.

Application of uncertainty measures

- Assume we are given (e.g., by an expert) some constraints that an unknown mass function *m* should satisfy, e.g., *Pl*(*A_i*) = α_i, *Bel*(*A_i*) ≥ β_j, etc.
- A minimally committed mass function can be found by maximizing some uncertainty measure *U*(*m*), under the given constraints
- With U(m) = N(m) and linear constraints of the form Bel(A_i) ≥ β_j, Bel(A_i) ≤ β_j or Bel(A_i) = β_j, we have a linear optimization problem, but the solution is generally not unique
- With other measures and arbitrary constraints, we have a non linear optimization problem

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Combination under unknown dependence (1/2)

- Consider two sources (S₁, P₁, Γ₁) and (S₂, P₂, Γ₂) generating mass functions m₁ and m₂
- Let P_{12} on $S_1 \times S_2$ be a joint probability measure with marginals P_1 and P_2
- Let A_1, \ldots, A_r denote the focal sets of m_1, B_1, \ldots, B_s the focal sets of m_2 , $p_i = m_1(A_i), q_j = m_2(B_j)$, and

$$p_{ij} = P_{12}(\{(s_1, s_2) \in S_1 \times S_2 | \Gamma_1(s_1) = A_i, \Gamma_2(s_2) = B_j\})$$

• Assuming both sources to be reliable, the combined mass function *m* has the following expression

$$m(A)=\sum_{A_i\cap B_j=A}p_{ij}^*,$$

for all $A \subseteq \Omega$, $A \neq \emptyset$, with $p_{ij}^* = p_{ij}/(1 - \kappa)$, $\kappa =$ degree of conflict

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uncertainty measures

Combination under unknown dependence (2/2)

- When the dependence between the two sources is unknown, the p_{ii}'s are unknown
- Maximizing the Shannon entropy yields Dempster's rule
- The least specific combined mass function can be found by solving the following linear optimization problem:

$$\max_{p_{ij}^*} \sum_{\{(i,j) | \mathbf{A}_i \cap \mathbf{B}_i \neq \emptyset\}} p_{ij}^* \log_2 |\mathbf{A}_i \cap \mathbf{B}_j|$$

under the constraints $\sum_{i,j} p_{ij}^* = 1$ and

$$\sum_{i} p_{ij}^* = q_j, \quad j = 1, \dots, s$$

$$\sum_{j} \boldsymbol{p}_{ij}^* = \boldsymbol{p}_i, \quad i = 1, \dots, r$$

$$p_{ij}^* = 0$$
 for all (i, j) s.t. $A_i \cap B_j = \emptyset$

Outline

Least Commitment Principle

- Deconditioning and the GBT
- Uncertainty measures

Predictive belief functionDiscrete Case

- Continuous Case
- Belief functions on very large frames
 - Clustering
 - Object Association

ELE NOR

イロト イヨト イヨト イヨト

Most Commitment Principle

 Assume that the constraints imposed on a belief function by a certain problem are of the form

$$Bel(A) \leq f(A), \quad \forall A \subset \Omega,$$

for some function *f*.

- The *pl*-least committed belief function verifying these constraints is vacuous: consequently, the LCP is ineffective in that case.
- Instead, it makes sense to select the most committed belief function verifying the constraints, if it exists.
- This principle can be called the Most Commitment Principle.
- Example: construction of a predictive belief function.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 = ● つ Q @

Motivation

- Let X be random variable (defined from a repeatable random experiment), with unknown probability \mathbb{P}_X .
- We have observed *n* independent replicates of *X*:

$$\boldsymbol{X}=(X_1,\ldots,X_n).$$

 Problem: quantify our beliefs regarding a future realization of X using a belief function Bel(·; X): predictive belief function.

イロト イポト イヨト イヨト

= nan

Examples

Example 1:

- We have drawn *r* black balls in *n* draws from an urn with replacement:
- What is our belief that the next ball to be drawn from the urn will be black?
- 2 Example 2:
 - The lifetimes of 20 bearings have been observed:

2398, 2812, 3113, 3212, 3523, 5236, 6215, 6278, 7725, 8604, 9003, 9350, 9460, 11584, 11825, 12628, 12888, 13431, 14266, 17809.

• Let *X* be the lifetime of a bearing taken at random from the same population. Belief function on *X*?

= nar

イロト イヨト イヨト イヨト

Approach

 If we knew the conditional distribution P_X, it would be natural to equate our degrees of belief Bel_X(A|x) with degrees of chance P_X(A) for any event A, i.e., we would impose

$$Bel_X(\cdot | \mathbf{x}) = \mathbb{P}_X.$$

• In real situations, however, we only have limited information about \mathbb{P}_X in the form of the observed data \boldsymbol{x} . Our predictive belief function should thus be less committed than \mathbb{P}_X , which can be expressed by the following inequalities

$$Bel_X(A|\mathbf{x}) \le \mathbb{P}_X(A)$$
 (1)

for all $A \subseteq \mathcal{X}$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Approach (continued)

- However, after observing *x*, each probability P_X(A) can still be arbitrarily small.
- Consequently, the condition Bel_X(·|**x**) ≤ ℙ_X can only be guaranteed for the vacuous belief function, such that Bel_X(A|**x**) = 0 for all A ⊂ X.
- Solution: weaken condition (1) by imposing only that it hold for at least a proportion $1 \alpha \in (0, 1)$ of the samples *x*, under repeated sampling. We then have the following requirement,

$$\mathbb{P}_{\boldsymbol{X}}\left\{\boldsymbol{Bel}_{\boldsymbol{X}}(\cdot|\boldsymbol{X}) \leq \mathbb{P}_{\boldsymbol{X}}\right\} \geq 1 - \alpha, \tag{2}$$

for all $\theta \in \Theta$.

• A belief function verifying (2) is called a predictive belief function at confidence level $1 - \alpha$. It is an approximate $1 - \alpha$ -level predictive belief function if Property (2) holds only in the limit as the sample size tends to infinity.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Meaning of Property (2)

$$\begin{aligned} \boldsymbol{x} &= (x_1, \dots, x_n) \to Bel(\cdot | \boldsymbol{x}) \\ \boldsymbol{x}' &= (x'_1, \dots, x'_n) \to Bel(\cdot | \boldsymbol{x}') \\ \boldsymbol{x}'' &= (x''_1, \dots, x''_n) \to Bel(\cdot | \boldsymbol{x}'') \\ \vdots \end{aligned}$$

- As the number of realizations of the random sample tends to ∞, the proportion of belief functions less committed than P_X should tend to 1 − α.
- To achieve this property, we use
 - multinomial confidence regions in the discrete case
 - confidence bands in the continuous case

3 3 9 9 9 9

イロト イヨト イヨト イヨト

Outline

Least Commitment Principle

- Deconditioning and the GBT
- Uncertainty measures

Predictive belief function
Discrete Case
Continuous Case

Belief functions on very large frames

- Clustering
- Object Association

ELE NOR

イロト イヨト イヨト イヨト

Multinomial Confidence Region

- Discrete random variable $X \in \mathcal{X} = \{\xi_1, \dots, \xi_K\}.$
- Let $p_k = \mathbb{P}_X(\{\xi_k\})$ and $p = (p_1, ..., p_K)$
- Let $\mathcal{R}(\mathbf{X}) \subseteq [0, 1]^K$ be a random region of $[0, 1]^K$. It is a confidence region for **p** at level 1α if

$$\mathbb{P}_{\boldsymbol{X}}\left\{\mathcal{R}(\boldsymbol{X}) \ni \boldsymbol{p}\right\} \geq 1 - \alpha.$$

- $\mathcal{R}(\mathbf{X})$ is an asymptotic confidence region if the above inequality holds in the limit as $n \to \infty$.
- We consider a special kind of confidence regions: simultaneous confidence intervals:

$$\mathcal{R}(\boldsymbol{X}) = [\boldsymbol{P}_1^-, \boldsymbol{P}_1^+] \times \ldots \times [\boldsymbol{P}_K^-, \boldsymbol{P}_K^+]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goodman's simultaneous confidence intervals

Goodman's simultaneous confidence intervals:

$$P_k^-=\frac{b+2N_k-\sqrt{\Delta_k}}{2(n+b)},$$

$$P_k^+ = rac{b+2N_k+\sqrt{\Delta_k}}{2(n+b)},$$

with $N_k = \#\{i|X_i = \xi_k\}, b = \chi^2_{1;1-\alpha/K}$ and $\Delta_k = b\left(b + \frac{4N_k(n-N_k)}{n}\right)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

- 220 psychiatric patients from some population, categorized as either neurotic, depressed, schizophrenic or having a personality disorder.
- Observed counts: 91, 49, 37, 43.
- Goodman' confidence intervals at confidence level $1 \alpha = 0.95$:

Diagnosis	n _k /n	P_k^-	P_k^+
Neurotic	0.41	0.33	0.50
Depressed	0.22	0.16	0.30
Schizophrenic	0.17	0.11	0.24
Personality disorder	0.20	0.14	0.27

Discrete Case

From Confidence Regions to Lower Probabilities

- To each $\mathbf{p} = (p_1, \dots, p_K)$ corresponds a probability measure \mathbb{P}_X .
- Consequently, $\mathcal{R}(\mathbf{X})$ may be seen as defining a family of probability measures, uniquely defined by the following lower probability measure:

$$P^{-}(A) = \min_{\boldsymbol{p} \in \mathcal{R}(\boldsymbol{X})} \sum_{\xi_k \in A} p_k = \max\left(\sum_{\xi_k \in A} P_k^{-}, 1 - \sum_{\xi_k \notin A} P_k^{+}\right)$$

P⁻ is verifies the following property.

$$\mathbb{P}_{\boldsymbol{X}}\left\{\boldsymbol{P}^{-} \leq \mathbb{P}_{\boldsymbol{X}}\right\} \geq 1 - \alpha.$$

P⁻ is 2-monotone, i.e., we have

$$P^-(A\cup B)\geq P^-(A)+P^-(B)-P^-(A\cap B),\quad orall A,B\subseteq \mathcal{X}.$$

• However, it is not always completely monotone!

_	 _	
		∞uv

From Lower Probabilities to Belief Functions Cases K = 2 and K = 3

- If K = 2 or K = 3, P^- is a belief function.
- Case *K* = 2:

$$m(\{\xi_1\}) = P_1^-, \quad m(\{\xi_2\}) = P_2^-, \quad m(\mathcal{X}) = 1 - P_1^- - P_2^-.$$

• Case $K = 3$:

$$m(\{\xi_k\}) = P_k^-, \quad k = 1, 2, 3$$

$$m(\{\xi_1, \xi_2\}) = 1 - P_3^+ - P_1^- - P_2^-$$

$$m(\{\xi_1, \xi_3\}) = 1 - P_2^+ - P_1^- - P_3^-$$

$$m(\{\xi_2, \xi_3\}) = 1 - P_1^+ - P_2^- - P_3^-$$

$$m(\mathcal{X}) = \sum_{k=1}^3 (P_k^+ + P_k^-) - 2$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @
From Lower Probabilities to Belief Functions Case K > 3

- When K > 3, P⁻ is no longer guaranteed to be a belief function. We thus have to approximate P⁻ by a belief function.
- Let B(P⁻) denote the set of belief functions Bel on X verifying Bel ≤ P⁻.
 We have, for any Bel ∈ B^X(P⁻):

$$\mathbb{P}(Bel \leq \mathbb{P}_X) \geq \mathbb{P}(P^- \leq \mathbb{P}_X) \geq 1 - \alpha.$$

 Most Commitment Principle: find a belief function B(P⁻) as committed as possible, by maximizing a measure of specificity.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Optimization problem

• For instance, we can maximize criterion

$$J(m) = \sum_{A \subseteq \mathcal{X}} \textit{Bel}(A) = 2^{K} \sum_{B \subseteq \mathcal{X}} 2^{-|B|} m(B).$$

subject to the constaints

$$\sum_{B\subseteq A} m(B) \leq P^-(A), \quad \forall A \subset \mathcal{X},$$

$$\sum_{A\subseteq\mathcal{X}}m(A)=1,$$

$$m(A) \ge 0, \quad \forall A \subseteq \mathcal{X}.$$

• This is a linear optimization problem.

July 5, 2017 38 / 76

= nar

イロト イヨト イヨト イヨト

Example: Psychiatric Data

A	$P^{-}(A)$	Bel*(A)	<i>m</i> *(<i>A</i>)
$\{\xi_1\}$	0.33	0.33	0.33
$\{\xi_2\}$	0.16	0.14	0.14
$\{\xi_1,\xi_2\}$	0.50	0.50	0.021
$\{\xi_3\}$	0.11	0.097	0.097
$\{\xi_1,\xi_3\}$	0.45	0.45	0.020
$\{\xi_2,\xi_3\}$	0.28	0.28	0.036
÷	÷	÷	÷
$\{\xi_1,\xi_3,\xi_4\}$	0.70	0.66	0.038
$\{\xi_2,\xi_3,\xi_4\}$	0.50	0.48	0.019
\mathcal{X}^{-1}	1	1	0

1 = 1 = 1 A C

イロト イヨト イヨト イヨト

Discrete Case

Case of ordered data

- Assume \mathcal{X} is ordered: $\xi_1 < \ldots < \xi_K$.
- The focal sets of $Bel(\cdot | \mathbf{x})$ can be constrained to be intervals $A_{k,r} = \{\xi_k, \dots, \xi_r\}.$
- Under this additional constraint, an analytical solution to the previous optimization problem can be found:

$$m^*(A_{k,k})=P_k^-,$$

$$m^{*}(A_{k,k+1}) = P^{-}(A_{k,k+1}) - P^{-}(A_{k+1,k+1}) - P^{-}(A_{k,k}),$$

$$m^{*}(A_{k,r}) = P^{-}(A_{k,r}) - P^{-}(A_{k+1,r}) - P^{-}(A_{k,r-1}) + P^{-}(A_{k+1,r-1})$$

$$> k + 1 \text{ and } m^{*}(B) = 0 \text{ for all } B \notin \mathcal{T}$$

for r > k + 1, and $m^*(B) = 0$, for all $B \notin \mathcal{I}$.

Example: rain data

 January precipitation in Arizona (in inches), recorded during the period 1895-2004.

class ξ_k	n _k	n _k /n	p_k^-	p_k^+
< 0.75	48	0.44	0.32	0.56
[0.75, 1.25)	17	0.15	0.085	0.27
[1.25, 1.75]	19	0.17	0.098	0.29
[1.75, 2.25)	11	0.10	0.047	0.20
[2.25, 2.75]	6	0.055	0.020	0.14
≥ 2.75	9	0.082	0.035	0.18

 Degree of belief that the precipitation in Arizona next January will exceed, say, 2.25 inches?

Rain data: Result

$m(A_{k,r})$	1	2	3	4	5	6
1	0.32	0	0	0.13	0.11	0
2	-	0.085	0	0	0.012	0.14
3	-	-	0.098	0	0	0
4	-	-	-	0.047	0	0
5	-	-	-	-	0.020	0
6	-	-	-	-	-	0.035

- We get $Bel(X \ge 2.25) = Bel^*(\{\xi_5, \xi_6\}) = 0.055$ and $Pl(X \ge 2.25) = 0.317$.
- In 95 % of cases, the intervals [Bel*(A), Pl*(A)] computed using this method simultaneously contain P_X(A) for all A ⊆ X.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Outline

Least Commitment Principle

- Deconditioning and the GBT
- Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case
- 3

Belief functions on very large frames

- Clustering
- Object Association

ELE NOR

イロト イヨト イヨト イヨト

Continuous case

- If X is absolutely continuous, $\Omega = \mathbb{R}$
- A solution can be obtained using a confidence band on the cumulative distribution function *F_X* of *X*.
- Let $\boldsymbol{X} = (X_1, \dots, X_n)$ be an iid sample from X with cdf F_X .
- A pair of functions $(\underline{F}(\cdot; \mathbf{X}), \overline{F}(\cdot; \mathbf{X}))$ computed from \mathbf{X} and such that $\underline{F}(\cdot; \mathbf{X}) \leq \overline{F}(\cdot; \mathbf{X})$ is a confidence band at level $\alpha \in (0, 1)$ if

$$P\left\{\underline{F}(x; \mathbf{X}) \leq F_{\mathbf{X}}(x) \leq \overline{F}(x; \mathbf{X}), \ \forall x \in \mathbb{R}\right\} = 1 - \alpha,$$

< □ > < 同 > < 臣 > < 臣 > 王目曰 のQ @

Kolmogorov Confidence band

• A non parametric confidence band can be computed using the Kolmogorov statistic:

$$D_n = \sup_{x} |S_n(x; \boldsymbol{X}) - F_X(x)|,$$

where $S_n(\cdot; \mathbf{X})$ is the sample cdf.

- The probability distribution of D_n can be computed exactly. Let $d_{n,\alpha}$ by the α -critical value of D_n , i.e., $\mathbb{P}(D_n \ge d_{n,\alpha}) = \alpha$.
- The two step functions

$$\underline{F}(x; \mathbf{X}) = \max(0, S_n(x; \mathbf{X}) - d_{n,\alpha}),$$

$$\overline{F}(x; \mathbf{X}) = \min(1, S_n(x; \mathbf{X}) + d_{n,\alpha})$$

form a confidence band at level $1 - \alpha$.

Bearings data $(1 - \alpha = 0.95)$

< E ▶ E = クへで July 5, 2017 46 / 76

(日)

p-boxes and belief functions

- A Kolmogorov confidence band defines a p-box (a set of probability measures with cdf constrained by 2 step functions).
- A p-box is equivalent to a discrete random interval.
- The belief function constructed from a Kolmogorov confidence band at level 1α is a predictive belief function at level 1α .

Bearings data: Construction of a mass function from a p-box

Bearings data: Contour function

July 5, 2017 49 / 76

Bearings data: Belief and plausibility functions

Outline

Least Commitment Principle
 Deconditioning and the GBT

Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case

Belief functions on very large frames

- Clustering
- Object Association

1= 990

→ E → < E →</p>

Decomposition approach

- In the original approach introduced by Dempster and Shafer, the available evidence is broken down into elementary items, each modeled by a mass function. The mass functions are then combined by Dempster's rule.
- Contrary to a common opinion, this approach can be applied even in situations where the frame of discernment is very large, provided
 - The combined mass functions have a simple form
 - We do not need to compute the full combined belief function, but only some partial information useful, e.g., for decision making.
- Two examples:
 - Clustering
 - Association

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

Outline

Least Commitment PrincipleDeconditioning and the GBT

• Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case

Belief functions on very large framesClusteringObject Association

ELE NOR

イロト イヨト イヨト イヨト

Clustering

- Finding a meaningful partition of a dataset
- Assuming there is a true unknown partition, our frame of discernment should be the set \mathcal{R} of all partitions of the set of *n* objects.
- But this set is huge!

Number of partitions of *n* objects

- Number of atoms in the universe pprox 10⁸⁰
- Can we implement evidential reasoning in such a large space?

Model

- Evidence: $n \times n$ matrix $D = (d_{ij})$ of dissimilarities between the *n* objects.
- For any i < j, let $\Theta_{ii} = \{s_{ii}, t_{ii}\}$, where s_{ii} means "objects *i* and *j* belong to the same class" and t_{ii} means "objects i and j do not belong to the same group".
- Assumptions:
 - Two objects have all the more chance to belong to the same group, that they are more similar. Each dissimilarity is a piece of evidence represented by the following mass function on Θ_{ii} ,

$$egin{aligned} m_{ij}(\{m{s}_{ij}\}) &= arphi(m{d}_{ij}), \ m_{ij}(\Theta_{ij}) &= 1 - arphi(m{d}_{ij}), \end{aligned}$$

where φ is a non-increasing mapping from $[0, +\infty)$ to [0, 1).

- The mass functions m_{ii} encode independent pieces of evidence (not true, but maybe acceptable as an approximation).
- How to combine these n(n − 1)/2 mass functions to find the most plausible partition of the n objects?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Clustering

Vacuous extension

• To be combined, the mass functions m_{ij} must be carried to the same frame, which will be the set \mathcal{R} of all partitions of the dataset

- Let \mathcal{R}_{ij} denote the set of partitions of the *n* objects such that objects o_i and o_j are in the same group $(r_{ij} = 1)$.
- Each mass function *m_{ij}* can be vacuously extended to the *R* of all partitions:

$$egin{array}{rcl} m_{ij}(\{m{s}_{ij}\}) & \longrightarrow & \mathcal{R}_{ij} \ m_{ij}(\Theta) & \longrightarrow & \mathcal{R} \end{array}$$

Clustering

Combination

- The extended mass functions can then be combined by Dempster's rule.
- We will only combine the contour functions. The contour function of m_{ii} is

$$egin{aligned} & eta l_{ij}(R) = egin{cases} m_{ij}(\mathcal{R}_{ij}) + m_{ij}(\mathcal{R}) & ext{if } R \in \mathcal{R}_{ij}, \ m_{ij}(\mathcal{R}) & ext{otherwise}, \ & = egin{cases} 1 & ext{if } r_{ij} = 1, \ 1 - arphi(d_{ij}) & ext{otherwise}, \ & = (1 - arphi(d_{ij}))^{1 - r_{ij}} \end{aligned}$$

Combined contour function:

$$pl(R) \propto \prod_{i < j} (1 - \varphi(d_{ij}))^{1 - r_{ij}}$$

for any $R \in \mathcal{R}$.

Thierry Denœux

July 5, 2017 58/76

.

Decision

The logarithm of the contour function can be written as

$$\log pl(R) = -\sum_{i < j} r_{ij} \log(1 - \varphi(d_{ij})) + C$$

- Finding the most plausible partition is thus a binary linear programming problem. It can be solved exactly only for small *n*.
- However, the problem can be solved approximately using a heuristic greedy search procedure: the Ek-NNclus algorithm.
- This is a decision-directed clustering procedure, using the evidential *k*-nearest neighbor (E*k*-NN) rule as a base classifier.

= 200

<ロ> <同> <同> <同> < 同> < 同> < 同> <

Example Toy dataset

July 5, 2017 60 / 76

(日) (日) (日) (日) (日) (日) (日) (日)

Example Iteration 1

0

Clustering

Example Iteration 1 (continued)

Example Iteration 2

Example Iteration 2 (continued)

July 5, 2017 64 / 76

1 = 990

ヘロア 人間 アメヨアメヨア

Example Result

○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Thierry Denœux

Methods for building belief functions

July 5, 2017 65 / 76

(日) (日) (日) (日) (日) (日) (日) (日)

Ek-NNclus

- Starting from a random initial partition, classify each object in turn, using the Ek-NN rule.
- The algorithm converges to a local maximum of the contour function pl(R) if k = n 1.
- With k < n − 1, the algorithm converges to a local maximum of an objective function that approximates pl(R).

Example

= 990

・ロト ・回 ト ・ ヨト ・ ヨ

Outline

Least Commitment Principle

- Deconditioning and the GBT
- Uncertainty measures

Predictive belief function

- Discrete Case
- Continuous Case

Belief functions on very large framesClustering

Object Association

1= 990

イロト イヨト イヨト イヨト

Object Association

Problem description

- Let $E = \{e_1, \ldots, e_n\}$ and $F = \{f_1, \ldots, f_p\}$ be two sets of objects perceived by two sensors.
- Problem: find a matching between the two sets, in such a way that each object in one set is matched with at most one object in the other set.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Formalization

- Let *R_{ij}* be a binary variable equal to 1 if *e_i* and *f_j* are the same object, 0 otherwise.
- We know the distances d_{ij} between the positions of each objects e_i and f_i .
- Each distance d_{ij} that induces a mass function m_{ij} on Θ_{ij} , for instance,

$$m_{ij}(\{1\}) = \rho\varphi(d_{ij}) = \alpha_{ij}$$

$$m_{ij}(\{0\}) = \rho(1 - \varphi(d_{ij})) = \beta_{ij}$$

$$m_{ij}(\Theta_{ij}) = 1 - \rho = 1 - \alpha_{ij} - \beta_{ij}$$

where $\rho \in [0, 1]$ is a degree of confidence in the sensor information and φ is a decreasing function taking values in [0, 1].

• As before these *np* mass functions can be carried to the same frame and combine by Dempster's rule.

< □ > < 同 > < 臣 > < 臣 > 王目曰 のQ @

Vacuous extension

- Let \mathcal{R} be the set of matching relations between sets E and F (each object in E can be matched to at most one object in F, and conversely).
- Let R_{ij} be the set of matching relations where object e_i is matched to object f_j.
- As before, each m_{ij} is vacuously extended to \mathcal{R} ,

$$egin{array}{rcl} m_{ij}(\{1\}) &\longrightarrow & \mathcal{R}_{ij} \ m_{ij}(\{0\}) &\longrightarrow & \overline{\mathcal{R}}_{ij} \ m_{ij}(\Theta) &\longrightarrow & \mathcal{R} \end{array}$$

EL OQO

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

Combination

• The contour function of m_{ij} is

$$oldsymbol{
holij}(oldsymbol{R}) = egin{cases} 1-eta_{ij} & ext{if }oldsymbol{R} \in \mathcal{R}_{ij}, \ 1-lpha_{ij} & ext{otherwise}, \ = (1-eta_{ij})^{R_{ij}}(1-lpha_{ij})^{1-R_{ij}}. \end{cases}$$

• The combined contour function is thus

$$pl(\boldsymbol{R}) \propto \prod_{i,j} (1 - \beta_{ij})^{\boldsymbol{R}_{ij}} (1 - \alpha_{ij})^{1 - \boldsymbol{R}_{ij}},$$

and its logarithm is

$$egin{aligned} &\ln
ho l(R) = \sum_{i,j} [R_{ij} \ln(1-eta_{ij}) + (1-R_{ij}) \ln(1-lpha_{ij})] + C \ &= \sum_{i,j} w_{ij} R_{ij} + C \end{aligned}$$

July 5, 2017 72 / 76

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Decision

• To find the matching relation *R* with greatest plausibility, we need to solve the following linear optimization problem,

$$\max \sum_{i,j} w_{ij} R_{ij} + C$$

subject to

$$\begin{array}{ll} \sum_{j=1}^{p} R_{ij} \leq 1 & \forall i \in \{1, \dots, n\} \\ \sum_{i=1}^{n} R_{ij} \leq 1 & \forall j \in \{1, \dots, p\} \\ R_{ij} \in \{0, 1\} & \forall i \in \{1, \dots, n\}, \forall j \in \{1, \dots, p\}, \end{array}$$

 This is a linear assignment problem, which can be solved in o(max(n, m)³) time.

ELE NOR

<ロ> <同> <同> <同> < 同> < 同>

Summary

- Developing practical applications using the Dempster-Shafer framework requires modeling expert knowledge and statistical information using belief functions
- Systematic and principled methods now exist
 - Least-commitment principle
 - GBT
 - Predictive belief function
 - Likelihood-based belief functions
 - etc.
- Specific methods will be studied in following lectures (correction mechanisms, classification, clustering, etc.)
- More research on expert knowledge elicitation and statistical inference is needed

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

References I

cf. https://www.hds.utc.fr/~tdenoeux

T. Denoeux and P. Smets.

Classification using Belief Functions: the Relationship between the Case-based and Model-based Approaches

IEEE Transactions on Systems, Man and Cybernetics B, 36(6):1395–1406, 2006.

T. Denoeux.

Constructing Belief Functions from Sample Data Using Multinomial Confidence Regions.

International Journal of Approximate Reasoning, 42(3):228–252, 2006.

A. Aregui and T. Denoeux.

Constructing Predictive Belief Functions from Continuous Sample Data Using Confidence Bands.

In G. De Cooman and J. Vejnarova and M. Zaffalon (Eds), *Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications (ISIPTA '07)*, pages 11-20, Prague, Czech Republic, July 2007.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

References II

cf. https://www.hds.utc.fr/~tdenoeux

O. Kanjanatarakul, T. Denoeux and S. Sriboonchitta.

Prediction of future observations using belief functions: a likelihood-based approach.

International Journal of Approximate Reasoning, 72:71–94, 2016.

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta.

EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule.

Knowledge-Based Systems, 88:57–69, 2015.

T. Denoeux, N. El Zoghby, V. Cherfaoui and A. Jouglet. Optimal object association in the Dempster-Shafer framework. *IEEE Transactions on Cybernetics*, 44(22):2521–2531, 2014.

3 3 9 9 9 9

・ロン ・回 と ・ 回 と ・ 回 と