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Building belief functions

The basic theory tells us how to reason and compute with belief
functions, but it does not tell us where belief functions come from.
We need methods for modeling evidence from

expert opinions or
statistical information.

In this lecture, we will review some general methods and give
some practical examples.
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Least Commitment Principle

Least Commitment Principle
Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints,
the least informative according to some informational ordering (if it
exists) should be selected.

General approach:
1 Express partial information (provided, e.g., by an expert) as a set of

constraints on an unknown mass function;
2 Find the least-committed mass function (according to some

informational ordering), compatible with the constraints.

Examples of partial information:
contour function;
conditional mass function.
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Least Commitment Principle Examples
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Least Commitment Principle Examples

LC mass function with given contour function
Problem statement and solution

Assume we ask an expert for the plausibility π(ω) of each ω ∈ Ω.
We get a function π : Ω→ [0,1]. We assume that
maxω∈Ω π(ω) = 1.
LetM(π) be the set of mass functions m such that pl = π.
What is the least committed mass function inM(π)?
Taking vq as the informational ordering, the least committed
element inM(π) is the consonant mass function whose contour
function is π.
Its plausibility and commonality functions are defined as

Pl(A) = max
ω∈A

π(ω), Q(A) = min
ω∈A

π(ω),

for all A ⊆ Ω, A 6= ∅.
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Least Commitment Principle Examples

LC mass function with given contour function
Recovering the mass function

ω(1)	   ω(2)	   ω(3)	   ω(4)	  

π(1)	  

π(2)	  

π(3)	  

π(4)	  

m(A(1))	  

m(A(2))	  

m(A(3))	  

m(A(4))	  

A(1)	  
A(2)	  
A(3)	  
A(4)	  

Let 1 = π(1) ≥ π(2) ≥ . . . ≥ π(K ) be the
ordered values of π; ω(1), . . . , ω(K ) the
elements of Ω in the corresponding
order, and A(k) = {ω(1), . . . , ω(k)}.
We have

m(A(k)) = π(k) − π(k+1),

for k = 1, . . . ,K − 1 and m(Ω) = π(K ).
Random set: Θ = [0,1], P= Lebesgue
measure, Γ(θ) = A(k) if θ ∈ [π(k+1), π(k)].
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Least Commitment Principle Examples

LC mass function with given contour function
Continuous extension

0	  

1	  

θ	  
Γ(θ)	  

U(θ)	   V(θ)	  

x	  

π(x)	  

Let π : R→ [0,1] be an upper
semi-continuous function, Θ = [0,1], P
the Lebesgue measure on [0,1], and
Γ(θ) = {x ∈ R|π(x) ≥ θ}.
(Ω,P, Γ) defines a consonant random
interval with contour function π and
plausibility function

Pl(A) = sup
x∈A

π(x),

for all A ∈ B(R)

The corresponding belief function is the
q-least committed one among those for
which pl = π.
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Least Commitment Principle Examples

Deconditioning

Ω
B

A
C

Let m0 be a mass function on Ω
expressing our beliefs about X in a
context where we know that X ∈ B.
We want to build a mass function m
verifying the constraint m(·|B) = m0.
Any m built from m0 by transferring each
mass m0(A) to A ∪ C for some C ⊆ B
satisfies the constraint.

s-least committed solution: transfer m0(A) to the largest such
set, which is A ∪ B:

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B,
0 otherwise
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Least Commitment Principle Examples

Deconditioning
Conditional embedding

More complex situation: two frames ΩX and ΩY .
Let mX

0 be a mass function on ΩX expressing our beliefs about X
in a context where we know that Y ∈ B for some B ⊆ ΩY .

We want to find mXY such that
(
mXY ⊕ (mY

B )↑XY
)↓X

= mX
0 .

s-least committed solution: transfer mX
0 (A) to

(A× ΩY ) ∪ (ΩX × B).
Notation mXY = (mX

0 )⇑XY (conditional embedding).
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Least Commitment Principle Uncertainty measures
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Least Commitment Principle Uncertainty measures

Uncertainty measures
Motivation

In some cases, the least committed mass function compatible
with some constraints does not exist, or cannot be found, for any
informational ordering.
An alternative approach is then to maximize a measure of
uncertainty, i.e., find the most uncertain mass function satisfying
some constraints.
Many uncertainty measures have been proposed, some of which
generalize the Shannon entropy. They can be classified in 3
categories:

1 Measures of imprecision;
2 Measures of conflict;
3 Measure of total uncertainty.

Thierry Denœux Methods for building belief functions 12/ 71



Least Commitment Principle Uncertainty measures

Uncertainty measures
Main measures

Measures of imprecision:

I(m) =
∑
∅6=A⊆Ω

m(A)f (|A|)

with f = Id (expected cardinality) or f = log2 (non-specificy).
Measures of conflict:

C(m) = −
∑
∅6=A⊆Ω

m(A) log2 F (A)

with F = Bel (confusion), Pl (dissonance) or Pm (discord).
Measures of total uncertainty:

AU(m) = max
p∈P(m)

(
−
∑
ω∈Ω

p(ω) log2 p(ω)

)

EP(m) = −
∑
ω∈Ω

pm(ω) log2 pm(ω)
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Least Commitment Principle Uncertainty measures

Uncertainty measures
Example

Assume we know Pl(Ai ) = αi for some Ai ⊆ Ω, i = 1, . . . ,n.
A maximally imprecise mass function can be defined as any
solution of the following linear programming problem:

max
m

∑
∅6=A⊆Ω

m(A)|A|

under the constraints∑
B∩Ai 6=∅

m(B) = αi , i = 1, . . . ,n

∑
B⊆Ω

m(B) = 1

m(B) ≥ 0, ∀B ⊆ Ω,B 6= ∅

m(∅) = 0.
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Generalized Bayes Theorem Derivation and properties
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Generalized Bayes Theorem Derivation and properties

Problem statement

Two variables X ∈ Ω et θ ∈ Θ = {θ1, . . . , θK}.
Typically:

X is observed (sensor measurement),
θ is not observed (class, unknown parameter).

Partial knowledge of X given each θ = θk :

mΩ(·|θk ), k = 1, . . . ,K .

Prior knowledge about θ: mΘ
0 (Θ) (may be vacuous).

We observe X ∈ A.
Belief function on Θ?
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Generalized Bayes Theorem Derivation and properties

Solution

Solution:

mΘ(·|A) =

(
K⊕

k=1

mΩ(·|θk )⇑Ω×Θ ⊕mΩ↑Ω×Θ
A ⊕mΘ↑Ω×Θ

0

)↓Θ

Expression:

mΘ(·|A) =
K⊕

k=1

{θk}
plΩ(A|θk )

⊕mΘ
0 ,

where {θk}
plΩ(A|θk )

is the simple mass function that assigns the
mass 1− plΩ(A|θk ) to {θk} and plΩ(A|θk ) to Θ.
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Generalized Bayes Theorem Derivation and properties

Properties

Property 1: Bayes’ theorem is recovered as a special case when
the conditional mass functions mΩ(·|θk ) and mΘ

0 are Bayesian.
Property 2: If X and Y are cognitively independent conditionally
on θ, i.e.:

plXY (A× B|θk ) = plX (A|θk ) · plY (B|θk ),

for all A ⊆ ΩX , B ⊆ ΩY and θk ∈ Θ, then

mΘ(·|X ∈ A,Y ∈ B) = mΘ(·|X ∈ A)⊕mΘ(·|Y ∈ B).
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Generalized Bayes Theorem Example: object association
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Generalized Bayes Theorem Example: object association

Problem description

Let E = {e1, . . . ,en} and F = {f1, . . . , fp} be two sets of objects
perceived by two sensors.
Problem: find a matching between the two sets, in such a way
that each object in one set is matched with at most one object in
the other set.
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Generalized Bayes Theorem Example: object association

Formalization

Let Rij be a binary variable equal to 1 if ei and fj are the same
object, 0 otherwise.
We know the distance dij between the positions of objects ei and
fj .
How to compute a mass function on Θij = {0,1} representing our
knowledge of Rij?
We can use the GBT if we can assess the plausibility of
observing dij given Rij = 1 and given Rij = 0.

Thierry Denœux Methods for building belief functions 21/ 71



Generalized Bayes Theorem Example: object association

Using the GBT

Let pl1(dij ) and pl0(dij ) be the plausibilities that the distance
between ei and fj is dij if Rij = 1 and Rij = 0, respectively.
From the GBT, the mass function mij on Θij = {0,1} given dij is:

mij = {0}pl1(dij ) ⊕ {1}pl0(dij ).
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Generalized Bayes Theorem Example: object association

Finding the most plausible matching

Given the nm pairwise mass functions mij , how to match the two
object sets?
Approach:

Vacuously extend each mij in R, the set of matching relations
between sets E and F ;
Combine the extended mass function using Dempster’s rule;
Find the matching relation R with greatest plausibility.

It can be shown that

pl(R) ∝
∏
i,j

(1−mij (0))Rij (1−mij (1))1−Rij ,

Maximizing log pl(R) is a linear assignment problem that can be
solved in o(max(n,m)3) time.
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Discounting Problem statement and solution
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Discounting Problem statement and solution

Discounting
Problem statement

A source of information provides:
a value;
a set of values;
a probability distribution, etc..

The information is:
not fully reliable or
not fully relevant.

Examples:
Possibly faulty sensor;
Measurement performed in unfavorable experimental conditions;
Information is related to a situation or an object that only has some
similarity with the situation or the object considered (case-based
reasoning).
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Discounting Problem statement and solution

Discounting
Formalization

A source S provides a mass function mΩ
S .

S may be reliable or not. Let R = {R,NR}.
Assumptions:

If S is reliable, we accept mΩ
S as a representation of our beliefs:

mΩ(·|R) = mΩ
S

If S is not reliable, we know nothing:

mΩ(·|NR) = mΩ
Ω

The source has a probability α of not being reliable:

mR({NR}) = α, mR({R}) = 1− α
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Discounting Problem statement and solution

Discounting
Solution

Solution:
αmΩ =

(
mR↑Ω×R ⊕mΩ(·|R)⇑Ω×R)↓Ω .

Simple expressions:

αmΩ = (1− α)mΩ
S + αmΩ

Ω

αmΩ(A) =

{
(1− α)mΩ

S (A) if A ⊂ Ω

(1− α)mΩ
S (Ω) + α if A = Ω.

αmΩ = mΩ
S ∪©mΩ

0 , with mΩ
0 (Ω) = α and mΩ

0 (∅) = 1− α.

α is called the discount rate. It is the probability that the source is
not reliable.
αmΩ is a s-less committed than (a generalization of) mΩ

S :

αmΩ ws mΩ
S .
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Discounting Example: evidential k nearest neighbor rule
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Discounting Example: evidential k nearest neighbor rule

Classification

?

A population is assumed to be
partitioned in c groups or classes.
Let Ω = {ω1, . . . , ωc} denote the set of
classes.
Each instance is described by

A feature vector x ∈ Rp;
A class label y ∈ Ω.

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict the
class label of a new instance described
by x.
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Discounting Example: evidential k nearest neighbor rule

Evidential k -NN rule (1/2)

Xi

di

X

Let Nk (x) ⊂ L denote the set of the k
nearest neighbors of x in L, based on some
distance measure.
Each xi ∈ Nk (x) can be considered as a
piece of evidence regarding the class of x.
The strength of this evidence decreases
with the distance di between x and xi .
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Discounting Example: evidential k nearest neighbor rule

Evidential k -NN rule (2/2)

The evidence of (xi , yi ), with xi ∈ Nk (x), tells us that y = yi .
Discounting this piece of evidence with a discount rate α(di ),
where α(·) is an increasing function from [0,+∞) to [0,1], yields
the following simple mass function:

mi ({yi}) = 1− α (di )

mi (Ω) = α (di ) .

The evidence of the k nearest neighbors of x is pooled using
Dempster’s rule of combination:

m =
⊕

xi∈Nk (x)

mi .

Function α(·) can be fixed heuristically or selected among a
family {αθ|θ ∈ Θ} using, e.g., cross-validation.
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Discounting Example: evidential k nearest neighbor rule

Performance comparison (UCI database)

Sonar data
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Discounting Example: evidential k nearest neighbor rule

Partially supervised data

We now consider a learning set of the form

L = {(xi ,mi ), i = 1, . . . ,n}

where
xi is the attribute vector for instance i , and
mi is a mass function representing uncertain expert knowledge
about the class yi of instance i .

Special cases:
mi ({ωk}) = 1 for all i : supervised learning;
mi (Ω) = 1 for all i : unsupervised learning;
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Discounting Example: evidential k nearest neighbor rule

Evidential k -NN rule for partially supervised data

Each instance (xi ,mi ), with xi ∈ Nk (x), is an item of evidence
regarding y , which gives us a mass function mi .
The reliability of this piece of evidence decreases with the
distance di between x and xi .
Consequently, mi is discounted with a discount rate α(di ).
The k discounted mass functions are combined using
Dempster’s rule:

m =
⊕

xi∈Nk (x)

α(di )mi .
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Discounting Example: evidential k nearest neighbor rule

Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes),
50 % negative (delta waves), 5 experts.
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Discounting Example: evidential k nearest neighbor rule

Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
For each learning instance xi , the expert opinions were modeled
as a mass function mi .
n = 200 learning patterns, 300 test patterns

k k -NN w k -NN Ev. k -NN Ev. k -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Discounting Contextual discounting
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Discounting Contextual discounting

Generalization: Contextual Discounting
Formalization

A more general model allowing us to take into account richer
meta-information about the source.
Let Θ = {θ1, . . . , θL} be a partition of Ω, representing different
contexts.
Let mR(·|θk ) denote the mass function on R quantifying our
belief in the reliability of source S, when we know that the actual
value of X is in θk .
We assume that:

mR({R}|θk ) = 1− αk , mR({NR}|θk ) = αk .

for eack k ∈ {1, . . . ,L}.
Let α = (α1, . . . , αL).
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Discounting Contextual discounting

Contextual Discounting
Example

Let us consider a simplified aerial target recognition problem, in
which we have three classes: airplane (ω1 ≡ a), helicopter
(ω2 ≡ h) and rocket (ω3 ≡ r ).
Let Ω = {a,h, r}.
The sensor provides the following mass function: mΩ

S ({a}) = 0.5,
mΩ

S ({r}) = 0.5.
We assume that

The probability that the source is reliable when the target is an
airplane is equal to 1− α1 = 0.4;
The probability that the source is reliable when the target is either a
helicopter, or a rocket is equal to 1− α2 = 0.9.

We have Θ = {θ1, θ2}, with θ1 = {a}, θ2 = {h, r}, and
α = (0.6,0.1).
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Discounting Contextual discounting

Contextual Discounting
Solution

Solution:

αmΩ =

(
L⊕

k=1

mR(·|θk )⇑Ω×R ⊕mΩ(·|R)⇑Ω×R

)↓Ω
.

Result:
αmΩ = mΩ

S ∪©mΩ
1 ∪© . . . ∪©mΩ

L

with mΩ
k (θk ) = αk and mΩ

k (∅) = 1− αk .
Standard discounting is recovered as a special case when
Θ = {Ω}.
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Discounting Contextual discounting

Contextual Discounting
Example (continued)

The discounted mass function can be obtained by combining
disjunctively 3 mass functions:

mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5;
mΩ

1 ({a}) = 0.6, mΩ
1 (∅) = 0.4;

mΩ
1 ({h, r}) = 0.1, mΩ

1 (∅) = 0.9.

Result:
A h a r h,a h, r a, r Ω

mΩ
S (A) 0 0.5 0.5 0 0 0 0

αmΩ(A) 0 0.45 0.18 0 0.02 0.27 0.08
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Fitting mass functions to data General approach
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Fitting mass functions to data General approach

Fitting mass functions to data

In some cases, we have n objects described by data
D = {d1, . . . ,dn} and we want to find n mass functions
M = {m1, . . . ,mn} that fit the data in some way.
The mass functions can then be found by minimizing a cost
function C(M,D) with respect to M.
Example: evidential clustering.
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Fitting mass functions to data General approach

Clustering

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data).

Goal: find a meaningful structure in the
data set, usually a partition into c crisp
or fuzzy subsets.
Belief functions may allow us to express
richer information about the data
structure.
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Fitting mass functions to data General approach

Different partition concepts

Hard partition: each object belongs to one and only one group.
Group membership is expressed by binary variables uik such that
uik = 1 if object i belongs to group k and uik = 0 otherwise.
Fuzzy partition: each object has a degree of membership
uik ∈ [0,1] to each group, with

∑c
k=1 uik = 1. The membership

degrees (ui1, . . . ,uic) define a probability distribution over the set
Ω of groups.
Credal partition: the group membership of each object is
described by a mass function mi over Ω.
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Fitting mass functions to data General approach

Credal partition
Example

A m1(A) m2(A) m3(A) m4(A) m5(A)
∅ 0 0 0 0 0
{ω1} 0 0 0 0.2 0
{ω2} 0 1 0 0.4 0
{ω1, ω2} 0.7 0 0 0 0
{ω3} 0 0 0.2 0.4 0
{ω1, ω3} 0 0 0.5 0 0
{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1

Hard and fuzzy partitions are recovered as special cases when all
mass functions are certain or Bayesian, respectively.
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Fitting mass functions to data General approach

Algorithms

EVCLUS (Denoeux and Masson, 2004):
Proximity (possibly non metric) data,
Multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data,
HCM, FCM family (alternate optimization of a cost function).

Relational Evidential c-means (RECM): (Masson and Denoeux,
2009): ECM for proximity data.
Constrained Evidential c-means (CECM) (Antoine et al., 2011):
ECM with pairwise constraints.
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Fitting mass functions to data Evidential c-means
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Fitting mass functions to data Evidential c-means

Principle

Problem: generate a credal partition M = (m1, . . . ,mn) from
attribute data X = (x1, ...,xn), xi ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each class represented by a prototype;
Alternate optimization of a cost function with respect to the
prototypes and to the credal partition.
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Fitting mass functions to data Evidential c-means

Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβik d2
ik

with dik = ||xi − vk || under the constraints
∑

k uik = 1, ∀i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβik xi∑n

i=1 uβik
∀k = 1, . . . , c,

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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Fitting mass functions to data Evidential c-means

ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each class ωk represented by a prototype vk .
Each non empty set of classes Aj represented
by a prototype v̄j defined as the center of mass
of the vk for all ωk ∈ Aj .
Basic ideas:

For each non empty Aj ∈ Ω, mij = mi (Aj )
should be high if xi is close to v̄j .
The distance to the empty set is defined as a
fixed value δ.
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Fitting mass functions to data Evidential c-means

ECM algorithm
Objective criterion

Criterion to be minimized:

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d2

ij +
n∑

i=1

δ2mβ
i∅,

Parameters:
α controls the specificity of mass functions;
β controls the hardness of the evidential partition;
δ controls the amount of data considered as outliers.

JECM(M,V ) can be iteratively minimized with respect to M and V
using an alternate optimization scheme.
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Fitting mass functions to data Evidential c-means

Butterfly dataset
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Fitting mass functions to data Evidential c-means

4-class data set
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Fitting mass functions to data Evidential c-means

4-class data set
Hard credal partition
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Fitting mass functions to data Evidential c-means

4-class data set
Lower approximation
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Fitting mass functions to data Evidential c-means

4-class data set
Upper approximation
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Using the likelihood function Principle
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Using the likelihood function Principle

The problem

We consider a statistical model {f (x , θ), x ∈ X , θ ∈ Θ}, where X
is the sample space and Θ the parameter space.
Having observed x , how to quantify the uncertainty about Θ,
without specifying a prior probability distribution?
Example:

We have observed 3 white balls out of 10 drawings from an urn
with replacement. What does this observation tell us about the
proportion θ of white balls?
In that case, X = {0, . . . , 10}, Θ = [0, 1] and
f (x , θ) = Cx

nθ
x (1− θ)n−x .

Two solutions using belief functions:
1 Dempster’s solution based an auxiliary variable with a pivotal

probability distribution (Dempster, 1967);
2 Likelihood-based approach (Shafer, 1976).
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Using the likelihood function Principle

Likelihood-based belief function
Requirements

1 Likelihood principle: BelΘ(·; x) should be based only on the
likelihood function L(θ; x) = f (x ; θ).

2 Compatibility with Bayesian inference: when a Bayesian prior P0
is available, combining it with BelΘ(·, x) using Dempster’s rule
should yield the Bayesian posterior:

BelΘ(·, x)⊕ P0 = P(·|x).

3 Least commitment principle: among all the belief functions
satisfying the previous two requirements, BelΘ(·, x) should be the
least committed (least informative).
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Using the likelihood function Principle

Likelihood-based belief function
Solution

From Requirements 1 and 2, the contour function of BelΘ(·; x)
should be proportional to L(θ; x):

pl(θ; x) = cL(θ; x)

for some c > 0 depending only on the likelihood function L(θ; x).
From Requirement 3 with vq as informational ordering, the
unique solution is the consonant belief function BelΘ(·; x) with
contour function equal to the normalized likelihood:

pl(θ; x) =
L(θ; x)

supθ′∈Θ L(θ′; x)
,

The corresponding plausibility function is:

PlΘ(A; x) = sup
θ∈A

pl(θ; x) =
supθ∈A L(θ; x)

supθ∈Θ L(θ; x)
, ∀A ⊆ Θ.
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Using the likelihood function Principle

Example: Binomial sample
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Using the likelihood function Principle

Discussion

The likelihood-based method is much simpler to implement than
Dempster’s method, even for complex models.
By construction, it boils down to Bayesian inference when a
Bayesian prior is available.
It is compatible with usual likelihood-based inference:

Assume that θ = (θ1, θ2) ∈ Θ1 ×Θ2 and θ2 is a nuisance
parameter. The marginal contour function on Θ1

pl(θ1; x) = sup
θ2∈Θ2

pl(θ1, θ2; x) =
supθ2∈Θ2

L(θ1, θ2; x)

sup(θ1,θ2)∈Θ L(θ1, θ2; x)

is the relative profile likelihood function.
Let H0 ⊂ Θ be a composite hypothesis. Its plausibility

Pl(H0; x) =
supθ∈H0

L(θ; x)

supθ∈Θ L(θ; x)
.

is the usual likelihood ratio statistics Λ(x).
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Using the likelihood function Handling low-quality data
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Using the likelihood function Handling low-quality data

Motivation

Classical statistical procedures address idealized situations
where the data are precisely observed and can be considered as
being drawn from a well defined population described by some
parameter of interest θ.
There are situations, however, where this simple model does not
apply.
For instance, some of data may collected from a population that
is only known to “resemble” the population of interest (because,
e.g., there were collected at different times or places)→ partially
relevant data.

Thierry Denœux Methods for building belief functions 65/ 71



Using the likelihood function Handling low-quality data

Problem statement

Assume that we are interested in a parameter θ ∈ Θ related to a
certain population and we observe a random variable X with
probability density or mass function f (x ; θ′), where θ′ ∈ Θ is a
parameter believed to be “close” to θ.
For instance, θ might be the death rate in some hospital, and X
the number of deaths in a neighboring hospital.
Having observed X = x , our belief about θ′ is represented by the
contour function

pl ′(θ′; x) =
L(θ′; x)

supθ′ L(θ′; x)
.

What does x tell us about θ?
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Using the likelihood function Handling low-quality data

Solution

Assume that the statement “θ′ is close to θ” can be formalized as
d(θ, θ′) ≤ δ, where d is a distance measure defined on Θ and δ
is a known constant.
This piece of information can be modeled by a logical belief
function with focal set Sδ = {(θ, θ′)|d(θ, θ′) ≤ δ} ⊂ Θ2.
Combining it with pl ′(θ′; x) using Dempster’s rule yields a
consonant belief function on Θ×Θ′, with contour function

pl(θ, θ′; x) = pl ′(θ′; x)1Sδ
(θ, θ′).

Marginalizing out θ′ yields:

pl(θ; x) = sup
θ′

pl(θ, θ′; x) = sup
θ′∈Bδ(θ)

pl ′(θ′; x),

where Bδ(θ) = {θ′ ∈ Θ|d(θ, θ′) ≤ δ}.
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Using the likelihood function Handling low-quality data

Example

Assume we have observed 3 white balls out of 10 drawings with
replacement from an urn with a proportion θ′ of white balls. We are
interested in the proportion θ of white balls in another urn. We know
that |θ − θ′| ≤ δ. What do we know about θ?
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Using the likelihood function Handling low-quality data

Summary

Developing pratical applications using the Dempster-Shafer
framework requires modeling expert knowledge and statistical
information using belief functions.
Systematic and principled methods now exist:

Least-commitment principle;
GBT ;
Discounting;
Likelihood-based belief functions;
etc.

Specific methods will be studied in following lectures
(classification, etc.).
More research on expert knowledge elicitation and statistical
inference is needed.
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