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Example of decision problem under uncertainty

Act Good Economic Poor Economic
(Purchase) Conditions Conditions

Apartment building 50,000 30,000
Office building 100,000 -40,000

Warehouse 30,000 10,000
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Formal framework
Acts, outcomes, states of nature

A decision problem can be seen as a situation in which a
decision-maker (DM) has to choose a course of action (an act) in
some set F
An act may have different consequences (outcomes), depending
on the state of nature
Denoting by Ω = {ω1, . . . , ωn} the set of states of nature and by
C = {c1, . . . , cr} the set of consequences (or outcomes), an act
can be formalized as a mapping f from Ω to C
In this lecture, the three sets Ω, C and F will be assumed to be
finite
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Formal framework
Utilities

The desirability of the consequences can often be modeled by a
utility function u : C → R, which assigns a numerical value to
each consequence
The higher this value, the more desirable is the consequence for
the DM
In some problems, the consequences can be evaluated in terms
of monetary value. The utilities can then be defined as the
payoffs, or a function thereof
If the actions are indexed by i and the states of nature by j , we
will denote by uij the quantity u[fi (ωj )]

The n × r matrix U = (uij ) will be called a payoff or utility matrix
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Payoff matrix

Act Good Economic Poor Economic
(Purchase) Conditions (ω1) Conditions (ω2)

Apartment building (f1) 50,000 30,000
Office building (f2) 100,000 -40,000

Warehouse (f3) 30,000 10,000
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Formal framework
Preferences

If the true state of nature ω is known, the desirability of an act f
can be deduced from that of its consequence f (ω)

Typically, the state of nature is unknown. Based on partial
information, is usually assumed that the DM can express
preferences among acts, which may be represented
mathematically by a preference relation < on F
This relation is interpreted as follows: given two acts f and g,
f < g means that f is found by the DM to be at least as desirable
as g
We also define

The strict preference relation as f � g iff f < g and not(g < f )
(meaning that f is strictly more desirable than g) and
The indifference relation f ∼ g iff f < g and g < f (meaning that f
and g are equally desirable)
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Decision problems

Quite often, the decision problem is to construct a preference
relation among acts, from a utility matrix and some description of
uncertainty, and to find the maximal elements of this relation
Depending on the nature of the available information, different
decision problems arise:

1 Decision-making under ignorance
2 Decision-making with probabilities
3 Decision-making with belief functions
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Outline

1 Classical decision theory
Decision-making under complete ignorance
Decision-making with probabilities
Savage’s theorem

2 Decision-making with belief functions
Upper and lower expected utility
Other approaches
Axiomatic justifications
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Decision-making under complete ignorance

Problem and non-domination principle

We assume that the DM is totally ignorant of the state of nature:
all the information given to the DM is the utility matrix U
A act fi is said to be dominated by fk if the outcomes of fk are at
least as desirable as those of fi for all states, and strictly more
desirable for at least one state

∀j , ukj ≥ uij and ∃j , ukj > uij

Non-domination principle: an act cannot be chosen if it is
dominated by another one
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Decision-making under complete ignorance

Example of a dominated act

Act Good Economic Poor Economic
(Purchase) Conditions (ω1) Conditions (ω2)

Apartment building (f1) 50,000 30,000
Office building (f2) 100,000 -40,000

Warehouse (f3) 30,000 10,000
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Decision-making under complete ignorance

Criteria for rational choice

After all dominated acts have been removed, there remains the
problem of ordering them by desirability, and of finding the set of
most desirable acts
Several criteria of “rational choice” that have been proposed to
derive a preference relation over acts

1 Laplace criterion

fi � fk iff
1
n

∑
j

uij ≥
1
n

∑
j

ukj .

2 Maximax criterion

fi � fk iff max
j

uij ≥ max
j

ukj .

3 Maximin (Wald) criterion

fi � fk iff min
j

uij ≥ min
j

ukj .
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Decision-making under complete ignorance

Example

Act ω1 ω2 ave max min
Apartment (f1) 50,000 30,000 40,000 50,000 30,000

Office (f2) 100,000 -40,000 30,000 100,00 -40,000
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Decision-making under complete ignorance

Hurwicz criteria

Hurwicz criterion: fi � fk iff

αmin
j

uij + (1− α) max
j

uij ≥ αmin
j

ukj + (1− α) max
j

ukj

where α is a parameter in [0,1], called the pessimism index
Boils down to

the maximax criterion if α = 0
the maximin criterion if α = 1

α describes the DM’s attitude toward ambiguity
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Decision-making under complete ignorance

Minimax regret criterion criterion

(Savage) Minimax regret criterion: an act fi is at least as
desirable as fk if it has smaller maximal regret, where regret is
defined as the utility difference with the best act, for a given state
of nature
The regret rij for act fi and state ωj is

rij = max
`

u`j − uij

The maximum regret for act fi is Ri = maxj rij

fi � fk iff Ri ≤ Rk
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Decision-making under complete ignorance

Example

Pay-off matrix

Act ω1 ω2

Apartment (f1) 50,000 30,000
Office (f2) 100,000 -40,000

Regret matrix

Act ω1 ω2 max regret
Apartment (f1) 50,000 0 50,000

Office (f2) 0 70,000 70,000
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Decision-making under complete ignorance

Generalization: OWA criteria

The Laplace, maximax, maximin and Hurwicz criteria correspond
to different ways of aggregating the utilities resulting each act,
using, respectively, the average, the maximum, the minimum,
and a convex sum of the minimum and the maximum
These four operators belong to a family of operators called
Ordered Weighted Average (OWA) operators (Yager, 1988)
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Decision-making under complete ignorance

OWA operators

An OWA operator of dimension n is a function F : Rn → R of the
form

F (x1, . . . , xn) =
n∑

i=1

wix(i)

where x(i) is the i-th largest element in the collection x1, . . . , xn,
and w1, . . . ,wn are positive weights verifying

∑n
i=1 wi = 1

The four previous operators are obtained for different choices of
the weights:

Average: (1/n, 1/n, . . . , 1/n)
Maximum: (1, 0, . . . , 0)
Minimum: (0, . . . , 0, 1)
Hurwicz: (1− α, 0, . . . , 0, α)
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Decision-making under complete ignorance

Setting the weights of an OWA operator

In a decision-making context, each weight wi may be interpreted
as a probability that the i-th best outcome will happen
Yager (1988) defines the degree of optimism of an OWA operator
with weight vector w as

OPT (w) =
n∑

i=1

n − i
n − 1

wi

OPT (w) = 1 for the maximum, OPT (w) = 0 for the minimum,
OPT (w) = 0.5 for the mean, OPT (w) = 1− α for Hurwicz
Given a degree of optimism β, we can then choose the OWA
operator that maximizes the entropy

ENT (w) = −
n∑

i=1

wi log wi

under the constraint OPT (w) = β

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Decision-making under complete ignorance

Axioms of rational choice

Let F∗ denote the choice set, defined as a set of optimal acts
Arrow and Hurwicz (1972) have proposed four axioms a choice
operator F → F∗ should verify

1 Axiom A1: if F1 ⊂ F2 and F∗2 ∩ F1 6= ∅, then F∗1 = F∗2 ∩ F1
2 Axiom A2: Relabeling actions and states does not change the

optimal status of actions
3 Axiom A3: Deletion of a duplicate state does not change the

optimality status of actions
4 Axiom A4 (dominance): If f ∈ F∗ and f ′ dominates f , then f ′ ∈ F∗.

If f 6∈ F∗ and f dominates f ′, then f ′ 6∈ F∗

Under some regularity assumptions, Axioms A1 − A4 imply that
the choice set depends only on the worst and the best
consequences of each act
In particular, these axioms rule out the Laplace and minimax
regret criteria
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Decision-making under complete ignorance

Violation of Axiom A3 by the Laplace criterion

Act ω1 ω2 ave
Apartment (f1) 50,000 30,000 40,000

Office (f2) 100,000 -40,000 30,000

Let us split the state of nature ω1 in two states: “Good economic
conditions and there is life on Mars” (ω′1) and “Good economic
conditions and there is no life on Mars” (ω′′1 )

Act ω′1 ω′′1 ω2 ave
Apartment (f1) 50,000 50,000 30,000 43,333

Office (f2) 100,000 100,000 -40,000 53,333
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Decision-making under complete ignorance

Violation of Axiom A1 by minimax regret

Pay-off matrix

Act ω1 ω2

Apartment (f1) 50,000 30,000
Office (f2) 100,000 -40,000

f4 130,000 -45,000

Regret matrix

Act ω1 ω2 max regret
Apartment (f1) 80,000 0 80,000

Office (f2) 30,000 70,000 70,000
f4 0 75,000 75,000

We had F1 = {f1, f2} and F∗1 = {f1}. Now, F2 = {f1, f2, f4} and
F∗2 = {f2}. So, F∗1 6= F∗2 ∩ F1
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Decision-making with probabilities

Maximum Expected Utility principle

Let us now consider the situation where uncertainty about the
state of nature is quantified by probabilities p1, . . . ,pn on Ω

These probabilities can be objective (decision under risk) or
subjective
We can then compute, for each act fi , its expected utility as

EU(fi ) =
∑

j

uijpj

Maximum Expected Utility (MEU) principle: an act fi is more
desirable than an act fk if i it has a higher expected utility: fi � fk
iff EU(fi ) ≥ EU(fk )

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Decision-making with probabilities

Example

Act ω1 ω2

Apartment (f1) 50,000 30,000
Office (f2) 100,000 -40,000

Assume that there is 60% chance that the economic situation will be
poor (ω2). The expected utilities of acts f1 and f2 are

EU(f1) = 50,000× 0.4 + 30,000× 0.6 = 38,000
EU(f2) = 100,000× 0.4− 40,000× 0.6 = 16,000

Act f1 is thus more desirable according to the maximum expected
utility criterion
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Decision-making with probabilities

Axiomatic justification of the MEU principle

The MEU principle was first axiomatized by von Neumann and
Morgenstern (1944)
Given a probability distribution on Ω, an act f : Ω→ C induces a
probability measure P on the set C of consequences (assumed
to be finite), called a lottery
We denote by L the set of lotteries on C
If we agree that two acts providing the same lottery are
equivalent, then the problem of comparing the desirability of acts
becomes that of comparing the desirability of lotteries
Let � be a preference relation among lotteries. Von Neumann
and Morgentern argued that, to be rational, a preference relation
should verify three axioms
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Decision-making with probabilities

Von Neumann and Morgenstern’s axioms

1 Complete preorder: the preference relation is a complete and
non trivial preorder (i.e., it is a reflexive, transitive and complete
relation) on L

2 Continuity: for any lotteries P, Q and R such that P � Q � R,
there exists a probabilities α and β in [0,1] such that

αP + (1− α)R � Q � βP + (1− β)R

where αP + (1− α)R is a compound lottery, which refers to the
situation where you receive P with probability α and Q with
probability 1− α. This axiom implies, in particular, that there is
no lottery R that is so undesirable that it cannot become
desirable if mixed with some very desirable lottery P

3 Independence: for any lotteries P, Q and R and for any α ∈ (0,1]

P � Q ⇔ αP + (1− α)R � αQ + (1− α)R
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Decision-making with probabilities

Von Neumann and Morgenstern’s theorem

The two following propositions are equivalent:
1 The preference relation � verifies the axioms of complete

preorder, continuity, and independence
2 There exists a utility function u : C → R such that, for any two

lotteries P = (p1, . . . ,pr ) and Q = (q1, . . . ,qr )

P � Q ⇔
r∑

i=1

piu(ci ) ≥
r∑

i=1

qiu(ci )

Function u is unique up to a strictly increasing affine transformation

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Savage’s theorem

Outline

1 Classical decision theory
Decision-making under complete ignorance
Decision-making with probabilities
Savage’s theorem

2 Decision-making with belief functions
Upper and lower expected utility
Other approaches
Axiomatic justifications

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Savage’s theorem

Savage’s theorem

We have reviewed some criteria for decision-making under
complete ignorance, i.e., when uncertainty cannot be
probabilized
Some researchers have defended the view that a rational DM
always maximizes expected utility, for some subjective
probability measure and utility function
Savage’s theorem (1954): a preference relation < among acts
verifies some rationality requirements iff there is a finitely additive
probability measure P and a utility function u : C → R such that

∀f ,g ∈ F , f < g ⇔
∫

Ω

u(f (ω))dP(ω) ≥
∫

Ω

u(g(ω))dP(ω)

Furthermore, P is unique and u is unique up to a positive affine
transformation
A strong argument for probabilism, but Savage’s axioms can be
questioned!
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Savage’s theorem

Savage’s axioms

Savage has proposed seven axioms, four of which are
considered as meaningful (the other three are technical)
Axiom 1: < is a total preorder (complete, reflexive and transitive)
Axiom 2 [Sure Thing Principle]. Given f ,h ∈ F and E ⊆ Ω, let
fEh denote the act defined by

(fEh)(ω) =

{
f (ω) if ω ∈ E
h(ω) if ω 6∈ E

Then the Sure Thing Principle states that ∀E , ∀f ,g,h,h′

fEh < gEh⇒ fEh′ < gEh′

This axiom seems reasonable, but it is not verified empirically!
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Savage’s theorem

Ellsberg’s paradox

Suppose you have an urn containing 30 red balls and 60 balls,
either black or yellow. Consider the following gambles:

f1: You receive 100 euros if you draw a red ball
f2: You receive 100 euros if you draw a black ball
f3: You receive 100 euros if you draw a red or yellow ball
f4: You receive 100 euros if you draw a black or yellow ball

Most people strictly prefer f1 to f2, but they strictly prefer f4 to f3

R B Y
f1 100 0 0
f2 0 100 0
f3 100 0 100
f4 0 100 100

Now,

f1 = f1{R,B}0, f2 = f2{R,B}0

f3 = f1{R,B}100, f4 = f2{R,B}100

The Sure Thing Principle is violated!
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Savage’s theorem

Summary

Classically, we distinguish two kinds of decision problems:
1 Decision under ignorance: we only know, for each act, a set a

possible outcomes
2 Decision under risk: we are given, for each act, a probability

distribution over the outcomes

It has been argued that any decision problem under uncertainty
should be handled as a problem of decision under risk. However,
the axiomatic arguments are questionable
In the next part: decision-making when uncertainty is described
by a belief functions
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How belief functions come into the picture

Belief functions become of component of a decision problem in any of
the following two situations (or both)

1 The decision maker’s subjective beliefs concerning the state of
nature may be described by a belief function BelΩ on Ω

2 The DM may not be able to precisely describe the outcomes of
some acts under each state of nature
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Case 1: uncertainty described by a belief function

Let mΩ be a mass function on Ω

Any act f : Ω→ C then carries mΩ to the set C of consequences,
yielding a mass function mCf , which quantifies the DM’s beliefs
about the outcome of act f
Each mass mΩ(A) is transfered to f (A)

mCf (B) =
∑

{A⊆Ω|f (A)=B}

mΩ(A)

for any B ⊆ C
mCf is a credibilistic lottery corresponding to act f
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Case 2: partial knowledge of outcomes

In that case, an act may formally be represented by a
multi-valued mapping f : Ω→ 2C , assigning a set of possible
consequences f (ω) ⊆ C to each state of nature ω
Given a probability measure P on Ω, f then induces the following
mass function mCf on C,

mCf (B) =
∑

{ω∈Ω|f (ω)=B}

p(ω)

for all B ⊆ Ω
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Example

Let Ω = {ω1, ω2, ω3} and mΩ the following mass function

mΩ({ω1, ω2}) = 0.3, mΩ({ω2, ω3}) = 0.2
mΩ({ω3}) = 0.4, mΩ(Ω) = 0.1

Let C = {c1, c2, c3} and f the act

f (ω1) = {c1}, f (ω2) = {c1, c2}, f (ω3) = {c2, c3}

To compute mCf , we transfer the masses as follows

mΩ({ω1, ω2}) = 0.3→ f (ω1) ∪ f (ω2) = {c1, c2}
mΩ({ω2, ω3}) = 0.2→ f (ω2) ∪ f (ω3) = {c1, c2, c3}

mΩ({ω3}) = 0.4→ f (ω3) = {c2, c3}
mΩ(Ω) = 0.1→ f (ω1) ∪ f (ω2) ∪ f (ω3) = {c1, c2, c3}

Finally, we obtain the following mass function on C

mC({c1, c2}) = 0.3, mC({c2, c3}) = 0.4, mC(C) = 0.3

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Decision problem

In the two situations considered above, we can assign to each
act f a credibilistic lottery, defined as a mass function on C
Given a utility function u on C, we then need to extend the MEU
model
Several such extensions will now be reviewed
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Upper and lower expected utility

Upper and lower expectations

Let m be a mass function on C, and u a utility function C → R
The lower and upper expectations of u are defined, respectively,
as the averages of the minima and the maxima of u within each
focal set of m

Em(u) =
∑
A⊆C

m(A) min
c∈A

u(c)

Em(u) =
∑
A⊆C

m(A) max
c∈A

u(c)

It is clear that Em(u) ≤ Em(u), with the inequality becoming an
equality when m is Bayesian, in which case the lower and upper
expectations collapse to the usual expectation
If m = mA is logical with focal set A, then Em(u) and Em(u) are,
respectively, the minimum and the maximum of u in A
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Upper and lower expected utility

Imprecise probability interpretation

The lower and upper expectations are lower and upper bounds of
expectations with respect to probability measures compatible
with m

Em(u) = min
P∈P(m)

EP(u)

Em(u) = max
P∈P(m)

EP(u)

The mean of minima (res., maxima) is also the minimum (resp.,
maximum) of means with respect to all compatible probability
measures
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Upper and lower expected utility

Corresponding decision criteria

Having defined the notions of lower and upper expectations, we
can define two preference relations among credibilistic lotteries
as

m1<m2 iff Em1
(u) ≥ Em2

(u)

and
m1<m2 iff Em1 (u) ≥ Em2 (u)

Relation < corresponds to a pessimistic (or conservative)
attitude of the DM. When m is logical, it corresponds to the
maximin criterion
Symmetrically, < corresponds to an optimistic attitude and
extends the maximax criterion
Both criteria boil down to the MEU criterion when m is Bayesian
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Upper and lower expected utility

Back to Ellsberg’s paradox

Here, Ω = {R,B,Y} and mΩ({R}) = 1/3, mΩ({B,Y}) = 2/3
The mass functions on C = {0,100} induced by the four acts are

m1({100}) = 1/3, m1({0}) = 2/3
m2({0}) = 1/3, m2({0,100}) = 2/3

m3({100}) = 1/3, m3({0,100}) = 2/3
m4({0}) = 1/3, m4({100}) = 2/3

Corresponding lower and upper expectations

R B Y Em(u) Em(u)
f1 100 0 0 u(100)/3 u(100)/3
f2 0 100 0 u(0) 2u(100)/3
f3 100 0 100 u(100)/3 u(100)
f4 0 100 100 2u(100)/3 2u(100)/3
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Upper and lower expected utility

Interval dominance

If we drop the requirement that the preference relation among
acts be complete, then we can consider the interval dominance
relation,

m1 <ID m2 iff Em1
(u) ≥ Em2 (u)

Given a collection of credibilistic lotteries, we can then compute
the set of maximal (i.e., non dominated) elements of <ID

Imprecise probability view

m1 <ID m2 ⇔ ∀P1 ∈ P(m1),∀P2 ∈ P(m2),EP1 (u) ≥ EP2 (u)

The justification for this preference relation is not so clear from
the point of view of belief function theory (i.e., if one does not
interpret a belief function as a lower probability)
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Other approaches

Generalized Hurwicz criterion

The Hurwicz criterion can be generalized as

Em,α(u) =
∑
A⊆C

m(A)

(
αmin

c∈A
u(c) + (1− α) max

c∈A
u(c)

)
= αEm(u) + (1− α)E(u)

where α ∈ [0,1] is a pessimism index
This criterion was introduced and justified axiomatically by
Jaffray (1988)
Strat (1990) who proposed to interpret α as the DM’s subjective
probability that the ambiguity will be resolved unfavorably
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Other approaches

Transferable belief model

A completely different approach to decision-making with belief
function was advocated by Smets, as part of the Transferable
Belief Model
Smets defended a two-level mental model

1 a credal level, where an agent’s belief are represented by belief
functions, and

2 a pignistic level, where decisions are made by maximizing the EU
with respect to a probability measure derived from a belief function

The rationale for introducing probabilities at the decision level is
the avoidance of Dutch books
Smets argued that the belief-probability transformation T should
be linear, i.e., it should verify

T (αm1 + (1− α)m2) = αT (m1) + (1− α)T (m2),

for any mass functions m1 and m2 and for any α ∈ [0,1]
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Pignistic transformation

The only linear belief-probability transformation T is the pignistic
transformation, with pm = T (m) given by

pm(c) =
∑

{A⊆C|c∈A}

m(A)

|A|
, ∀c ∈ C

The pignistic probability pm is mathematically identical to the
Shapley value in cooperative game theory
The expected utility w.r.t. the pignistic probability is

Ep(u) =
∑
c∈C

pm(c)u(c) =
∑
A⊆C

m(A)

(
1
|A|
∑
c∈A

u(c)

)

The maximum pignistic expected utility criterion thus extends the
Laplace criterion
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Generalized OWA criteria

A more general family of expected utility criteria can be defined
by aggregating the utilities u(c) within each focal set A using
OWA operators
To determine the weights of the OWA operators, Yager (1992)
proposes to fix the degree of optimism β and to use the
maximum-entropy operators, for each cardinality |A|

Eowa
m,β =

∑
A⊆C

m(A)F|A|,β({u(c)|c ∈ A})

where F|A|,β is the maximum-entropy OWA operator with degree
of optimism β and arity |A|
Parameter β has roughly the same interpretation as one minus
the pessimism index α in the Hurwicz criterion
However, each F|A|,β({u(c)|c ∈ A}) depends on all the values
u(c) for all c ∈ A, and not only on the minimum and the maximum
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Generalized minimax regret

Yager (2004) also extended the minimax regret criterion to belief
functions
We need to consider n acts f1, . . . , fn, and we write uij = u[fi (ωj )]

The regret if act fi is selected, and state ωj occurs, is
rij = maxk ukj − uij

For a non-empty subset A of Ω, the maximum regret of act fi is

Ri (A) = max
ωj∈A

rij

The expected maximal regret for act fi is

R i =
∑
∅6=A⊆Ω

mΩ(A)Ri (A)

Act fi is preferred over act fk if R i ≤ Rk

The minimax regret criterion is recovered when mΩ is logical
The MEU model is recovered when mΩ is Bayesian
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Summary

non-probabilized belief functions probabilized
maximin ←→ lower expectation
maximax ←→ upper expectation
Laplace ←→ pignistic expectation expected utility
Hurwicz ←→ generalized Hurwicz

OWA ←→ generalized OWA
minimax regret ←→ generalized minimax regret

Decision-making with belief functions Thierry Denœux



Classical decision theory Decision-making with belief functions

Axiomatic justifications

Outline

1 Classical decision theory
Decision-making under complete ignorance
Decision-making with probabilities
Savage’s theorem

2 Decision-making with belief functions
Upper and lower expected utility
Other approaches
Axiomatic justifications
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Linear utility of credibilistic lotteries

Except for the generalized minimax regret criterion, the previous
decision criteria are of the form

m1 < m2 iff U(m1) ≥ U(m2)

with
U(m) =

∑
∅6=A⊆C

m(A)U(mA)

where mA is the logical mass function with focal set A
Writing U(A) in place of U(mA), and u(c) for U({c})

U(A) = minc∈A u(c) for the lower expectation criterion
U(A) = maxc∈A u(c) for the upper expectation criterion
U(A) = αminc∈A u(c) + (1− α) maxc∈A u(c) for the Hurwicz
criterion
U(A) = (1/|A|)

∑
c∈A u(c) for the pignistic criterion

U(A) = F|A|,β({u(c)|c ∈ A}) for the OWA criterion
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Jaffray’s theorem

Jaffray (1989) showed that a preference relation among credibilistic
lotteries is representable by a linear utility function if and only if it
verifies the Von Neumann and Morgenstern axioms extended to
credibilistic lotteries, i.e.,

1 Transitivity and Completeness: < is a transitive and complete
relation (i.e., is a weak order)

2 Continuity: for all m1, m2 and m3 such that m1 � m2 � m3, there
exists α, β in (0,1) such that

αm1 + (1− α)m3 � m2 � βm1 + (1− β)m3

3 Independence: for all m1 and m2 and for all α in (0, 1), m1 � m2
implies

αm1 + (1− α)m3 � αm2 + (1− α)m3
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Consequences of Jaffray’s theorem

Under the previous requirements, we thus have

U(m) =
∑
∅6=A⊆C

m(A)U(A)

The EU is recovered when m is Bayesian

U(m) =
∑
c∈C

m({c})u(c)

Jaffray’s theorem does not tell us how to compute U(A). In the
general case, we need to elicit the utility values U(A) for each
subset A ⊆ C of consequences, which limits the practical use of
the method
However, Jaffray (1989) showed that a major simplification can
be achieved by introducing an additional axiom
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Dominance axiom

Let us write c1 < c2 whenever m{c1} < m{c2}

Furthermore, let cA and cA denote, respectively, the worst and
the best consequence in A
Dominance axiom: for all non-empty subsets A and B of C, if
cA < cB and cA < cB, then mA < mB

Justification:
If cA < cB and cA < cB , it is possible to construct a set Ω of states
of nature, and two acts f : Ω→ A and f ′ : Ω→ B, such that, for any
ω ∈ Ω, f (ω) < f ′(ω)
As act f dominates f ′, it should be preferred whatever the
information on Ω
Hence, f should be preferred to f ′ when we have a vacuous mass
function on Ω, in which case f and f ′ induce, respectively, the
logical mass function mA and mB on C

Consequence: U(A) can be written as U(A) = u(cA, cA)
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Example

Assume that c1 < c2 < c3 < c4 < c5 < c6

Let A = {c1, c4, c5} and B = {c2, c3, c6}
Consider the two acts

ω1 ω2 ω3 ω4 ω5 ω6

f c1 c4 c5 c1 c1 c1
g c6 c6 c6 c2 c3 c6

f dominates g: it should be preferred whatever the information on
Ω

With mΩ vacuous, we get mCf = mCA and mCg = mCB
Hence, mCA < mCB
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Local Hurwicz criterion

Adding the dominance axiom to the three previous ones,

U(m) =
∑
∅6=A⊆C

m(A)u(cA, cA)

We can write

u(c, c) = α(c, c)u(c) + (1− α(c, c))u(c)

where α(c, c) is a local pessism index, defined as the value of α
which makes the DM indifferent between:

1 Receiving at least c and at most c, with no further information, and
2 Receiving either c with probability α or c with probability 1− α.

We then have

U(m) =
∑
∅6=A⊆C

m(A) [α(cA, cA)u(cA) + (1− α(cA, cA))u(cA)]

The generalized Hurwicz criterion corresponds to the case where
α(c, c) is equal to a constant α
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Other axiomatic justification

Jaffray’s axioms are a counterpart of the axioms of Von
Neumann and Morgenstern for decision under risk: they assume
that uncertainty on the states of nature is quantified by belief
functions
Jaffray and Wakker (1994) consider a more general situation
where probabilities are defined on a finite set S, and there is a
multi-valued mapping Γ that maps each element s ∈ S to a
subset Γ(s) of Ω

They justify Jaffray’s linear utility for belief functions using a
continuity axiom and a weak sure-thing principle (WSTP):

A subset A ⊆ Ω is said to be an ambiguous event if there is a focal
set of Bel that intersects both A and A
The WSTP is satisfied if, for any two acts that have common
outcomes outside an unambiguous event A ⊂ Ω, the preference
does not depend on the level of those common outcomes
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Related work

Another decision criterion, restricted to partially consonant belief
functions, was axiomatized by Giang and Shenoy (2011)

A mass function m is said to be partially consonant if its focal sets
can be divided into groups such that (a) the focal sets of different
groups do not intersect and (b) the focal sets of the same group are
nested
Appear in some problems of statistical inference (Walley, 1987)

Decision criteria based on imprecise probabilities are reviewed in
(Troffaes, 2007). Some of them may be applicable to belief
function, but they remain to be justified in this setting
The lower and upper expectations are Choquet integrals w.r.t.
the belief and plausibility functions, respectively. Savage-like
justifications of the Choquet integral (w.r.t. to a non-additive
measure) are given in Gilboa (1987), Sarin and Wakker (1992),
etc.
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Axiomatic justifications

Summary

Several criteria for decision-making with belief functions have
been reviewed
These criteria mix criteria for decision-making under ignorance,
and the MEU principle
A general form of the Hurwicz principle can be justified
axiomatically, assuming that uncertainty is quantified by belief
functions
There is no counterpart of Savage’s theorem for belief functions
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