Methods for building belief functions

Thierry Denœux

Université de Technologie de Compiègne, France HEUDIASYC (UMR CNRS 7253) https://www.hds.utc.fr/~tdenoeux

Third School on belief functions and their applications, Stella Plage, France, September 28, 2015

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Building belief functions

- The basic theory tells us how to reason and compute with belief functions, but it does not tell us where belief functions come from
- We need methods for modeling evidence from
 - expert opinions or
 - statistical information
- In this lecture, we will review some general methods and give some practical examples

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures

2 Statistical estimation and prediction

- Motivation
- Likelihood-based belief function
- Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Least Commitment Principle Definition

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected

General approach

Express partial information (provided, e.g., by an expert) as a set of constraints on an unknown mass function

- Find the least-committed mass function (according to some) informational ordering), compatible with the constraints
- Examples of partial information

Conditional mass function

Example 1: LC mass function with given contour function

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

Example 1: LC mass function with given contour function

LC mass function with given contour function Problem statement

- Assume we ask an expert for the plausibility $\pi(\omega)$ of each $\omega \in \Omega$
- We get a function $\pi : \Omega \to [0, 1]$. We assume that $\max_{\omega \in \Omega} \pi(\omega) = 1$
- Let $\mathcal{M}(\pi)$ be the set of mass functions *m* such that $pl = \pi$
- What is the least committed mass function in $\mathcal{M}(\pi)$?

Example 1: LC mass function with given contour function

LC mass function with given contour function

- Taking \sqsubseteq_q as the informational ordering, the least committed element in $\mathcal{M}(\pi)$ is the consonant mass function whose contour function is π
- Its plausibility and commonality functions are defined as

$$PI(A) = \max_{\omega \in A} \pi(\omega), \quad Q(A) = \min_{\omega \in A} \pi(\omega)$$

for all $A \subseteq \Omega$, $A \neq \emptyset$

Statistical estimation and prediction

Example: linear regression

Example 1: LC mass function with given contour function

LC mass function with given contour function

Recovering the mass function

• Let $1 = \pi_{(1)} \ge \pi_{(2)} \ge \ldots \ge \pi_{(K)}$ be the ordered values of π ; $\omega_{(1)}, \ldots, \omega_{(K)}$ the elements of Ω in the corresponding order, and $A_{(k)} = \{\omega_{(1)}, \ldots, \omega_{(k)}\}$

$$m(A_{(k)}) = \pi_{(k)} - \pi_{(k+1)}$$

for
$$k = 1, \dots, K - 1$$
 and $m(\Omega) = \pi_{(K)}$

• Source: $\Theta = [0, 1]$, *P*= Lebesgue measure, $\Gamma(\theta) = A_{(k)}$ if $\theta \in [\pi_{(k+1)}, \pi_{(k)}]$

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Deconditioning and the GBT

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

Deconditioning and the GBT

Deconditioning

Example: linear regression

- Let m₀ be a mass function on Ω expressing our beliefs about X in a context where we know that X ∈ B
- We want to build a mass function *m* verifying the constraint *m*(·|*B*) = *m*₀
- Any *m* built from m_0 by transferring each mass $m_0(A)$ to $A \cup C$ for some $C \subseteq \overline{B}$ satisfies the constraint

• s-least committed solution: transfer $m_0(A)$ to the largest such set, which is $A \cup \overline{B}$

$$m(D) = \begin{cases} m_0(A) & \text{if } D = A \cup \overline{B} \text{ for some } A \subseteq B \\ 0 & \text{otherwise} \end{cases}$$

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Statistical estimation and prediction

Example: linear regression

Deconditioning and the GBT

Deconditioning

Conditional embedding

- More complex situation: two frames Ω_X and Ω_Y
- Let m₀^X be a mass function on Ω_X expressing our beliefs about X in a context where we know that Y ∈ B for some B ⊆ Ω_Y
- We want to find m^{XY} such that $\left(m^{XY}\oplus (m^Y_B)^{\uparrow XY}
 ight)^{\downarrow X}=m^X_0$
- s-least committed solution: transfer $m_0^X(A)$ to $(A \times \Omega_Y) \cup (\Omega_X \times \overline{B})$
- Notation $m^{XY} = (m_0^X)^{\text{tr}XY}$ (conditional embedding)

Deconditioning and the GBT

Statistical estimation and prediction

Example: linear regression

Generalized Bayes Theorem

Problem statement

- Two variables $X \in \Omega$ et $\theta \in \Theta = \{\theta_1, \dots, \theta_K\}$
- Typically
 - X is observed (sensor measurement)
 - θ is not observed (class, unknown parameter)
- Partial knowledge of X given each $\theta = \theta_k$

$$m^{\Omega}(\cdot| heta_k), \quad k=1,\ldots,K$$

- Prior knowledge about θ : $m_0^{\Theta}(\Theta)$ (may be vacuous)
- We observe $X \in A$
- Belief function on Θ?

Deconditioning and the GBT

Statistical estimation and prediction

Example: linear regression

Generalized Bayes Theorem

• Solution:

$$m^{\Theta}(\cdot|A) = \left(\bigoplus_{k=1}^{\kappa} m^{\Omega}(\cdot|\theta_k)^{\uparrow\Omega\times\Theta} \oplus m_A^{\Omega\uparrow\Omega\times\Theta} \oplus m_0^{\Theta\uparrow\Omega\times\Theta}\right)^{\downarrow\Theta}$$

Expression

$$m^{\Theta}(\cdot|A) = \bigoplus_{k=1}^{K} \overline{\{\theta_k\}}^{p^{\Omega}(A|\theta_k)} \oplus m_0^{\Theta}$$

where $\overline{\{\theta_k\}}^{p^{l^{\Omega}}(A|\theta_k)}$ is the simple mass function that assigns the mass $1 - pl^{\Omega}(A|\theta_k)$ to $\overline{\{\theta_k\}}$ and $pl^{\Omega}(A|\theta_k)$ to Θ

▲口▶▲圖▶▲臣▶▲臣▶ 王昌 외숙()

Deconditioning and the GBT

Generalized Bayes Theorem

- Property 1: Bayes' theorem is recovered as a special case when the conditional mass functions m^Ω(·|θ_k) and m^Θ₀ are Bayesian
- Property 2: If X and Y are cognitively independent conditionally on θ, i.e.,

$$pl^{XY}(A \times B|\theta_k) = pl^X(A|\theta_k) \cdot pl^Y(B|\theta_k)$$

for all $A \subseteq \Omega_X$, $B \subseteq \Omega_Y$ and $\theta_k \in \Theta$, then

$$m^{\Theta}(\cdot|X \in A, Y \in B) = m^{\Theta}(\cdot|X \in A) \oplus m^{\Theta}(\cdot|Y \in B)$$

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Uncertainty measures

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
 Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Uncertainty measures

Uncertainty measures **Motivation**

- In some cases, the least committed mass function compatible with some constraints does not exist, or cannot be found, for any informational ordering
- An alternative approach is then to maximize a measure of uncertainty, i.e., find the most uncertain mass function satisfying some constraints
- Many uncertainty measures have been proposed, some of which generalize the Shannon entropy. They can be classified in three categories

Measures of imprecision

- Measures of conflict
- Measures of total uncertainty

Uncertainty measures

Measures of imprecision

 Idea: imprecision is higher when masses are assigned to larger focal sets

$$I(m) = \sum_{\emptyset \neq A \subseteq \Omega} m(A) f(|A|)$$

with f = Id (expected cardinality), f(x) = -1/x (opposite of Yager's specificity), $f = \log_2$ (nonspecificy)

- Nonspecificity N(m) generalizes the Hartley function for set (H(A) = log₂(|A|)) are was shown by Ramer (1987) to be the unique measure verifying some axiomatic requirements such as
 - Additivity for non-interactive mass functions: $N(m^{\Omega \times \Theta}) = N(m^{\Omega}) + N(m^{\Theta})$
 - Subadditivity for interactive mass functions: $N(m^{\Omega \times \Theta}) \le N(m^{\Omega}) + N(m^{\Theta})$
 - ...
- Nonspecificity is minimal for Bayesian mass function: we need to measure another dimension of uncertainty

Measures of conflict

- Idea: should be higher when masses are assigned to disjoint (or non nested) focal sets
- Example: dissonance (Yager, 1983) is defined as

$$E(m) = -\sum_{A \subseteq \Omega} m(A) \log_2 PI(A) = -\sum_{A \subseteq \Omega} m(A) \log_2 (1 - K(A))$$

where $K(A) = \sum_{B \cap A = \emptyset} m(B)$ can be interpreted as measuring the degree to which the evidence conflicts with focal set *A*

• Replacing K(A) by

$$CON(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \setminus B|}{|A|},$$

we get another conflict measure, called strife (Klir and Yuan, 1993)

Both dissonance and strife generalize the Shannon entropy

Uncertainty measures

Measures of total uncertainty (1/2)

- Measure the degree of uncertainty of a belief function, taking into account the two dimensions of imprecision and conflict
- Composite measures, e.g.,
 - N(m) + S(m)
 - Total uncertainty (Pal et al., 1993)

$$H(m) = -\sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 \frac{|A|}{m(A)} = N(m) - \sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2 m(A)$$

Agregate uncertainty

$$AU(m) = \max_{p \in \mathcal{P}(m)} \left(-\sum_{\omega \in \Omega} p(\omega) \log_2 p(\omega) \right)$$

where $\mathcal{P}(m)$ is the credal set of m

Measures of total uncertainty (2/2)

- Other idea: transform *m* into a probability distribution and compute the corresponding Shannon entropy
- Example: the pignistic probability distribution is defined by

$$p_m(\omega) = \sum_{A \subseteq \Omega: \omega \in A} \frac{m(A)}{|A|}$$

for all $\omega \in \Omega$

• Corresponding uncertainty measure

$$EP(m) = -\sum_{\omega \in \Omega} p_m(\omega) \log_2 p_m(\omega)$$

• As other total uncertainty measures, *EP*(*m*) extends both the Hartley measure and the Shannon entropy

Uncertainty measures

Application of uncertainty measures

- Assume we are given (e.g., by an expert) some constraints that an unknown mass function *m* should satisfy, e.g., *Pl*(*A_i*) = α_i, *Bel*(*A_i*) ≥ β_j, etc.
- A minimally committed mass function can be found by maximizing some uncertainty measure *U*(*m*), under the given constraints
- With U(m) = N(m) and linear constraints of the form Bel(A_i) ≥ β_j, Bel(A_i) ≤ β_j or Bel(A_i) = β_j, we have a linear optimization problem, but the solution is generally not unique
- With other measures and arbitrary constraints, we have a non linear optimization problem

▲口▶▲圖▶▲臣▶▲臣▶ 王昌 외숙()

Combination under unknown dependence (1/2)

- Consider two sources (S₁, P₁, Γ₁) and (S₂, P₂, Γ₂) generating mass functions m₁ and m₂
- Let P_{12} on $S_1 \times S_2$ be a joint probability measure with marginals P_1 and P_2
- Let A_1, \ldots, A_r denote the focal sets of m_1, B_1, \ldots, B_s the focal sets of $m_2, p_i = m_1(A_i), q_j = m_2(B_j)$, and

$$p_{ij} = P_{12}(\{(s_1, s_2) \in S_1 \times S_2 | \Gamma_1(s_1) = A_i, \Gamma_2(s_2) = B_j\})$$

 Assuming both sources to be reliable, the combined mass function *m* has the following expression

$$m(A)=\sum_{A_i\cap B_j=A}p_{ij}^*,$$

for all $A \subseteq \Omega$, $A \neq \emptyset$, with $p_{ij}^* = p_{ij}/(1 - \kappa)$, $\kappa =$ degree of conflict

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Combination under unknown dependence (2/2)

- When the dependence between the two sources is unknown, the *p_{ij}*'s are unknown
- Maximizing the Shannon entropy yields Dempster's rule
- The least specific combined mass function can be found by solving the following linear optimization problem:

$$\max_{p_{ij}^*} \sum_{\{(i,j) | \mathbf{A}_i \cap \mathbf{B}_i \neq \emptyset\}} p_{ij}^* \log_2 |\mathbf{A}_i \cap \mathbf{B}_j|$$

under the constraints $\sum_{i,j} p_{ij}^* = 1$ and

K

$$\sum_{i} p_{ij}^{*} = q_{j}, \quad j = 1, \dots, s$$
$$\sum_{j} p_{ij}^{*} = p_{i}, \quad i = 1, \dots, r$$
$$p_{ij}^{*} = 0 \text{ for all } (i, j) \text{ s.t. } A_{i} \cap B_{j} = \emptyset$$

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures

Statistical estimation and prediction Motivation

- Likelihood-based belief function
- Prodictive ballof function
- Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

Estimation vs. prediction

- Consider an urn with an unknown proportion θ of black balls
- Assume that we have drawn *n* balls with replacement from the urn, *y* of which were black
- Problems
 - **What can we say about** θ ? (estimation)
 - What can we say about the color Z of the next ball to be drawn from the urn? (prediction)
- Classical approaches
 - Frequentist: gives an answer that is correct most the time (over infinitely many replications of the random experiment)
 - Bayesian: assumes prior knowledge on θ and computes a posterior predictive probabilities f(θ|y) and P(black|y)

Criticism of the frequentist approach

- The frequentist approach makes a statement that is correct, say, for 95% of the samples
- However, 95% is not a correct measure of the confidence in the statement for a particular sample
- Example:
 - Let the prediction be {*black*, *white*} with probability 0.95 and ∅ with probability 0.05 (irrespective of the data). This is a 95% prediction set.
 - This prediction is either know for sure to be true, or known for sure to be false.
- Also, the frequentist approach does not allow us to easily
 - Use additional information on θ , if it is available
 - · Combine predictions from several sources/agents

Criticism of the Bayesian approach

- In the Bayesian approach, y, z and θ are seen as random variables
- Estimation: compute the posterior pdf of θ given y

 $f(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)f(\theta)$

where $f(\theta)$ is the prior pdf on θ

• Prediction: compute the predictive posterior distribution

$$p(z|y) = \int p(z|\theta) f(\theta|y) d\theta$$

• We need the prior $f(\theta)$!

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Statistical estimation and prediction

Motivation

Main ideas

- None of the classical approaches to prediction (frequentist and Bayesian) is conceptually satisfactory
- Proposal of a new approach based on belief functions
- The new approach boils down to Bayesian prediction when a probabilistic prior is available, but it does not require the user to provide such a prior
- Application: linear Regression

Outline of the new approach (1/2)

- Let us come back to the urn example
- Let $Z \sim \mathcal{B}(\theta)$ be defined as

$$Z = \begin{cases} 1 & \text{if next ball is black} \\ 0 & \text{otherwise} \end{cases}$$

 We can write Z as a function of θ and a pivotal variable W ~ U([0, 1]),

$$egin{aligned} Z &= egin{cases} 1 & ext{if } m{W} \leq heta \ 0 & ext{otherwise} \ &= arphi(heta, m{W}) \end{aligned}$$

Outline of the new approach (2/2)

The equality

$$Z = \varphi(\theta, W)$$

allows us to separate the two sources of uncertainty on Z

uncertainty on W (random/aleatory uncertainty)

- 2 uncertainty on θ (epistemic uncertainty)
- Two-step method:

1 Represent uncertainty on θ using a likelihood-based belief function Bel_{v}^{Θ} constructed from the observed data y (estimation problem) 2 Combine Bel_{v}^{Θ} with the probability distribution of W to obtain a

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures

2 Statistical estimation and prediction

- Motivation
- Likelihood-based belief function
- Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

Statistical estimation and prediction

Example: linear regression

Likelihood-based belief function

Parameter estimation

- Let *y* ∈ 𝔅 denote the observed data and *f*_θ(*y*) the probability mass or density function describing the data-generating mechanism, where θ ∈ Θ is an unknown parameter
- Having observed *y*, how to quantify the uncertainty about Θ, without specifying a prior probability distribution?
- Likelihood-based solution (Shafer, 1976; Wasserman, 1990; Denœux, 2014)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Likelihood-based belief function

Let Bel_{y}^{Θ} be a belief function representing our knowledge about θ after observing **y**. We impose the following requirements:

• Likelihood principle: Bel_y^{Θ} should be based only on the likelihood function

 $\theta \to L_{\boldsymbol{y}}(\theta) = f_{\theta}(\boldsymbol{y})$

Compatibility with Bayesian inference: when a Bayesian prior P₀ is available, combining it with Bel^O_y using Dempster's rule should yield the Bayesian posterior:

$$Bel_{\boldsymbol{y}}^{\boldsymbol{\Theta}} \oplus P_0 = P(\cdot | \boldsymbol{y})$$

Principle of minimal commitment: among all the belief functions satisfying the previous two requirements, Bel^O_y should be the least committed (least informative)

Likelihood-based belief function

Likelihood-based belief function Solution (Denœux, 2014)

Bel[⊖]_y is the consonant belief function induced by the relative likelihood function

$$pl_{m{y}}(m{ heta}) = rac{L_{m{y}}(m{ heta})}{L_{m{y}}(\widehat{m{ heta}})}$$

where $\widehat{\theta}$ is a MLE of θ , and it is assumed that $L_{\mathbf{y}}(\widehat{\theta}) < +\infty$

Corresponding plausibility function

$$Pl_{\mathbf{y}}^{\Theta}(H) = \sup_{\theta \in H} pl_{\mathbf{y}}(\theta), \quad \forall H \subseteq \Theta$$

Source

• Corresponding random set:

$$\Gamma_{\mathbf{y}}(\mathbf{s}) = \left\{ \mathbf{ heta} \in \Theta | rac{L_{\mathbf{y}}(\mathbf{ heta})}{L_{\mathbf{y}}(\widehat{\mathbf{ heta}})} \geq \mathbf{s}
ight\}$$

 If Θ ⊆ ℝ and if L_y(θ) is unimodal and upper-semicontinuous, then Bel^Θ_y corresponds to a random closed interval

▶ ∢ ⊒

Binomial example

In the urn model, $Y \sim \mathcal{B}(n, \theta)$ and

$$pl_{y}(\theta) = \frac{\theta^{y}(1-\theta)^{n-y}}{\widehat{\theta}^{y}(1-\widehat{\theta})^{n-y}} = \left(\frac{\theta}{\widehat{\theta}}\right)^{n\widehat{\theta}} \left(\frac{1-\theta}{1-\widehat{\theta}}\right)^{n(1-\widehat{\theta})}$$

for all $\theta \in \Theta = [0, 1]$, where $\widehat{\theta} = y/n$ is the MLE of θ .

→ E ► < E ►</p>

Asymptotic consistency

- $\mathbf{Y} = (Y_1, \dots, Y_n)$ iid from $f_{\theta}(\mathbf{y}), \theta_0 =$ true value
- Let $B_{\delta}(\theta_0) = \{ \theta \in \Theta | \| \theta \theta_0 \| \le \delta \}$ be a ball centered on θ_0 , with radius δ

• Under mild assumptions, for all $\delta > 0$,

 $\textit{Bel}^{\Theta}_{m{Y}}(\textit{B}_{\delta}(\pmb{ heta}_{0})) \stackrel{\textit{a.s.}}{\longrightarrow} 1$

Predictive belief function

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures

2 Statistical estimation and prediction

- Motivation
- Likelihood-based belief function
- Predictive belief function
- B) Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

Predictive belief function

Prediction problem

- Observed (past) data: \boldsymbol{y} from $\boldsymbol{Y} \sim f_{\boldsymbol{\theta}}(\boldsymbol{y})$
- Future data: $Z|\mathbf{y} \sim F_{\theta,\mathbf{y}}(z)$ (real random variable)
- Problem: quantify the uncertainty of Z using a predictive belief function

▲口▶▲圖▶▲臣▶▲臣▶ 王昌 외숙()

Predictive belief function

We can always write Z as a function of θ and W as

 $Z = F_{\theta, y}^{-1}(W) = \varphi_y(\theta, W)$

where $W \sim \mathcal{U}([0,1])$ and $F_{\theta,y}^{-1}$ is the generalized inverse of $F_{\theta,y}$,

$$F_{\theta,\mathbf{y}}^{-1}(W) = \inf\{z|F_{\theta,\mathbf{y}}(z) \geq W\}$$

Predictive belief function

Main result

After combination by Dempster's rule and marginalization on \mathbb{Z} , we obtain the predictive BF on Z induced by the multi-valued mapping

 $(\boldsymbol{s}, \boldsymbol{w}) \rightarrow \varphi_{\boldsymbol{y}}(\Gamma_{\boldsymbol{y}}(\boldsymbol{s}), \boldsymbol{w}).$

with (s, w) uniformly distributed in $[0, 1]^2$

Statistical estimation and prediction

Example: linear regression

Predictive belief function

Graphical representation

<ロ> < 四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Predictive belief function

Practical computation

- Analytical expression when possible (simple cases), or
- Monte Carlo simulation:

• Draw *N* pairs (s_i, w_i) independently from a uniform distribution • compute (or approximate) the focal sets $\varphi_y(\Gamma_y(s_i), w_i)$

 The predictive belief and plausibility of any subset A ⊆ Z are then estimated by

$$\begin{split} \widehat{Bel}_{\boldsymbol{y}}^{\mathbb{Z}}(\boldsymbol{A}) &= \frac{1}{N} \#\{i \in \{1, \dots, N\} | \varphi_{\boldsymbol{y}}(\Gamma_{\boldsymbol{y}}(\boldsymbol{s}_i), w_i) \subseteq \boldsymbol{A}\} \\ \widehat{Pl}_{\boldsymbol{y}}^{\mathbb{Z}}(\boldsymbol{A}) &= \frac{1}{N} \#\{i \in \{1, \dots, N\} | \varphi_{\boldsymbol{y}}(\Gamma_{\boldsymbol{y}}(\boldsymbol{s}_i), w_i) \cap \boldsymbol{A} \neq \emptyset\} \end{split}$$

Predictive belief function

Example: the urn model

• Here, $Y \sim \mathcal{B}(n, \theta)$. The likelihood-based BF is induced by a random interval

$$\Gamma(s) = \{\theta : \rho l_y(\theta) \ge s\} = [\underline{\theta}(s), \overline{\theta}(s)]$$

We have

$$Z = arphi(heta, W) = egin{cases} 1 & ext{if } W \leq heta \ 0 & ext{otherwise} \end{cases}$$

Consequently,

$$\varphi\left(\Gamma(\boldsymbol{s}), \boldsymbol{W}\right) = \varphi\left(\left[\underline{\boldsymbol{\theta}}(\boldsymbol{s}), \overline{\boldsymbol{\theta}}(\boldsymbol{s})\right], \boldsymbol{W}\right) = \begin{cases} \{1\} & \text{if } \boldsymbol{W} \leq \underline{\boldsymbol{\theta}}(\boldsymbol{s}) \\ \{0\} & \text{if } \overline{\boldsymbol{\theta}}(\boldsymbol{s}) < \boldsymbol{W} \\ \{0, 1\} & \text{otherwise} \end{cases}$$

Statistical estimation and prediction

Example: linear regression

Predictive belief function

Example: the urn model Analytical formula

We have

$$m_{y}^{\mathbb{Z}}(\{1\}) = \mathbb{P}(\varphi(\Gamma(s), W) = \{1\}) = \hat{\theta} - \frac{\underline{B}(\hat{\theta}; y+1, n-y+1)}{\hat{\theta}^{y}(1-\hat{\theta})^{n-y}}$$
$$m_{y}^{\mathbb{Z}}(\{0\}) = \mathbb{P}(\varphi(\Gamma(s), W) = \{0\}) = 1 - \hat{\theta} - \frac{\underline{B}(1-\hat{\theta}; n-y+1, y+1)}{\hat{\theta}_{j}^{y}(1-\hat{\theta})^{n-y}}$$

$$m_y^{\mathbb{Z}}(\{0,1\}) = 1 - m_y^{\mathbb{Z}}(\{0\}) - m_y^{\mathbb{Z}}(\{1\})$$

where $\underline{B}(z; a, b) = \int_0^z t^{a-1} (1-t)^{b-1} dt$ is the incomplete beta function

<日> < 団> < 団> < 団> < 団> < 団> < 団> < 団</p>

Statistical estimation and prediction

Example: linear regression

Predictive belief function

Example: the urn model

Geometric representation

Statistical estimation and prediction

Example: linear regression

Predictive belief function

Example: the urn model Belief/plausibility intervals

●●● 単則 《田》《田》《日》

Consistency

Predictive belief function

• Here, it is easy to show that

$$m_y^{\mathbb{Z}}(\{1\}) \xrightarrow{P} heta_0$$
 and $m_y^{\mathbb{Z}}(\{0\}) \xrightarrow{P} 1 - heta_0$

as $n \to \infty$, i.e., the predictive belief function converges to the true distribution of *Z*

• When the predictive belief function is induced by a random interval $[\underline{Z}, \overline{Z}]$, we can show that, under mild conditions,

$$\underline{Z} \xrightarrow{d} Z$$
 and $\overline{Z} \xrightarrow{d} Z$

• The consistency remains to be proved in the general case

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function
- 3 Example: linear regression
 - Estimation and prediction
 - Example
 - Uncertain inputs

We consider the following standard regression model

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

where

- $\mathbf{y} = (y_1, \dots, y_n)'$ is the vector of *n* observations of the dependent variable
- X is the fixed design matrix of size $n \times (p + 1)$
- $\epsilon = (\epsilon_1, \dots, \epsilon_n)' \sim \mathcal{N}(\mathbf{0}, I_n)$ is the vector of errors
- The vector of coefficients is $\theta = (\beta', \sigma)'$.

Likelihood-based belief function

The likelihood function for this model is

$$L_{\mathbf{y}}(\boldsymbol{\theta}) = (2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta})'(\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta})\right]$$

• The contour function can thus be readily calculated as

$$pl_{\mathbf{y}}(\mathbf{ heta}) = rac{L_{\mathbf{y}}(\mathbf{ heta})}{L_{\mathbf{y}}(\widehat{\mathbf{ heta}})}$$

with $\widehat{\boldsymbol{\theta}} = (\widehat{\boldsymbol{\beta}}', \widehat{\sigma})'$, where

- $\widehat{\beta} = (X'X)^{-1}X'y$ is the ordinary least squares estimate of β
- $\widehat{\sigma}$ is the standard deviation of residuals

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Plausibility of linear hypotheses

- Assertions (hypotheses) *H* of the form *A*β = *q*, where *A* is a *r* × (*p* + 1) constant matrix and *q* is a constant vector of length *r*, for some *r* ≤ *p* + 1
- Special cases: $\{\beta_j = 0\}, \{\beta_j = 0, \forall j \in \{1, ..., p\}\}$, or $\{\beta_j = \beta_k\}$, etc.
- The plausibility of H is

$${{\it Pl}^{\Theta}_{m{y}}({\it H})}=\sup_{{\it A}eta=m{q}}{\it pl}_{m{y}}({\it heta})=rac{{\it L}_{m{y}}(\widehat{m{ heta}}_{*})}{{\it L}_{m{y}}(\widehat{m{ heta}})}$$

where $\widehat{\theta}_* = (\widehat{\beta}'_*, \widehat{\sigma}_*)'$ (restricted LS estimates) with

$$\widehat{\boldsymbol{\beta}}_{*} = \widehat{\boldsymbol{\beta}} - (X'X)^{-1}\boldsymbol{A}'[\boldsymbol{A}(X'X)^{-1}\boldsymbol{A}']^{-1}(\boldsymbol{A}\widehat{\boldsymbol{\beta}} - \boldsymbol{q})$$
$$\widehat{\boldsymbol{\sigma}}_{*} = \sqrt{(\boldsymbol{y} - X\widehat{\boldsymbol{\beta}}_{*})'(\boldsymbol{y} - X\widehat{\boldsymbol{\beta}}_{*})/n}$$

Linear model: prediction

 Let z be a not-yet observed value of the dependent variable for a vector x₀ of covariates:

$$\boldsymbol{z} = \boldsymbol{x}_0^{\prime} \boldsymbol{\beta} + \boldsymbol{\epsilon}_0,$$

with $\epsilon_0 \sim \mathcal{N}(0, \sigma^2)$

• We can write, equivalently,

$$z = \mathbf{x}_0' \mathbf{\beta} + \sigma \Phi^{-1}(\mathbf{w}) = \varphi_{\mathbf{x}_0, \mathbf{y}}(\mathbf{\theta}, \mathbf{w}),$$

where w has a standard uniform distribution

• The predictive belief function on *z* can then be approximated using Monte Carlo simulation

Linear model: prediction

 Let z be a not-yet observed value of the dependent variable for a vector x₀ of covariates:

$$\boldsymbol{z} = \boldsymbol{x}_0^{\prime} \boldsymbol{\beta} + \boldsymbol{\epsilon}_0,$$

with $\epsilon_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

• We can write, equivalently,

$$\boldsymbol{z} = \boldsymbol{x}_0' \boldsymbol{\beta} + \sigma \Phi^{-1}(\boldsymbol{w}) = \varphi_{\boldsymbol{x}_0, \boldsymbol{y}}(\boldsymbol{\theta}, \boldsymbol{w}),$$

where w has a standard uniform distribution

• The predictive belief function on *z* can then be approximated using Monte Carlo simulation

Outline

Example

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function

3 Example: linear regression

- Estimation and prediction
- Example
- Uncertain inputs

Example

Example: movie Box office data

- Dataset about 62 movies released in 2009 (from Greene, 2012)
- Dependent variable: logarithm of Box Office receipts
- 11 covariates:
 - 3 dummy variables (G, PG, PG13) to encode the MPAA (Motion Picture Association of America) rating, logarithm of budget (LOGBUDGET), star power (STARPOWR),
 - a dummy variable to indicate if the movie is a sequel (SEQUEL),
 - four dummy variables to describe the genre (ACTION, COMEDY, ANIMATED, HORROR)
 - one variable to represent internet buzz (BUZZ)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Statistical estimation and prediction

Example: linear regression

Example

Some marginal contour functions

Example

Statistical estimation and prediction

Regression coefficients

	Estimate	Std. Error	t-value	p-value	$Pl(\beta_j = 0)$
(Intercept)	15.400	0.643	23.960	< 2e-16	1.0e-34
G	0.384	0.553	0.695	0.49	0.74
PG	0.534	0.300	1.780	0.081	0.15
PG13	0.215	0.219	0.983	0.33	0.55
LOGBUDGET	0.261	0.185	1.408	0.17	0.30
STARPOWR	4.32e-3	0.0128	0.337	0.74	0.93
SEQUEL	0.275	0.273	1.007	0.32	0.54
ACTION	-0.869	0.293	-2.964	4.7e-3	6.6e-3
COMEDY	-0.0162	0.256	-0.063	0.95	0.99
ANIMATED	-0.833	0.430	-1.937	0.058	0.11
HORROR	0.375	0.371	1.009	0.32	0.54
BUZZ	0.429	0.0784	5.473	1.4e-06	4.8e-07

Example

Statistical estimation and prediction

Example: linear regression

Movie example

BO success of an action sequel film rated PG13 by MPAA, with LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= 2.81?

Outline

Least Commitment Principle

- Example 1: LC mass function with given contour function
- Deconditioning and the GBT
- Uncertainty measures
- 2 Statistical estimation and prediction
 - Motivation
 - Likelihood-based belief function
 - Predictive belief function

3 Example: linear regression

- Estimation and prediction
- Example
- Uncertain inputs

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Statistical estimation and prediction

Uncertain inputs

Ex ante forecasting Problem and classical approach

- Consider the situation where some explanatory variables are unknown at the time of the forecast and have to be estimated or predicted
- Classical approach: assume that **x**₀ has been estimated with some variance, which has to be taken into account in the calculation of the forecast variance
- According to Green (Econometric Analysis, 7th edition, 2012)
 - "This vastly complicates the computation. Many authors view it as simply intractable"
 - "analytical results for the correct forecast variance remain to be derived except for simple special cases"

Statistical estimation and prediction

Uncertain inputs

Ex ante forecasting Belief function approach

- In contrast, this problem can be handled very naturally in our approach by modeling partial knowledge of x₀ by a belief function Bel^X in the sample space X of x₀
- We then have

$$\textit{Bel}_{m{y}}^{\mathbb{Z}} = \left(\textit{Bel}_{m{y}}^{\Theta} \oplus \textit{Bel}_{m{y}}^{\mathbb{Z} imes \Theta} \oplus \textit{Bel}^{\mathbb{X}}
ight)^{\downarrow \mathbb{Z}}$$

- Assume that the belief function *Bel^X* is induced by a source (Ω, A, P^Ω, Λ), where Λ is a multi-valued mapping from Ω to 2^X
- The predictive belief function $\textit{Bel}_y^{\mathbb{Z}}$ is then induced by the multi-valued mapping

$$(\omega, \boldsymbol{s}, \boldsymbol{w}) \rightarrow \varphi_{\boldsymbol{y}}(\Lambda(\omega), \Gamma_{\boldsymbol{y}}(\boldsymbol{s}), \boldsymbol{w})$$

• $Bel_y^{\mathbb{Z}}$ can be approximated by Monte Carlo simulation

▲□▶▲圖▶▲필▶▲필▶ 펜垣 釣요@

Uncertain inputs

Statistical estimation and prediction

Example: linear regression

Monte Carlo algorithm

Require: Desired number of focal sets *N* for *i* = 1 to *N* do Draw (*s_i*, *w_i*) uniformly in [0, 1]² Draw ω from \mathbb{P}^{Ω} Search for $z_{*i} = \min_{\theta} \varphi_{\mathbf{y}}(\mathbf{x}_0, \theta, w_i)$ such that $pl_{\mathbf{y}}(\theta) \ge s_i$ and $\mathbf{x}_0 \in \Lambda(\omega)$ Search for $z_i^* = \max_{\theta} \varphi_{\mathbf{y}}(\mathbf{x}_0, \theta, w_i)$ such that $pl_{\mathbf{y}}(\theta) \ge s_i$ and $\mathbf{x}_0 \in \Lambda(\omega)$ $B_i \leftarrow [z_{*i}, z_i^*]$ end for

Uncertain inputs

Movie example Lower and upper cdfs

Statistical estimation and prediction

Example: linear regression

BO success of an action sequel film rated PG13 by MPAA, with LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= (0,2.81,5) (triangular possibility distribution)?

Methods for building belief functions

Uncertain inputs

Movie example

Statistical estimation and prediction

Example: linear regression

Certain inputs

<ロ> < 四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Uncertain inputs

- Developing pratical applications using the Dempster-Shafer framework requires modeling expert knowledge and statistical information using belief functions
- Systematic and principled methods now exist
 - Least-commitment principle
 - GBT
 - Likelihood-based belief functions
 - Predictive belief function
 - etc.
- Specific methods will be studied in following lectures (correction mechanisms, classification, clustering, etc.)
- More research on expert knowledge elicitation and statistical inference is needed

▲口▶▲圖▶▲臣▶▲臣▶ 王昌 외숙()

References | cf. https://www.hds.utc.fr/~tdenceux

Ph. Smets.

Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem.

International Journal of Approximate Reasoning, 9:1-35, 1993.

G. J. Klir and M. J. Wierman.

Uncertainty-based information. Elements of generalized information theory.

Springer-Verlag, Studies in Fuzziness and Soft Computing, Vol. 15, 1999.

T. Denoeux.

Maximum likelihood estimation from Uncertain Data in the Belief Function Framework.

IEEE Transactions on Knowledge and Data Engineering, 25(1):119-130, 2013.

References II

cf. https://www.hds.utc.fr/~tdenoeux

T. Denoeux.

Likelihood-based belief function: justification and some extensions to low-quality data

International Journal of Approximate Reasoning, 55(7):1535–1547, 2014.

O. Kanjanatarakul, S. Sriboonchitta and T. Denœux

Forecasting using belief functions. An application to marketing econometrics.

International Journal of Approximate Reasoning, 55(5):1113–1128, 2014.