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Contents of this chapter

@ When a target density f can be evaluated but not easily sampled,
the methods from the previous chapter can be applied to obtain an
approximate or exact sample. The primary use of such a sample is to
estimate the expectation of a function of X ~ f(x).

@ The Markov chain Monte Carlo (MCMC) methods introduced in this
chapter can also be used to generate a draw from a distribution that
approximates f and estimate expectations of functions of X.

@ MCMC methods are distinguished from the simulation techniques in
the previous chapter by their iterative nature and the ease with
which they can be customized to very diverse and difficult problems.
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Introduction

Basic ideas

Let the sequence {X(9)} denote a Markov chain for t =0,1,2,. ..,

where X(1) = (Xl(t), ... 7X,gt)) and the state space is either
continuous or discrete.

The MCMC sampling strategy is to construct a Markov chain that
converges to a stationary distribution equal to the target distribution
f.

For sufficiently large ¢, a realization X(9) from this chain will have
approximate marginal distribution f .

A very popular application of MCMC methods is to facilitate
Bayesian inference where f is a Bayesian posterior distribution for
parameters X.

@ The art of MCMC lies in the construction of a suitable chain.

(]
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Markov Chains

Notations

o Consider a sequence of random variables {X(} t =0,1,..., where
each X(Y) may equal one of a finite or countably infinite number of
possible values, called states.

o The notation X(Y) = j indicates that the process is in state j at time
t.

@ The state space, S, is the set of possible values of the random
variable X(t).
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Markov property

o The joint distribution of X(© ... X({) can be written as the product
of conditional distributions of each random variable given its history,
p(xO),. XMy = p(x() | O, x(0-1))
x p(x("D | xO x(n=2)y e
% p(x@) | xO)p(x@). (1)
o The sequence {X(}, t =0,1,..., is a Markov chain (MC) if
p(x®) | x© x(E7D) = p(x(8) | x(t71)y
for all t and all x(@, ... x(®,

@ Then, (1) can be simplified to

n

P, x™) = p(x) T p(x() | (). (2)

t=1
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Markov Chains

Transition probabilities

o Let pfjt) be the probability that the observed state changes from
state / at time t to state j at time t + 1,

pif) = PXEHD) = j | X = iy

@ The quantity p,g-t) is called the one-step transition probability.

@ If none of the one-step transition probabilities change with t, then
the MC is called time-homogeneous, and p,(jt) = pjj. If any of the
one-step transition probabilities change with t, then the MC is called

time-inhomogeneous.
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Markov Chains

Transition probability matrix

@ A time-homogeneous MC is governed by a transition probability
matrix.

@ Suppose there are s states in S. Then matrix P = (p;;) of size s x s
is called the transition probability matrix.

@ Each element in P must be between zero and one, and each row of
the matrix must sum to one, as

s
Z pPij = 1.
Jj=1

We say that P is a stochastic matrix.
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Markov Chains

Definitions

e A MC is irreducible if any state j can be reached from any state / in
a finite number of steps for all / and j. In other words, for each i/, j
and n there must exist m > 0 such that

PIX(mn) — j | x(M = j] > 0.

e A MC is periodic if it can visit certain portions of the state space
only at certain regularly spaced intervals. State j has period d if the

probability of going from state j to state j in n steps is 0 for all n not
divisible by d.

o If every state in a MC has period 1, then the chain is called aperiodic.
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Stationary distribution

o Let 7w denote a vector of probabilities that sum to one, with i-th
element 7; denoting the marginal probability that X(*) = ;.

@ Then the marginal distribution of X(t+1) is

S
PIXE = ] = S (XD = j | X = j)P[X(®) = ]
i=1

S
= pymi = [ P;.
i=1

o Any discrete probability distribution 7 such that 77 P = 7T is called
a stationary distribution for P, or for the MC having transition
probability matrix P.

o If {X(®)} follows a stationary distribution, then the marginal
distributions of X(t) and X(t*1) are identical.
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Markov Chains

Example

p_( 075 025
~\ 0125 0875

@ Does P have a stationary distribution?
o Let m = (m1,1 — m). It is stationary iff 7" P = 7T. We get the
equation
0.75m1 + 0.125(1 — m) = m ©=m = 1/3.
o The unique solution is 7 = (1/3,2/3)7.
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Markov Chains

Theorem

@ If a MC with transition probability matrix P and stationary

distribution 7 is irreducible and aperiodic, then 7 is unique and for
all J,
lim PIXEFD) = | X(®) = j] = 7.

t—o00

@ The 7; are the solutions of the following set of equations:

7 >0, Zﬂ'i =1, m= Zﬂipij, vj
i i
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Markov Chains

Ergodic theorem

o If {X(®)} is an irreducible and aperiodic MC with stationary
distribution 7, then X(t) converges in distribution to the distribution
given by 7, and for any function h,

LY hXO) S EL (O}
t=1

almost surely as n — oo, provided E.{h(X)} exists.
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Markov Chains

Continuous state spaces

@ Similar results hold for continuous state spaces.

@ In the continuous case, a time-homogeneous MC is defined by the
transition kernel
f(x,x') = fx(t+1)|x(t)(x/ | x),

so that

F(xO, . xM) = FxO) T FxED, %)

t=1

@ The density 7 is stationary for the MC with kernel f(x,x’) is

7(x) = / F(x, x")(x)dx.
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Markov Chains

Asymptotic results

@ Under similar conditions as in the finite case, we have, for a
stationary density T,

(XWy L 7
and

*Zh(X ) 2% B« {h(X)} (3)
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Metropolis-Hastings (MH) algorithm

@ A very general method for constructing a MC.

o The method begins at t = 0 with the selection of X(® = x(© drawn
from some starting distribution g, with the requirement that
f(x(9) > 0. Given X(©) = x(1) we generate X(t*1) as follows:
@ Sample a candidate value X* from a proposal distribution g(- | x(*)).
@ Compute the MH ratio R(x(*), X*) with

R(u, v) = ;(V)g(s [v)

@ Sample a value for X(t*1) according to the following:

x(t+1) _ X*  with probability min[R(x(), X*), 1],
| x(®  otherwise.

@ Increment t and return to step 1.
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Metropolis-Hastings algorithm

Properties

@ Clearly, a chain constructed via the MH algorithm is Markov since
X(+1) is only dependent on X (1)

@ Whether the chain is irreducible and aperiodic depends on the choice
of proposal distribution; the user must check these conditions for any
implementation.

@ If this check confirms irreducibility and aperiodicity, then the chain
generated by the MH algorithm has a unique limiting stationary
distribution, which is the target distribution f.
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Metropolis-Hastings algorithm
Proof

e Suppose X () ~ f(x), and consider two points in the state space of
the chain, say x; and xp, for which f(x;) > 0 and f(x2) > 0.
Without loss of generality, label these points in the manner such that
f(x2)g(x | x2) > f(x1)g(x2 | x1).

@ The joint density of (X(8), X(t+1)) at (xq, x2) is f(x1)g(x2 | x1)
because if X() = x; and X* = xo, then R(x1,x2) > 1 so
X(t+l) = x.

o The joint density of (X(8), X(t+1)) at (xp,x) is
( 1) _
f(x2)g(x | x2 Foo)gla | xa) f(x1)g(x | x1)

because we need to start with X(t) = x5, to propose X* = x1, and
then to set X(t*1) equal to X* with probability R(x1, x2).
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Metropolis-Hastings algorithm

Proof (continued)

o Consequently, the joint density of (X(t), X(t+1)) is symmetric:
fixo xerny(x1, x2) = fixm xeny(xe, x1).

o Hence X(9 and X(t+1) have the same marginal distributions.

@ Thus the marginal distribution of X(t+1) is £, and f must be the
stationary distribution of the chain.
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Application

@ Recall from Equation (3) that we can approximate the expectation of
a function of a random variable by averaging realizations from the
stationary distribution of a MH chain.

@ The distribution of realizations from the MH chain approximates the
stationary distribution of the chain as t progresses; therefore
E{h(X)} ~ Y0, h(x(0).

@ Some of the useful quantities that can be estimated this way include
means E{h(X)}, variances E[h(X) — E{h(X)}]?, and tail
probabilities E{/(h(X) < q)} for some constant gq.
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Metropolis-Hastings algorithm

Importance of the proposal distribution

@ A well-chosen proposal distribution produces candidate values that
cover the support of the stationary distribution in a reasonable
number of iterations and produces candidate values that are not
accepted or rejected too frequently:

o If the proposal distribution is too diffuse relative to the target
distribution, the candidate values will be rejected frequently and thus
the chain will require many iterations to adequately explore the space
of the target distribution.

o If the proposal distribution is too focused (e.g., has too small a
variance), then the chain will remain in one small region of the target
distribution for many iterations while other regions of the target
distribution will not be adequately explored.

@ Next we introduce several MH variants obtained by using different
classes of proposal distributions.
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(\ISALT T BN ERRDT-SIEI TGO Independence Chains

Independence Chains

@ Suppose that the proposal distribution for the MH algorithm is
chosen such that g(x* | x(t)) = g(x*) for some fixed density g.

@ This yields an independence chain, where each candidate value is
drawn independently of the past. In this case, the MH ratio is

F(X*)g(x))

R0 = gy

@ The resulting Markov chain is irreducible and aperiodic if g(x) > 0
whenever f(x) > 0.

@ The proposal distribution g should resemble the target distribution f,
but should cover f in the tails.
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Metropolis-Hastings algorithm Independence Chains

Bayesian Inference

@ For Bayesian inference, a very simple strategy is to use the prior as a
proposal distribution in an independence chain.

@ In our MH notation, f(0) = p(0 | y) and g(6*) = p(6*).
Conveniently, this means

0 e PO | Y)p(0D)  L(6* | y)
RODOY = 6@ o) ~ 160 | )

@ In other words, we propose from the prior, and the MH ratio equals
the likelihood ratio.

@ By construction, the support of the prior covers the support of the
target posterior, so the stationary distribution of this chain is the
desired posterior.
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Example: Mixture Distribution

084
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@ Suppose we have observed data y1, yo, ..., y100 iid from the mixture

distribution
SN(7,0.5%) + (1 — 6)N(10,0.5?)

o We will use MCMC techniques to construct a chain whose stationary
distribution equals the posterior density of §. The data were
generated with § = 0.7, so we should find that the posterior density
is concentrated in this area.
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Metropolis-Hastings algorithm Independence Chains

Proposal distributions

@ In this example,we try two different independence chains. In the first
case we use a Beta(1,1) density as the proposal density, and in the
second case we use a Beta(2,10) density.

@ The first proposal distribution is equivalent to a Unif(0, 1)
distribution, while the second is skewed right with mean
approximately equal to 0.167. In this second case values of ¢ near
0.7 are unlikely to be generated from the proposal distribution.

@ In the next figure shows the sample paths for 10,000 iterations of
both chains. A sample path is a plot of the chain realizations §(t)
against the iteration number t. This plot is useful for investigating
the behavior of the Markov chain and is discussed further in the
sequel.
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Sample paths for § from independence chains with proposal densities
Beta(1,1) (top) and Beta(2,10) (bottom).
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Metropolis-Hastings algorithm Independence Chains

Interpretation

@ The upper panel shows a Markov chain that moves quickly away
from its starting value and seems easily able to sample values from
all portions of the parameter space supported by the posterior for 4.
Such behavior is called good mixing.

@ The lower panel corresponds to the chain using a Beta(2,10)
proposal density. The resulting chain moves slowly from its starting
value and does a poor job of exploring the region of posterior support
(i.e., poor mixing). This chain has clearly not converged to its
stationary distribution since drift is still apparent. Such a plot should
make the MCMC user reconsider the proposal density.
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Metropolis-Hastings algorithm Independence Chains

Estimated posterior distributions
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Histograms of 8(t) for iterations 201-10,000 of independence chains with
proposal densities Beta(1, 1) (top) and Beta(2,10) (bottom).
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Random Walk Chains
Random Walk Chains

@ A random walk chain is another type of Markov chain produced via a
simple variant of the MH algorithm.

@ Let X* be generated by drawing € ~ h(e) for some density h and
then setting X* = x(t) + €. This yields a random walk chain. In this
case, g(x* | x()) = h(x* — x(0)).

@ Common choices for h include a uniform distribution over a ball
centered at the origin, a scaled standard normal distribution or a
scaled Student's t distribution.

o If the support region of f is connected and h is positive in a
neighborhood of 0, the resulting chain is irreducible and aperiodic.

@ If h(—€) = —h(e), the MH ratio becomes simply

R(x®), x*) = :((:ft)))
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Random Walk Chain Example

Hypothetical random walk chain for sampling a two-dimensional target
distribution (dotted contours) using proposed increments sampled
uniformly from a disk centered at the current value.
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Metropolis-Hastings algorithm Random Walk Chains

Example

@ Assume we want to construct a random walk MH sampler to
generate a sample of 10,000 observations from the Laplace
distribution,

1
f(x) = Ee_|xl, —00 < X < +00.

e We use a random-walk chain with € ~ A(0, 0?) to generate
proposals X* = x(t) + ¢.
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Metrop astings algorithm Random Walk Chains

Results
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Metropolis-Hastings algorithm Random Walk Chains

Results (continued)

Density

Histogram of simulated values from t = 200 to t = 10, 000, obtained with
o = 10.
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