
Evidential distance-based classifiers Learning from uncertain data Clustering

Classification and clustering

Thierry Denœux

Université de Technologie de Compiègne
HEUDIASYC (UMR CNRS 7253)

https://www.hds.utc.fr/˜tdenoeux

Third School on belief functions and their applications,
Stella Plage, France, October 1st, 2015

Classification and clustering Thierry Denœux



Evidential distance-based classifiers Learning from uncertain data Clustering

Classification problem

?

A population is assumed to be
partitioned in c groups or classes.
Let Ω = {ω1, . . . , ωc} denote the set of
classes.
Each instance is described by

A feature vector x ∈ Rp;
A class label y ∈ Ω.

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict the
class label of a new instance described
by x.
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Clustering problem

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data)

Goal: find a meaningful structure in the
data set, usually a partition into c
subsets, or a more complex
mathematical representation (fuzzy
partition, etc.)
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Why can belief functions be useful?

1 Exploit the high expressiveness of belief functions to
1 Represent more faithfully the uncertainty of the predictions made

by a classifier (for, e.g., combining several classifiers, or providing
the user with richer information about the uncertainty of the
classification)

2 Reveal richer information about the data (clustering problems)
2 Represent uncertainty about the data themselves:

1 Uncertain class labels (partially supervised learning)
2 Clustering of imprecise/uncertain data
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Overview of the main approaches
Classification

1 Classifier fusion: convert the outputs from standard classifiers
into belief functions and combine them using, e.g., Dempster’s
rule (e.g., Quost al., 2011)

2 Develop evidence-theoretic classifiers directly providing belief
functions as outputs:

Generalized Bayes theorem, extends the Bayesian classifier when
class densities and priors are ill-known (Appriou, 1991; Denœux
and Smets, 2008)
Distance-based classifiers: evidential K -NN rule (Denœux, 1995),
evidential neural network classifier (Denœux, 2000)
Predictive evidential classifiers (e.g., logistic regression, Xu et al.,
2015)
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Overview of the main approaches
Clustering

Express uncertainty about the membership of objects to clusters
using the notion of credal partition

1 Match degrees of conflict with inter-point distances: EVCLUS
algorithm (Denoeux and Masson, 2004)

2 Extend prototype-based clustering methods such as the hard or
fuzzy c-means: Evidential c-means (Masson and Denoeux,
2008)

3 Decision-directed clustering using the evidential K -NN classifier:
EK -NNclus algorithm (Denoeux et al, 2015)
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Overview of the main approaches
Uncertain data

1 In classification, partially supervised data (with uncertain class
labels) can be handled using the evidential K -NN classifier
(Denoeux, 1995; Denoeux and Zouhal, 2001)

2 More general approach: extend maximum likelihood estimation
to uncertain data (e.g., with uncertain class labels and/or
attributes) using the Evidential Expectation-Maximization (E2M)
algorithm (Denoeux, 2011; Denoeux, 2012)
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Evidential K -NN rule

Evidential K -NN rule (1/3)

Xi

di

X

Let NK (x) ⊂ L denote the set of the K
nearest neighbors of x in L, based on some
distance measure.
Each xi ∈ NK (x) can be considered as a
piece of evidence regarding the class of x.
The strength of this evidence decreases
with the distance di between x and xi .
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Evidential K -NN rule

Evidential K -NN rule (2/3)

The evidence of (xi , yi ) can be represented by

mi ({yi}) = ϕ (di )

mi (Ω) = 1− ϕ (di )

where ϕ is a decreasing function from [0,+∞) to [0,1] such that
limd→+∞ ϕ(d) = 0
The evidence of the K nearest neighbors of x is pooled using
Dempster’s rule of combination

m =
⊕

xi∈NK (x)

mi

Function ϕ can be fixed heuristically or selected among a family
{ϕθ|θ ∈ Θ} using, e.g., cross-validation
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Evidential K -NN rule

Evidential K -NN rule (3/3)
Decision

The contour function of the combined mass function m can be
written as

pl(ωk ) ∝
∏

xi∈NK (x)

(1− ϕ(di ))1−sik

withsik = 1 if yi = ωk and sik = 0 otherwise
Its logarithm is

ln pl(ωk ) = −
∑

xi∈NK (x)

sik ln (1− ϕ(di )) + C

It can be computed in time proportional to K |Ω|
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Evidential K -NN rule

Performance comparison (UCI database)

Sonar data
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Test error rates as a function of k for the voting (-), evidential (:), fuzzy (–) and
distance-weighted (-.) k -NN rules.
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Evidential K -NN rule

Partially supervised data

We now consider a learning set of the form

L = {(xi ,mi ), i = 1, . . . ,n}

where
xi is the attribute vector for instance i , and
mi is a mass function representing uncertain expert knowledge
about the class yi of instance i

Special cases:
mi ({ωk}) = 1 for all i : supervised learning
mi (Ω) = 1 for all i : unsupervised learning
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Evidential K -NN rule

Evidential k -NN rule for partially supervised data

(Xi,mi)	  

di	  

X	  

Each mass function mi is discounted
(weakened) with a rate depending on the
distance di :

m′i (A) = ϕ (di ) mi (A), ∀A ⊂ Ω.

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A).

The k mass functions m′i are combined
using Dempster’s rule:

m =
⊕

xi∈Nk (x)

m′i .
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Evidential K -NN rule

Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes),
50 % negative (delta waves), 5 experts.
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Evidential K -NN rule

Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
For each learning instance xi , the expert opinions were modeled
as a mass function mi .
n = 200 learning patterns, 300 test patterns

k k -NN w k -NN Ev. k -NN Ev. k -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Evidential neural network classifier
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Evidential neural network classifier

Evidential neural network classifier

pi
di

X

The learning set is summarized by r
prototypes.
Each prototype pi has membership
degree uik to each class ωk , with∑c

k=1 uik = 1.
Each prototype pi brings a piece of
evidence regarding the class of x,
whose reliability decreases with the
distance di between x and pi .
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Evidential neural network classifier

Neural network architecture

…
…

…
… …

1

xj

pij

mi
uik

m

1

-1

Mass function induced by pi :

mi ({ωk}) = αiuik exp(−γid2
i ),

k = 1, . . . , c.
mi (Ω) = 1− αi exp(−γid2

i )

Combination:

m =
r⊕

i=1

mi

All parameters are learnt from data by
minimizing an error function.
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Evidential neural network classifier

Results on classical data

Vowel data
c = 11,
p = 10
n = 568

test : 462 ex.
(different
speakers)

Classifier test error rate
Multi-layer perceptron (88 units) 0.49
Radial Basis Function (528 units) 0.47
Gaussian node network (528 units) 0.45
Nearest neighbor 0.44
Linear Discriminant Analysis 0.56
Quadratic Discriminant Analysis 0.53
CART 0.56
BRUTO 0.44
MARS (degree=2) 0.42
Evidential NN (33 prototypes) 0.38
Evidential NN (44 prototypes) 0.37
Evidential NN (55 prototypes) 0.37
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Evidential neural network classifier

Data fusion example

S1

S2

x

x’

Classifier 1

Classifier 2

m

m’

⊕ m ⊕ m’

c = 2 classes
Learning set (n = 60): x ∈ R5,x′ ∈ R3, Gaussian distributions,
conditionally independent
Test set (real operating conditions): x← x + ε, ε ∼ N (0, σ2I).
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Evidential neural network classifier

Results
Test error rates: x + ε, ε ∼ N (0, σ2I)
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Motivation

Introductory example

Let us consider a population in which some disease is present in
proportion θ.
n patients have been selected at random from that population.
Let xi = 1 if patient i has the disease, xi = 0 otherwise. Each xi
is a realization of Xi ∼ B(θ).
We assume that the xi ’s are not observed directly. For each
patient i , a physician gives a degree of plausibility pli (1) that
patient i has the disease and a degree of plausibility pli (0) that
patient i does not have the disease.
The observations are uncertain data of the form pl1, . . . ,pln.
How to estimate θ?
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Motivation

Aleatory vs. epistemic uncertainty

In the previous example, uncertainty has two distinct origins:
1 Before a patient has been drawn at random from the population,

the uncertainty is due to the variability of the variable of interest
in the population. This aleatory uncertainty cannot be reduced.

2 After the random experiment has been performed, the
uncertainty is due to lack of knowledge of the state of each
particular patient. This epistemic uncertainty could be reduced
by carrying out further investigations.
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Motivation

Approach

Here, we consider statistical estimation problems in which both
kinds of uncertainty are present: it will be assumed that each
data item x

has been generated at random from a population (aleatory
uncertainty), but
it is ill-known because of imperfect measurement or perception
(epistemic uncertainty).

The proposed model treats these two kinds of uncertainty
separately:

Aleatory uncertainty will be represented by a parametric statistical
model;
Epistemic uncertainty will be represented using belief functions.
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Motivation

Real world applications

Uncertain data arise in many applications (but epistemic uncertainty
is usually neglected). It may be due to:

Limitations of the underlying measuring equipment (unreliable
sensors, indirect measurements), e.g.: biological sensor for
toxicity measurement in water.
Use of imputation, interpolation or extrapolation techniques, e.g.:
clustering of moving objects whose position is measured
asynchronously by a sensor network,
Partial or uncertain responses in surveys or subjective data
annotation, e.g.: sensory analysis experiments, data labeling by
experts, etc.
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Motivation

Data labeling example
Recognition of facial expressions

joy     surprise sadness 

disgust anger   fear    
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Motivation

Recognition of facial expressions
Experiment

In this kind of problem (object classification in images or videos)
the ground truth is usually unknown or difficult to determine with
high precision and reliability.
It is then necessary to have the images subjectively annotated
(labeled) by humans.
How to account for uncertainty in such subjective annotations?
Experiment:

108 images were labeled by 5 subjects;
For each image, subjects were asked to give a degree of
plausibility for each of the 6 basic expressions.
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Motivation

Example 1
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Motivation

Example 2
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Motivation

Example 3
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Motivation

Model

Complete data: x = {(wi , zi )}n
i=1 with

wi : feature vector for image i (pixel gray levels)
zi : class of image i (one the six expressions).

The feature vectors wi are perfectly observed but class labels
are only partially known through subjective evaluations.
How to learn a decision rule from such data?
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Motivation

General approach

1 Postulate a parametric statistical model px(x;θ) for the complete
data;

2 Represent uncertain observed data using belief functions;
3 Estimate θ by minimizing the conflict between the model and the

observed data using an extension of the EM algorithm: the
evidential EM (E2M) algorithm.
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Evidential EM algorithm

Model

Let X be a (discrete) random vector taking values in ΩX, with
probability mass function pX(·;θ) depending on an unknown
parameter θ ∈ Θ.
Let x be a realization of X (complete data).
We assume that x is only partially observed, and partial
knowledge of x is described by a mass function m on ΩX
(“observed” data).
Problem: estimate θ.
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Evidential EM algorithm

Generalized Likelihood function
Definition

ΩX

A1

A2

A3

Assume that m has focal sets A1, . . . ,Ar .
If we new that x ∈ Ai , the likelihood
would be

L(θ; Ai ) = PX(Ai ;θ) =
∑
x∈Ai

pX(x;θ).

General case:

L(θ; m) =
r∑

i=1

m(Ai )L(θ; Ai )
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Evidential EM algorithm

Generalized Likelihood function
Interpretation

It can be checked that L(θ; m) can be written as:

L(θ; m) =
∑

x∈ΩX

pX(x;θ)pl(x)

L(θ; m) is equal to one minus the degree of conflict between
pX(·;θ) and m.
Consequently, maximizing L(θ; m) with respect to θ amounts to
minimizing the conflict between the parametric model and the
uncertain observations.
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Evidential EM algorithm

Generalized Likelihood function
Case of fuzzy data

Other interpretation of L(θ; m):

L(θ; m) =
∑

x∈ΩX

pX(x;θ)pl(x) = Eθ [pl(X)]

If m is consonant, pl may be interpreted as the membership
function of a fuzzy subset of ΩX : we have fuzzy data.
L(θ; m) is then the probability of the fuzzy data, in the sense of
Zadeh (1968).
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Evidential EM algorithm

Independence assumptions

Let us assume that x = (x1, . . . ,xn) ∈ Rnp, where each xi is a
realization from a p-dimensional random vector Xi .
Independence assumptions:

1 Stochastic independence of X1, . . . ,Xn:

pX(x;θ) =
n∏

i=1

pXi (xi ;θ), ∀x = (x1, . . . , xn) ∈ ΩX

2 Cognitive independence of x1, . . . , xn with respect to m:

pl(x) =
n∏

i=1

pli (xi ), ∀x = (x1, . . . , xn) ∈ ΩX.

Under these assumptions:

log L(θ; m) =
n∑

i=1

logEθ [pli (Xi )] .
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Evidential EM algorithm

Evidential EM algorithm
Description

The generalized log-likelihood function log L(θ; m) can be
maximized using an iterative algorithm composed of two steps:

E-step: Compute the expectation of log L(θ; x) with respect
to m ⊕ pX(·;θ(q)):

Q(θ,θ(q)) =

∑
x∈ΩX

log(L(θ; x))pX(x;θ(q))pl(x)∑
x∈ΩX

pX(x;θ(q))pl(x)
.

M-step: Maximize Q(θ,θ(q)) with respect to θ.
E- and M-steps are iterated until the increase of log L(θ; m)
becomes smaller than some threshold.
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Evidential EM algorithm

Evidential EM algorithm
Properties

1 When m is categorical: m(A) = 1 for some A ⊆ Ω, then the
previous algorithm reduces to the EM algorithm→ evidential EM
(E2M) algorithm.

2 Monotonicity: any sequence L(θ(q); m) for q = 0,1,2, . . . of
generalized likelihood values obtained using the E2M algorithm is
non decreasing, i.e., it verifies

L(θ(q+1); m) ≥ L(θ(q); m), ∀q.

3 The algorithm only uses the contour function pl , which drastically
reduces the complexity of calculations.
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Evidential EM algorithm

Example: uncertain Bernoulli sample
Model and data

Let us assume that the complete data x = (x1, . . . , xn) is a
realization from an i.i.d. sample X1, . . . ,Xn from B(θ) with
θ ∈ [0,1].
We only have partial information about the xi ’s in the form:
pl1, . . . ,pln, where pli (x) is the plausibility that Xi = x , x ∈ {0,1}.
Under the cognitive independence assumption:

log L(θ; pl1, . . . ,pln) =
n∑

i=1

log [(1− θ)pli (0) + θpli (1)] .
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Evidential EM algorithm

E- and M-steps

Complete data log-likelihood:

log L(θ, x) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

xi .

E-step: compute

Q(θ, θ(q)) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

ξ
(q)
i , with

ξ
(q)
i = Eθ(q) [Xi |pli ] =

θ(q)pli (1)

(1− θ(q))pli (0) + θ(q)pli (1)
.

M-step:

θ(q+1) =
1
n

n∑
i=1

ξ
(q)
i .
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Evidential EM algorithm

Numerical example

i 1 2 3 4 5 6
pli (0) 1 1 1 α 0 0
pli (1) 0 0 0 1− α 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

θ

L
(θ

;m
) α=0

α=1

α=0.5

α = 0.5

q θ(q) L(θ(q); pl)
0 0.3000 6.6150
1 0.5500 16.8455
2 0.5917 17.2676
3 0.5986 17.2797
4 0.5998 17.2800
5 0.6000 17.2800

θ̂ = 0.6
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Partially supervised LDA

Object classification
Problem statement

We consider a population of objects partitioned in g classes.
Each object is described by d continuous features
W = (W 1, . . . ,W d ) and a class variable Z .
The goal of discriminant analysis is to learn a decision rule that
classifies any object from its feature vector, based on a learning
set.
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Partially supervised LDA

Object classification
Learning tasks

Classically, different learning tasks are considered:
Supervised learning: Ls = {(wi , zi )}n

i=1;
Unsupervised learning: Lns = {wi}n

i=1;
Semi-supervised learning: Lss = {(wi , zi )}ns

i=1 ∪ {wi}n
i=ns

Here, we consider partially supervised learning:

Lps = {(wi ,mi )}n
i=1,

where mi is a mass function representing partial information
about the class of object i .
This problem can be solved using the E2M algorithm using a
suitable parametric model.
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Partially supervised LDA

Linear discriminant analysis

Generative model:
Complete data: x = {(wi , zi )}n

i=1, assumed to be a realization of an
iid random sample X = {(Wi ,Zi )}n

i=1;
Given Zi = k , Wi is multivariate normal with mean µk and common
variance matrix Σ.
The proportion of class k in the population is πk .
Parameter vector: θ =

(
{πk}g

k=1, {µk}
g
k=1,Σ

)
.

The Bayes rule is approximated by assigning each object to the
class k∗ that maximizes the estimated posterior probability

p(Z = k |w; θ̂) =
φ(w; µ̂k , Σ̂)π̂k∑
` φ(w; µ̂`, Σ̂)π̂`

,

where θ̂ is the MLE of θ.
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Partially supervised LDA

Observed-data likelihood

In partially supervised learning, the observed-data log-likelihood
has the following expression:

log L(θ;Lps) =
n∑

i,k

plik log (πkφ(wi ;µk ,Σk )) ,

where plik is the plausibility that object i belongs to class k .
Supervised learning is recovered as a special case when:

plik = zik =

{
1 if object i belongs to class k ;

0 otherwise.

Unsupervised learning is recovered when plik = 1 for all i and k .
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E2M algorithm

E-step: Using pX(·;θ(q))⊕m, compute

t (q)
ik = E(Zik |m;θ(q)) =

π
(q)
k plikφ(wi ;µ

(q)
k ,Σ(q))∑

` π
(q)
k pli`φ(wi ;µ

(q)
` ,Σ(q))

M-step: Update parameter estimates

π
(q+1)
k =

1
n

n∑
i=1

t (q)
ik , µ

(q+1)
k =

∑n
i=1 t (q)

ik wi∑n
i=1 t (q)

ik

.

Σ(q+1) =
1
n

∑
i,k

t (q)
ik (wi − µ

(q+1)
k )(wi − µ

(q+1)
k )′
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Face recognition problem
Experimental settings

216 images of 60× 70 pixels, 36 in each class.
One half for training, the rest for testing.
A reduced number of features was extracted using Principal
component analysis (PCA).
Each training image was labeled by 5 subjects who gave
degrees of plausibility for each image and each class.
The plausibilities were combined using Dempster’s rule (after
some discounting to avoid total conflict).
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Combined labels
Example 1
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Combined labels
Example 2
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Combined labels
Example 3
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Results
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Results
Example 1
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Results
Example 2
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Results
Example 3
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Summary

The formalism of belief functions provides a very general setting
for representing data uncertainty→ evidential data
Maximizing the proposed generalized likelihood amounts to
minimizing the conflict between the uncertain data and the
parametric model
This can be achieved using an iterative algorithm (evidential EM
algorithm) that reduces to the standard EM algorithm in special
cases
In classification, the method makes it possible to handle
uncertainty on class labels (partially supervised learning).
Uncertainty on attributes can be handled as well
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Motivation
Evidential EM algorithm
Partially supervised LDA

3 Clustering
Credal partition
Evidential c-means
EK-NNclus
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Clustering concepts
Hard and fuzzy clustering

Hard clustering: each object belongs to one and only one group.
Group membership is expressed by binary variables uik such that
uik = 1 if object i belongs to group k and uik = 0 otherwise
Fuzzy clustering: each object has a degree of membership
uik ∈ [0,1] to each group, with

∑c
k=1 uik = 1

Fuzzy clustering with noise cluster: each object has a degree of
membership uik ∈ [0,1] to each group and a degree of
membership ui∗ ∈ [0,1] to a noise cluster, with

∑c
k=1 uik + ui∗ = 1
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Clustering concepts
Possibilistic, rough, credal clustering

Possibilistic clustering: the condition
∑c

k=1 uik = 1 is relaxed.
Each number uik can be interpreted as a degree of possibility
that object i belongs to cluster k
Rough clustering: the membership of object i to cluster k is
described by a pair (uik ,uik ) ∈ {0,1}2 indicating its membership
to the lower and upper approximations of cluster k
Credal clustering: based on Dempster-Shafer (DS) theory (the
topic of this talk)
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Credal partition

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Evidential neural network classifier

2 Learning from uncertain data
Motivation
Evidential EM algorithm
Partially supervised LDA

3 Clustering
Credal partition
Evidential c-means
EK-NNclus
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Credal partition

Evidential clustering

In Credal clustering, the cluster membership of each object is
considered to be uncertain and is described by a (not necessarily
normalized) mass function mi over Ω.
Example:

−6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

10

2

3

4

5

6 7 8

9

10

11

12

13

Credal partition
∅ {ω1} {ω2} {ω1, ω2}

m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Credal partition

Relationship with other clustering structures
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Credal partition

Algorithms
1 EVCLUS (Denoeux and Masson, 2004):

Proximity (possibly non metric) data
Multidimensional scaling approach
Variant: Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014):
EVCLUS with pairwise constraints

2 Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data
HCM, FCM family (alternate optimization of a cost function)
Variants

Relational Evidential c-means (RECM): (Masson and Denoeux,
2009): ECM for proximity data
Constrained Evidential c-means (CECM) (Antoine et al., 2011): ECM
with pairwise constraints
Spatial Evidential C-Means (Lelandais et al., 2014): ECM with spatial
constraints, for image segmentation

3 EK-NNclus (Denoeux et al, 2015)
Attribute or proximity data
Decision-directed clustering algorithm based on the evidential
K-NN classifier
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Evidential c-means

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Evidential neural network classifier

2 Learning from uncertain data
Motivation
Evidential EM algorithm
Partially supervised LDA

3 Clustering
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EK-NNclus
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Evidential c-means

Principle

Problem: generate a credal partition M = (m1, . . . ,mn) from
attribute data X = (x1, ...,xn), xi ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each class represented by a prototype;
Alternate optimization of a cost function with respect to the
prototypes and to the credal partition.
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Evidential c-means

Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβik d2
ik

with dik = ||xi − vk || under the constraints
∑

k uik = 1, ∀i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβik xi∑n

i=1 uβik
∀k = 1, . . . , c,

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each class ωk represented by a prototype vk .
Each non empty set of classes Aj represented
by a prototype v̄j defined as the center of mass
of the vk for all ωk ∈ Aj .
Basic ideas:

For each non empty Aj ∈ Ω, mij = mi (Aj )
should be high if xi is close to v̄j .
The distance to the empty set is defined as a
fixed value δ.
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ECM algorithm
Objective criterion

Criterion to be minimized:

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d2

ij +
n∑

i=1

δ2mβ
i∅,

Parameters:
α controls the specificity of mass functions;
β controls the hardness of the evidential partition;
δ controls the amount of data considered as outliers.

JECM(M,V ) can be iteratively minimized with respect to M and V
using an alternate optimization scheme.

Classification and clustering Thierry Denœux



Evidential distance-based classifiers Learning from uncertain data Clustering

Evidential c-means

Butterfly dataset
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4-class data set
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4-class data set
Hard credal partition
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Evidential c-means

4-class data set
Lower approximation
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Evidential c-means

4-class data set
Upper approximation
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EK-NNclus

Outline

1 Evidential distance-based classifiers
Evidential K -NN rule
Evidential neural network classifier

2 Learning from uncertain data
Motivation
Evidential EM algorithm
Partially supervised LDA

3 Clustering
Credal partition
Evidential c-means
EK-NNclus
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EK-NNclus

Decision-directed clustering

Decision-directed approach to clustering:
Prior knowledge is used to design a classifier, which is used to
label the samples
The classifier is then updated, and the process is repeated until no
changes occur in the labels

For instance, the c-means algorithm is based on this principle:
here, the nearest-prototype classifier is used to label the
samples, and it is updated by taking as prototypes the centers of
each cluster
Idea: apply this principle using the evidential K -NN rule as the
base classifier

Classification and clustering Thierry Denœux



Evidential distance-based classifiers Learning from uncertain data Clustering

EK-NNclus

EK-NNclus algorithm
Step 1: preparation

Let D = (dij ) be a symmetric n × n matrix of distances or
dissimilarities between the n objects
Given K , we compute the set NK (i) of indices of the K nearest
neighbors of object i .
We then compute

αij =

{
ϕ(dij ) if j ∈ NK (i)
0 otherwise,

vij = − ln(1− αij )

for all (i , j) ∈ {1, . . . ,n}2

If computing time is not an issue, K can be chosen very large,
even equal to n − 1

Classification and clustering Thierry Denœux



Evidential distance-based classifiers Learning from uncertain data Clustering

EK-NNclus

EK-NNclus algorithm
Step 2: initialization

To initialize the algorithm, the objects are labeled randomly (or
using some prior knowledge if available)
As the number of clusters is usually unknown, it can be set to
c = n, i.e., we initially assume that there are as many clusters as
objects and each cluster contains exactly one object
If n is very large, we can give c a large value, but smaller than n,
and initialize the object labels randomly
As before, we define cluster-membership binary variables sik as
sik = 1 is object oi belongs to cluster k , and sik = 0 otherwise
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EK-NNclus

EK-NNclus algorithm
Step 3: iteration

An iteration of the algorithm consists in updating the object labels
in some random order, using the EK NN rule
For each object oi , we compute the logarithms of the plausibilities
of belonging to each cluster (up to an additive constant) as

uik =
∑

j∈NK (i)

vijsjk , k = 1, . . . , c

We then assign object oi to the cluster with the highest
plausibility, i.e., we update the variables sik as

sik =

{
1 if uik = maxk ′ uik ′

0 otherwise

If the label of at least one object has been changed during the
last iteration, then the objects are randomly re-ordered and a
new iteration is started. Otherwise, we move to the last step
described below, and the algorithm is stopped
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EK-NNclus algorithm
Step 4: Computation of the credal partition

After the algorithm has converged, we can compute the final mass
functions

mi =
⊕

j∈NK (i)

mij

for i = 1, . . . ,n, where each mij is the following mass function,

mij ({ωk(j)}) = αij

mij (Ω) = 1− αij
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Example
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Properties

The EK-NNclus algorithm can be implemented exactly in a
competitive Hopfield neural network model
The neural network converges a stable state corresponding to a
local minimum of the following energy function

E(S) = −1
2

c∑
k=1

n∑
i=1

∑
j 6=i

vijsik sjk

where S = (sik ) denotes the n × c matrix of 0s and 1s encoding
the neuron states
The following relation holds

pl(R) = −E(S) + C

where pl(R) is the plausibility of the partition encoded by S
The EK-NNclus algorithm thus searches for the most plausible
partition, in the (huge) space of all partitions of the dataset!
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EK-NNclus

Experiments

Settings:
ϕ(dij ) = exp(−γd2

ij ), where dij is the Euclidean distance between
objects i and j
Parameter γ was fixed to the inverse of the q-quantile of the set
∆ = {d2

ij , i ∈ {1, . . . , n}, j ∈ NK (i)}
A-sets: Two-dimensional datasets with 20, 35 and 50 clusters

Parameter q of the EK -NNclus algorithm was fixed to q = 0.9
The number of neighbors was fixed to K = 150 for dataset A1, and
K = 200 for datasets A2 and A3 (rule of thumb: K should be of the
order of two to three times

√
n)

Two initialization methods: c0 = n initial clusters, and c0 = 1000
random initial clusters
The EK -NNclus algorithm was run 10 times
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EK-NNclus

A-sets
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Results

Dataset Result EK -NNclus EK -NNclus pdfCluster model-based model-based
(c0 = n) (c0 = 1000) (constrained)

A1 c 20 (0) 20 (0) 17 24 24
n = 3000 time 32.9 (3.14) 9.8 (0.2) 84.5 31.8 7.88

A2 c 35 (0) 34 (1) 26 39 39
n = 5250 time 193 (9.81) 23.8 (0.6) 298 138 36.2

A3 c 49 (1) 49 (2.5) 34 50 51
n = 7500 time 358 (8.23) 35.1 (1.09) 629 412 99.4
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Summary

The theory of belief function has great potential for solving
challenging machine learning problems:

Classification (supervised learning)
clustering (unsupervised learning) problems

Belief functions allow us to:
Learn from weak information (partially supervised learning,
imprecise and uncertain data)
Express uncertainty on the outputs of a learning system (e.g.,
credal partition)
Combine the outputs from several learning systems (ensemble
classification and clustering)

Recent developments make it possible to address problems in
very large frames (multilabel classification, clustering, preference
learning, etc.)
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