Methods for building belief functions

Thierry Denœux¹

¹Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Spring School BFTA 2013 Carthage, Tunisia, May 20, 2013

- The basic theory tells us how to reason and compute with belief functions, but it does not tell us where belief functions come from.
- We need methods for modeling evidence from
 - expert opinions or
 - statistical information.
- In this lecture, we will review some general methods and give some practical examples.

Outline

Least Commitment Principle Examples Uncertainty measures 2 **Generalized Bayes Theorem** Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data 4 General approach Evidential c-means Using the likelihood function Principle Handling low-quality data

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

General approach:

- Express partial information (provided, e.g., by an expert) as a set of constraints on an unknown mass function;
- Find the least-committed mass function (according to some informational ordering), compatible with the constraints.
- Examples of partial information:
 - contour function;
 - conditional mass function.

Outline

1	Least Commitment PrincipleExamplesUncertainty measures
2	 Generalized Bayes Theorem Derivation and properties Example: object association
3	 Discounting Problem statement and solution Example: evidential k nearest Contextual discounting
4	 Fitting mass functions to data General approach Evidential <i>c</i>-means
5 Utc Complègne	 Using the likelihood function Principle Handling low-quality data

< • • • • • •

▶ < E > < E</p>

LC mass function with given contour function Problem statement and solution

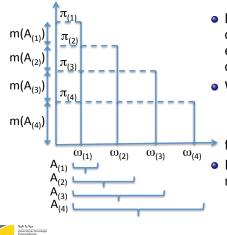
- Assume we ask an expert for the plausibility $\pi(\omega)$ of each $\omega \in \Omega$.
- We get a function $\pi : \Omega \to [0, 1]$. We assume that $\max_{\omega \in \Omega} \pi(\omega) = 1$.
- Let $\mathcal{M}(\pi)$ be the set of mass functions *m* such that $pl = \pi$.
- What is the least committed mass function in $\mathcal{M}(\pi)$?
- Taking ⊑_q as the informational ordering, the least committed element in M(π) is the consonant mass function whose contour function is π.
- Its plausibility and commonality functions are defined as

$$PI(A) = \max_{\omega \in A} \pi(\omega), \quad Q(A) = \min_{\omega \in A} \pi(\omega),$$

for all $A \subseteq \Omega$, $A \neq \emptyset$.

Examples

LC mass function with given contour function Recovering the mass function



• Let $1 = \pi_{(1)} \ge \pi_{(2)} \ge \ldots \ge \pi_{(K)}$ be the ordered values of π ; $\omega_{(1)}, \ldots, \omega_{(K)}$ the elements of Ω in the corresponding order, and $A_{(k)} = \{\omega_{(1)}, \ldots, \omega_{(k)}\}$.

We have

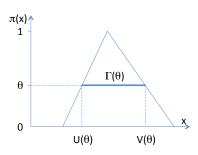
$$m(A_{(k)}) = \pi_{(k)} - \pi_{(k+1)},$$

for
$$k = 1, ..., K - 1$$
 and $m(\Omega) = \pi_{(K)}$.

• Random set: $\Theta = [0, 1]$, *P*= Lebesgue measure, $\Gamma(\theta) = A_{(k)}$ if $\theta \in [\pi_{(k+1)}, \pi_{(k)}]$.

Examples

LC mass function with given contour function



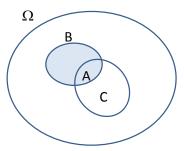
- Let $\pi : \mathbb{R} \to [0, 1]$ be an upper semi-continuous function, $\Theta = [0, 1]$, *P* the Lebesgue measure on [0, 1], and $\Gamma(\theta) = \{x \in \mathbb{R} | \pi(x) \ge \theta\}.$
- (Ω, P, Γ) defines a consonant random interval with contour function π and plausibility function

$$PI(A) = \sup_{x \in A} \pi(x),$$

for all $A \in \mathcal{B}(\mathbb{R})$

• The corresponding belief function is the *q*-least committed one among those for which $pl = \pi$.

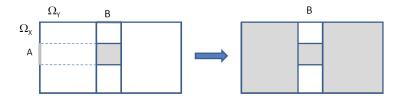
Deconditioning



- Let m₀ be a mass function on Ω expressing our beliefs about X in a context where we know that X ∈ B.
- We want to build a mass function *m* verifying the constraint *m*(·|*B*) = *m*₀.
- Any *m* built from *m*₀ by transferring each mass *m*₀(*A*) to *A* ∪ *C* for some *C* ⊆ *B* satisfies the constraint.

s-least committed solution: transfer m₀(A) to the largest such set, which is A ∪ B:

$$m(D) = \begin{cases} m_0(A) & \text{if } D = A \cup \overline{B} \text{ for some } A \subseteq B, \\ 0 & \text{otherwise} \end{cases}$$



- More complex situation: two frames Ω_X and Ω_Y .
- Let m₀^X be a mass function on Ω_X expressing our beliefs about X in a context where we know that Y ∈ B for some B ⊆ Ω_Y.
- We want to find m^{XY} such that $(m^{XY} \oplus (m^Y_B)^{\uparrow XY})^{\downarrow X} = m^X_0$.
- s-least committed solution: transfer $m_0^X(A)$ to $(A \times \Omega_Y) \cup (\Omega_X \times \overline{B})$.

• Notation $m^{XY} = (m_0^X)^{\text{tr}XY}$ (conditional embedding).

Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function Principle Handling low-guality data Jtc

Uncertainty measures

- In some cases, the least committed mass function compatible with some constraints does not exist, or cannot be found, for any informational ordering.
- An alternative approach is then to maximize a measure of uncertainty, i.e., find the most uncertain mass function satisfying some constraints.
- Many uncertainty measures have been proposed, some of which generalize the Shannon entropy. They can be classified in 3 categories:
 - Measures of imprecision;
 - Measures of conflict;
 - 3
 - Measure of total uncertainty.

Uncertainty measures

Measures of imprecision:

$$I(m) = \sum_{\emptyset \neq A \subseteq \Omega} m(A) f(|A|)$$

with f = Id (expected cardinality) or $f = \log_2$ (non-specificy).

Measures of conflict:

$$C(m) = -\sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 F(A)$$

with F = Bel (confusion), Pl (dissonance) or P_m (discord).
Measures of total uncertainty:

$$AU(m) = \max_{p \in \mathcal{P}(m)} \left(-\sum_{\omega \in \Omega} p(\omega) \log_2 p(\omega) \right)$$
$$EP(m) = -\sum_{\omega \in \Omega} p_m(\omega) \log_2 p_m(\omega)$$

Uncertainty measures Example

- Assume we know $PI(A_i) = \alpha_i$ for some $A_i \subseteq \Omega$, i = 1, ..., n.
- A maximally imprecise mass function can be defined as any solution of the following linear programming problem:

$$\max_{m} \sum_{\emptyset \neq A \subseteq \Omega} m(A) |A|$$

under the constraints

$$\sum_{B \cap A_i \neq \emptyset} m(B) = \alpha_i, \quad i = 1, \dots, n$$
$$\sum_{B \subseteq \Omega} m(B) = 1$$
$$m(B) \ge 0, \quad \forall B \subseteq \Omega, B \neq \emptyset$$
$$m(\emptyset) = 0.$$

Outline

Least Commitment Principle • Examples Uncertainty measures 2 **Generalized Bayes Theorem** Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function Principle Handling low-guality data Jtc

Problem statement

- Two variables $X \in \Omega$ et $\theta \in \Theta = \{\theta_1, \dots, \theta_K\}$.
- Typically:
 - X is observed (sensor measurement),
 - θ is not observed (class, unknown parameter).
- Partial knowledge of X given each $\theta = \theta_k$:

$$m^{\Omega}(\cdot| heta_k), \quad k=1,\ldots,K.$$

- Prior knowledge about θ : $m_0^{\Theta}(\Theta)$ (may be vacuous).
- We observe $X \in A$.
- Belief function on Θ?

Solution

Solution:

$$m^{\Theta}(\cdot|A) = \left(\bigoplus_{k=1}^{K} m^{\Omega}(\cdot|\theta_k)^{\uparrow\Omega\times\Theta} \oplus m_A^{\Omega\uparrow\Omega\times\Theta} \oplus m_0^{\Theta\uparrow\Omega\times\Theta}\right)^{\downarrow\Theta}$$

• Expression:

$$m^{\Theta}(\cdot|A) = \bigoplus_{k=1}^{K} \overline{\{\theta_k\}}^{\mathcal{P}^{l^{\Omega}}(A|\theta_k)} \oplus m_0^{\Theta},$$

where $\overline{\{\theta_k\}}^{p^{l^{\Omega}}(A|\theta_k)}$ is the simple mass function that assigns the mass $1 - p^{l^{\Omega}}(A|\theta_k)$ to $\overline{\{\theta_k\}}$ and $p^{l^{\Omega}}(A|\theta_k)$ to Θ .

Properties

- Property 1: Bayes' theorem is recovered as a special case when the conditional mass functions m^Ω(·|θ_k) and m^Θ₀ are Bayesian.
- Property 2: If X and Y are cognitively independent conditionally on θ, i.e.:

$$pl^{XY}(A \times B|\theta_k) = pl^X(A|\theta_k) \cdot pl^Y(B|\theta_k),$$

for all $A \subseteq \Omega_X$, $B \subseteq \Omega_Y$ and $\theta_k \in \Theta$, then

$$m^{\Theta}(\cdot|X \in A, Y \in B) = m^{\Theta}(\cdot|X \in A) \oplus m^{\Theta}(\cdot|Y \in B).$$

Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function Principle Handling low-guality data Jtc

Problem description

- Let $E = \{e_1, \dots, e_n\}$ and $F = \{f_1, \dots, f_p\}$ be two sets of objects perceived by two sensors.
- Problem: find a matching between the two sets, in such a way that each object in one set is matched with at most one object in the other set.

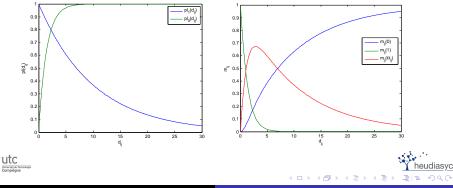
Formalization

- Let *R_{ij}* be a binary variable equal to 1 if *e_i* and *f_j* are the same object, 0 otherwise.
- We know the distance d_{ij} between the positions of objects e_i and f_j .
- How to compute a mass function on Θ_{ij} = {0, 1} representing our knowledge of R_{ij}?
- We can use the GBT if we can assess the plausibility of observing d_{ij} given R_{ij} = 1 and given R_{ij} = 0.

Using the GBT

- Let pl₁(d_{ij}) and pl₀(d_{ij}) be the plausibilities that the distance between e_i and f_j is d_{ij} if R_{ij} = 1 and R_{ij} = 0, respectively.
- From the GBT, the mass function m_{ij} on $\Theta_{ij} = \{0, 1\}$ given d_{ij} is:

$$m_{ij} = \{0\}^{pl_1(d_{ij})} \oplus \{1\}^{pl_0(d_{ij})}$$



Finding the most plausible matching

- Given the *nm* pairwise mass functions *m_{ij}*, how to match the two object sets?
- Approach:
 - Vacuously extend each *m_{ij}* in *R*, the set of matching relations between sets *E* and *F*;
 - Combine the extended mass function using Dempster's rule;
 - Find the matching relation R with greatest plausibility.
- It can be shown that

$$pl(R) \propto \prod_{i,j} (1 - m_{ij}(0))^{R_{ij}} (1 - m_{ij}(1))^{1 - R_{ij}},$$

• Maximizing log *pl*(*R*) is a linear assignment problem that can be solved in *o*(max(*n*, *m*)³) time.

Outline

1	Least Commitment PrincipleExamplesUncertainty measures
2	 Generalized Bayes Theorem Derivation and properties Example: object association
3	 Discounting Problem statement and solution Example: evidential k nearest ne Contextual discounting
4	 Fitting mass functions to data General approach Evidential <i>c</i>-means
5	Using the likelihood function Principle
utc Interciti de Technold Complegne	 Handling low-quality data

< ≣ >

• A source of information provides:

- a value;
- a set of values;
- a probability distribution, etc..
- The information is:
 - not fully reliable or
 - not fully relevant.
- Examples:
 - Possibly faulty sensor;
 - Measurement performed in unfavorable experimental conditions;
 - Information is related to a situation or an object that only has some similarity with the situation or the object considered (case-based reasoning).

- A source S provides a mass function m^Ω_S.
- *S* may be reliable or not. Let $\mathcal{R} = \{R, NR\}$.
- Assumptions:
 - If S is reliable, we accept m_S^{Ω} as a representation of our beliefs:

$$m^{\Omega}(\cdot|R) = m_S^{\Omega}$$

• If S is not reliable, we know nothing:

$$m^{\Omega}(\cdot|NR) = m_{\Omega}^{\Omega}$$

• The source has a probability α of not being reliable:

$$m^{\mathcal{R}}(\{NR\}) = \alpha, \quad m^{\mathcal{R}}(\{R\}) = 1 - \alpha$$

Solution:

$${}^{lpha}\textit{m}^{\Omega} = \left(\textit{m}^{\mathcal{R} \uparrow \Omega imes \mathcal{R}} \oplus \textit{m}^{\Omega}(\cdot | \textit{\textbf{R}})^{\uparrow \Omega imes \mathcal{R}}
ight)^{\downarrow \Omega}$$

Simple expressions:

$${}^{lpha}m^{\Omega} = (1-lpha)m^{\Omega}_{S} + lpha m^{\Omega}_{\Omega}$$

 ${}^{lpha}m^{\Omega}(A) = egin{cases} (1-lpha)m^{\Omega}_{S}(A) & ext{if } A \subset \Omega \ (1-lpha)m^{\Omega}_{S}(\Omega) + lpha & ext{if } A = \Omega. \end{cases}$

 ${}^{\alpha}m^{\Omega} = m^{\Omega}_{S} \bigcirc m^{\Omega}_{0}, \text{ with } m^{\Omega}_{0}(\Omega) = \alpha \text{ and } m^{\Omega}_{0}(\emptyset) = 1 - \alpha.$

- α is called the discount rate. It is the probability that the source is not reliable.
- ${}^{\alpha}m^{\Omega}$ is a s-less committed than (a generalization of) m_{S}^{Ω} :

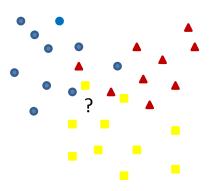
$$^{\alpha}m^{\Omega} \sqsupseteq_{s} m_{S}^{\Omega}.$$

neighbor rule

Outline

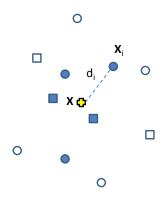
1	Least Commitment PrincipleExamplesUncertainty measures
2	 Generalized Bayes Theorem Derivation and properties Example: object association
3	 Discounting Problem statement and solution Example: evidential k nearest Contextual discounting
4	Fitting mass functions to dataGeneral approachEvidential <i>c</i>-means
5 utc	Using the likelihood function Principle Handling low-quality data

Classification



- A population is assumed to be partitioned in *c* groups or classes.
- Let Ω = {ω₁,...,ω_c} denote the set of classes.
- Each instance is described by
 - A feature vector x ∈ ℝ^ρ;
 - A class label $y \in \Omega$.
- Problem: given a learning set $\mathcal{L} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, predict the class label of a new instance described by **x**.

Evidential k-NN rule (1/2)



- Let N_k(x) ⊂ L denote the set of the k nearest neighbors of x in L, based on some distance measure.
- Each x_i ∈ N_k(x) can be considered as a piece of evidence regarding the class of x.
- The strength of this evidence decreases with the distance *d_i* between **x** and **x**_{*i*}.

Evidential *k*-NN rule (2/2)

• The evidence of (\mathbf{x}_i, y_i) , with $\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})$, tells us that $y = y_i$.

Discounting

Discounting this piece of evidence with a discount rate α(d_i), where α(·) is an increasing function from [0, +∞) to [0, 1], yields the following simple mass function:

Example: evidential k nearest neighbor rule

$$m_i(\{y_i\}) = 1 - \alpha(d_i)$$

$$m_i(\Omega) = \alpha (d_i).$$

• The evidence of the *k* nearest neighbors of **x** is pooled using Dempster's rule of combination:

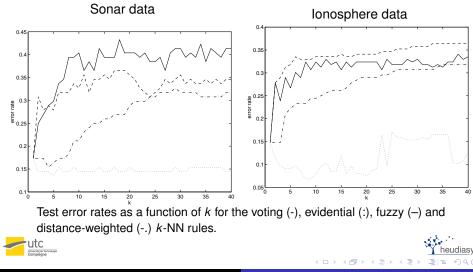
$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} m_i.$$

• Function $\alpha(\cdot)$ can be fixed heuristically or selected among a family $\{\alpha_{\theta} | \theta \in \Theta\}$ using, e.g., cross-validation.

Discounting

Example: evidential k nearest neighbor rule

Performance comparison (UCI database)



32/71

Partially supervised data

• We now consider a learning set of the form

$$\mathcal{L} = \{ (\mathbf{x}_i, m_i), i = 1, \dots, n \}$$

where

- **x**_i is the attribute vector for instance *i*, and
- *m_i* is a mass function representing uncertain expert knowledge about the class *y_i* of instance *i*.
- Special cases:
 - $m_i(\{\omega_k\}) = 1$ for all *i*: supervised learning;
 - $m_i(\Omega) = 1$ for all *i*: unsupervised learning;

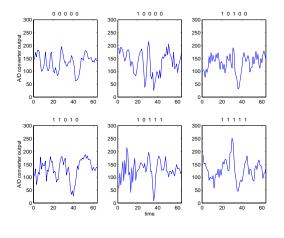
Evidential k-NN rule for partially supervised data

- Each instance (**x**_i, m_i), with **x**_i ∈ N_k(**x**), is an item of evidence regarding y, which gives us a mass function m_i.
- The reliability of this piece of evidence decreases with the distance *d_i* between **x** and **x**_{*i*}.
- Consequently, m_i is discounted with a discount rate $\alpha(d_i)$.
- The *k* discounted mass functions are combined using Dempster's rule:

$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} {}^{\alpha(d_i)} m_i.$$

Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes), 50 % negative (delta waves), 5 experts.



neudiasyc

Results on EEG data (Denoeux and Zouhal, 2001)

- *c* = 2 classes, *p* = 64
- For each learning instance **x**_{*i*}, the expert opinions were modeled as a mass function *m*_{*i*}.
- *n* = 200 learning patterns, 300 test patterns

k	<i>k</i> -NN	w <i>k</i> -NN	Ev. <i>k-</i> NN	Ev. <i>k</i> -NN
			(crisp labels)	(uncert. labels)
9	0.30	0.30	0.31	0.27
11	0.29	0.30	0.29	0.26
13	0.31	0.30	0.31	0.26

Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function Principle Handling low-guality data Jtc

Generalization: Contextual Discounting

- A more general model allowing us to take into account richer meta-information about the source.
- Let Θ = {θ₁,..., θ_L} be a partition of Ω, representing different contexts.
- Let m^R(·|θ_k) denote the mass function on R quantifying our belief in the reliability of source S, when we know that the actual value of X is in θ_k.
- We assume that:

$$m^{\mathcal{R}}(\{\boldsymbol{R}\}|\boldsymbol{\theta}_{k}) = 1 - \alpha_{k}, \quad m^{\mathcal{R}}(\{\boldsymbol{NR}\}|\boldsymbol{\theta}_{k}) = \alpha_{k}.$$

for eack
$$k \in \{1, ..., L\}$$
.

• Let
$$\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_L)$$
.

Contextual Discounting

- Let us consider a simplified aerial target recognition problem, in which we have three classes: airplane (ω₁ ≡ *a*), helicopter (ω₂ ≡ *h*) and rocket (ω₃ ≡ *r*).
- Let $\Omega = \{a, h, r\}$.
- The sensor provides the following mass function: $m_S^{\Omega}(\{a\}) = 0.5$, $m_S^{\Omega}(\{r\}) = 0.5$.
- We assume that
 - The probability that the source is reliable when the target is an airplane is equal to $1 \alpha_1 = 0.4$;
 - The probability that the source is reliable when the target is either a helicopter, or a rocket is equal to 1 - α₂ = 0.9.
- We have $\Theta = \{\theta_1, \theta_2\}$, with $\theta_1 = \{a\}, \theta_2 = \{h, r\}$, and $\alpha = (0.6, 0.1)$.

Contextual Discounting

Solution:

$${}^{\boldsymbol{\alpha}}\boldsymbol{m}^{\boldsymbol{\Omega}} = \left(\bigoplus_{k=1}^{L} \boldsymbol{m}^{\mathcal{R}}(\cdot|\boldsymbol{\theta}_{k})^{\uparrow\boldsymbol{\Omega}\times\mathcal{R}} \oplus \boldsymbol{m}^{\boldsymbol{\Omega}}(\cdot|\boldsymbol{R})^{\uparrow\boldsymbol{\Omega}\times\mathcal{R}}\right)^{\downarrow\boldsymbol{\Omega}}.$$

Result:

$$^{\alpha}m^{\Omega} = m^{\Omega}_{S} \bigcirc m^{\Omega}_{1} \bigcirc \ldots \bigcirc m^{\Omega}_{L}$$

with $m_k^{\Omega}(\theta_k) = \alpha_k$ and $m_k^{\Omega}(\emptyset) = 1 - \alpha_k$.

• Standard discounting is recovered as a special case when $\Theta = \{\Omega\}.$

Contextual Discounting Example (continued)

- The discounted mass function can be obtained by combining disjunctively 3 mass functions:
 - $m_{\underline{S}}^{\Omega}(\{a\}) = 0.5, \ m_{\underline{S}}^{\Omega}(\{r\}) = 0.5;$

•
$$m_1^{\Omega}(\{a\}) = 0.6, \ m_1^{\Omega}(\emptyset) = 0.4;$$

•
$$m_1^{\Omega}(\{h,r\}) = 0.1, m_1^{\Omega}(\emptyset) = 0.9.$$

Result:

A	h	а	r	h, a	<i>h</i> , <i>r</i>	<i>a</i> , <i>r</i>	Ω
$m_{S}^{\Omega}(A)$	0	0.5	0.5	0	0	0	0
$\alpha m^{\Omega}(A)$	0	0.45	0.18	0	0.02	0.27	0.08

A (1) > A (1) > A

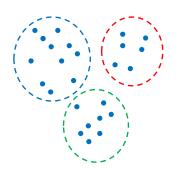
Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data 4 General approach Evidential c-means Using the likelihood function 5 Principle Handling low-guality data Jtc

Fitting mass functions to data

- In some cases, we have *n* objects described by data $D = \{d_1, \ldots, d_n\}$ and we want to find *n* mass functions $M = \{m_1, \ldots, m_n\}$ that fit the data in some way.
- The mass functions can then be found by minimizing a cost function *C*(*M*, *D*) with respect to *M*.
- Example: evidential clustering.

Clustering



- n objects described by
 - Attribute vectors x₁,..., x_n (attribute data) or
 - Dissimilarities (proximity data).
- Goal: find a meaningful structure in the data set, usually a partition into *c* crisp or fuzzy subsets.
- Belief functions may allow us to express richer information about the data structure.

Different partition concepts

- Hard partition: each object belongs to one and only one group. Group membership is expressed by binary variables u_{ik} such that $u_{ik} = 1$ if object *i* belongs to group *k* and $u_{ik} = 0$ otherwise.
- Fuzzy partition: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group, with $\sum_{k=1}^{c} u_{ik} = 1$. The membership degrees (u_{i1}, \ldots, u_{ic}) define a probability distribution over the set Ω of groups.
- Credal partition: the group membership of each object is described by a mass function m_i over Ω.

Credal partition

Α	$m_1(A)$	$m_2(A)$	$m_3(A)$	$m_4(A)$	$m_5(A)$
Ø	0	0	0	0	0
$\{\omega_1\}$	0	0	0	0.2	0
$\{\omega_2\}$	0	1	0	0.4	0
$\{\omega_1,\omega_2\}$	0.7	0	0	0	0
$\{\omega_3\}$	0	0	0.2	0.4	0
$\{\omega_1,\omega_3\}$	0	0	0.5	0	0
$\{\omega_2,\omega_3\}$	0	0	0	0	0
Ω	0.3	0	0.3	0	1

Hard and fuzzy partitions are recovered as special cases when all mass functions are certain or Bayesian, respectively.

eudiasvc

Algorithms

• EVCLUS (Denoeux and Masson, 2004):

- Proximity (possibly non metric) data,
- Multidimensional scaling approach.
- Evidential *c*-means (ECM): (Masson and Denoeux, 2008):
 - Attribute data,
 - HCM, FCM family (alternate optimization of a cost function).
- Relational Evidential *c*-means (RECM): (Masson and Denoeux, 2009): ECM for proximity data.
- Constrained Evidential *c*-means (CECM) (Antoine et al., 2011): ECM with pairwise constraints.

47/71

Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association 3 Discounting Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function Principle Handling low-guality data Jtc

Principle

- Problem: generate a credal partition $M = (m_1, ..., m_n)$ from attribute data $X = (\mathbf{x}_1, ..., \mathbf{x}_n), \mathbf{x}_i \in \mathbb{R}^p$.
- Generalization of hard and fuzzy *c*-means algorithms:
 - Each class represented by a prototype;
 - Alternate optimization of a cost function with respect to the prototypes and to the credal partition.

Fuzzy c-means (FCM)

Minimize

$$J_{ ext{FCM}}(U,V) = \sum_{i=1}^n \sum_{k=1}^c u_{ik}^eta d_{ik}^2$$

with $d_{ik} = ||\mathbf{x}_i - \mathbf{v}_k||$ under the constraints $\sum_k u_{ik} = 1, \forall i$.

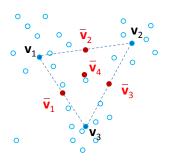
Alternate optimization algorithm:

$$\mathbf{v}_k = \frac{\sum_{i=1}^n u_{ik}^\beta \mathbf{x}_i}{\sum_{i=1}^n u_{ik}^\beta} \quad \forall k = 1, \dots, c,$$

$$u_{ik} = rac{d_{ik}^{-2/(eta-1)}}{\sum_{\ell=1}^{c} d_{i\ell}^{-2/(eta-1)}}.$$

= 900

ECM algorithm



- Each class ω_k represented by a prototype \mathbf{v}_k .
- Basic ideas:
 - For each non empty A_j ∈ Ω, m_{ij} = m_i(A_j) should be high if x_i is close to v
 _i.
 - The distance to the empty set is defined as a fixed value δ .

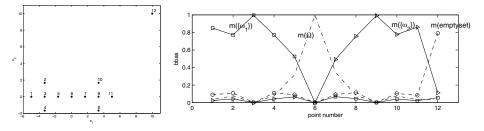
ECM algorithm Objective criterion

Criterion to be minimized:

$$J_{\text{ECM}}(\textbf{\textit{M}},\textbf{\textit{V}}) = \sum_{i=1}^{n} \sum_{\{j/A_{j} \neq \emptyset, A_{j} \subseteq \Omega\}} |A_{j}|^{\alpha} m_{ij}^{\beta} d_{ij}^{2} + \sum_{i=1}^{n} \delta^{2} m_{i\emptyset}^{\beta},$$

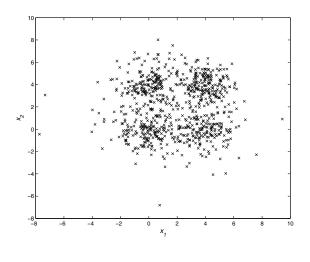
- Parameters:
 - α controls the specificity of mass functions;
 - β controls the hardness of the evidential partition;
 - δ controls the amount of data considered as outliers.
- *J*_{ECM}(*M*, *V*) can be iteratively minimized with respect to *M* and *V* using an alternate optimization scheme.

Butterfly dataset



문 🕨 🖈 문

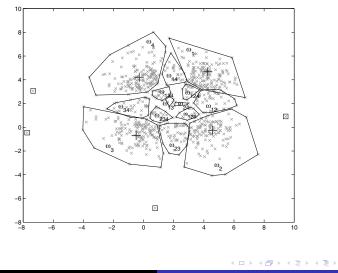
4-class data set



∃ ► < ∃ ►</p>

<u>heudiasyc</u> च ∽૧ભ

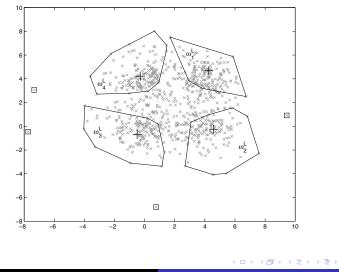
4-class data set Hard credal partition



heudiasyc

ъ.

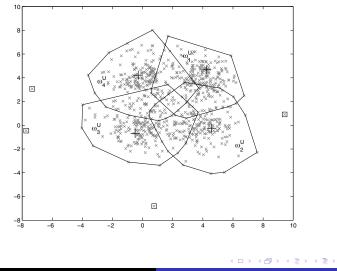
4-class data set



heudiasyc

= 990

4-class data set



heudiasyc

= 990

Outline

Least Commitment Principle • Examples Uncertainty measures **Generalized Bayes Theorem** 2 Derivation and properties Example: object association Discounting 3 Problem statement and solution Example: evidential k nearest neighbor rule Contextual discounting Fitting mass functions to data General approach Evidential c-means Using the likelihood function 5 Principle Handling low-guality data utc

The problem

- We consider a statistical model $\{f(x, \theta), x \in \mathcal{X}, \theta \in \Theta\}$, where \mathcal{X} is the sample space and Θ the parameter space.
- Having observed x, how to quantify the uncertainty about Θ, without specifying a prior probability distribution?
- Example:
 - We have observed 3 white balls out of 10 drawings from an urn with replacement. What does this observation tell us about the proportion θ of white balls?
 - In that case, $\mathcal{X} = \{0, ..., 10\}, \Theta = [0, 1]$ and $f(x, \theta) = C_n^x \theta^x (1 \theta)^{n-x}$.
- Two solutions using belief functions:
 - Dempster's solution based an auxiliary variable with a pivotal probability distribution (Dempster, 1967);
 - 2 Likelihood-based approach (Shafer, 1976).

Likelihood-based belief function

- Likelihood principle: $Bel_{\Theta}(\cdot; x)$ should be based only on the likelihood function $L(\theta; x) = f(x; \theta)$.
- Compatibility with Bayesian inference: when a Bayesian prior P₀ is available, combining it with Bel_Θ(·, x) using Dempster's rule should yield the Bayesian posterior:

$$\textit{Bel}_{\Theta}(\cdot,x)\oplus\textit{P}_{0}=\textit{P}(\cdot|x).$$

Search Least commitment principle: among all the belief functions satisfying the previous two requirements, Bel_Θ(·, x) should be the least committed (least informative).

Using the likelihood function

From Requirements 1 and 2, the contour function of Bel_Θ(·; x) should be proportional to L(θ; x):

$$pl(\theta; x) = cL(\theta; x)$$

Principle

for some c > 0 depending only on the likelihood function $L(\theta; x)$.

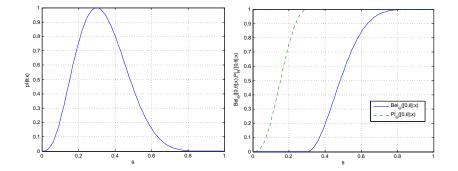
 From Requirement 3 with ⊑_q as informational ordering, the unique solution is the consonant belief function Bel_Θ(·; x) with contour function equal to the normalized likelihood:

$$pl(\theta; x) = \frac{L(\theta; x)}{\sup_{\theta' \in \Theta} L(\theta'; x)},$$

• The corresponding plausibility function is:

$$Pl_{\Theta}(A;x) = \sup_{\theta \in A} pl(\theta;x) = \frac{\sup_{\theta \in A} L(\theta;x)}{\sup_{\theta \in \Theta} L(\theta;x)}, \quad \forall A \subseteq \Theta.$$

Example: Binomial sample



62/71

neudiasyc

Discussion

- The likelihood-based method is much simpler to implement than Dempster's method, even for complex models.
- By construction, it boils down to Bayesian inference when a Bayesian prior is available.
- It is compatible with usual likelihood-based inference:
 - Assume that $\theta = (\theta_1, \theta_2) \in \Theta_1 \times \Theta_2$ and θ_2 is a nuisance parameter. The marginal contour function on Θ_1

$$pl(\theta_1; x) = \sup_{\theta_2 \in \Theta_2} pl(\theta_1, \theta_2; x) = \frac{\sup_{\theta_2 \in \Theta_2} L(\theta_1, \theta_2; x)}{\sup_{(\theta_1, \theta_2) \in \Theta} L(\theta_1, \theta_2; x)}$$

is the relative profile likelihood function.

• Let $H_0 \subset \Theta$ be a composite hypothesis. Its plausibility

$$PI(H_0; x) = \frac{\sup_{\theta \in H_0} L(\theta; x)}{\sup_{\theta \in \Theta} L(\theta; x)}.$$

Outline

Motivation

- Classical statistical procedures address idealized situations where the data are precisely observed and can be considered as being drawn from a well defined population described by some parameter of interest θ.
- There are situations, however, where this simple model does not apply.
- For instance, some of data may collected from a population that is only known to "resemble" the population of interest (because, e.g., there were collected at different times or places) → partially relevant data.

Problem statement

- Assume that we are interested in a parameter θ ∈ Θ related to a certain population and we observe a random variable X with probability density or mass function f(x; θ'), where θ' ∈ Θ is a parameter believed to be "close" to θ.
- For instance, θ might be the death rate in some hospital, and X the number of deaths in a neighboring hospital.
- Having observed X = x, our belief about θ' is represented by the contour function

$$pl'(\theta'; x) = rac{L(\theta'; x)}{\sup_{\theta'} L(\theta'; x)}.$$

What does x tell us about θ?

Solution

- Assume that the statement "θ' is close to θ" can be formalized as
 d(θ,θ') ≤ δ, where d is a distance measure defined on Θ and δ
 is a known constant.
- This piece of information can be modeled by a logical belief function with focal set S_δ = {(θ, θ')|d(θ, θ') ≤ δ} ⊂ Θ².
- Combining it with pl'(θ'; x) using Dempster's rule yields a consonant belief function on Θ × Θ', with contour function

$$pl(\theta, \theta'; x) = pl'(\theta'; x) \mathbb{1}_{S_{\delta}}(\theta, \theta').$$

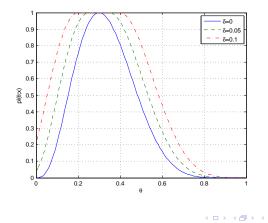
Marginalizing out θ' yields:

$$pl(\theta; x) = \sup_{\theta'} pl(\theta, \theta'; x) = \sup_{\theta' \in B_{\delta}(\theta)} pl'(\theta'; x),$$

where $B_{\delta}(\theta) = \{\theta' \in \Theta | d(\theta, \theta') \leq \delta\}.$

Example

Assume we have observed 3 white balls out of 10 drawings with replacement from an urn with a proportion θ' of white balls. We are interested in the proportion θ of white balls in another urn. We know that $|\theta - \theta'| \leq \delta$. What do we know about θ ?



Summary

- Developing pratical applications using the Dempster-Shafer framework requires modeling expert knowledge and statistical information using belief functions.
- Systematic and principled methods now exist:
 - Least-commitment principle;
 - GBT ;
 - Discounting;
 - Likelihood-based belief functions;
 - etc.
- Specific methods will be studied in following lectures (classification, etc.).
- More research on expert knowledge elicitation and statistical inference is needed.

cf. https://www.hds.utc.fr/~tdenoeux

Ph. Smets.

Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem.

International Journal of Approximate Reasoning, 9:1-35, 1993.

T. Denœux.

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on SMC, 25(05):804-813, 1995.

D. Mercier, B. Quost and T. Denœux.

Refined modeling of sensor reliability in the belief function framework using contextual discounting.

Information Fusion, Vol. 9, Issue 2, pages 246-258, 2008.

ECM: An evidential version of the fuzzy c-means algorithm.

Pattern Recognition, 41(4):1384-1397, 2008.

References II

cf. https://www.hds.utc.fr/~tdenoeux

T. Denoeux.

Maximum likelihood estimation from Uncertain Data in the Belief Function Framework.

IEEE Transactions on Knowledge and Data Engineering, 25(1):119-130, 2013.

T. Denoeux.

Likelihood-based belief function: justification and some extensions to low-quality data

International Journal of Approximate Reasoning, accepted for publication, 2013.

Available at: http://hal.archives-ouvertes.fr/hal-00813021

