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Contents of the course (Part I)

@ Optimizing smooth univariate functions: Bisection, Newton's
method, Fisher scoring, secant method

@ Optimizing smooth multivariate functions: nonlinear Gauss-Seidel
iteration, gradient methods, Newton's method, Fisher scoring,
Gauss-Newton method, ascent algorithms, discrete Newton method,
quasi-Newton methods

© Combinatorial optimization: local search, ascent algorithms,
simulated annealing, genetic algorithms

@ Expectation-Maximization (EM) algorithm for maximizing the
likelihood or posterior density
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Multivariate optimization for smooth g

o letg:xeRP R
@ Can use analogous stopping criteria:

D(X(t+1)7 x(t))

(t+1) (1)
D(x XY <, D<), 0)

<€,

or
D(x(tJrl)’ X(t))

D(x(t),0) + €

for D(u,v) = Zf;l |ui — vi| or D(u,v) = \/Zf;l(u,- — v

@ Same strategy of iterative approximation. We will extend previous
methods and introduce new options. N

<€
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Cyclic coordinate ascent

Overview

Cyclic coordinate ascent
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Cyclic coordinate ascent

Cyclic coordinate ascent

@ Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.

@ Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How ?
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Cyclic coordinate ascent

Cyclic coordinate ascent

@ Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.

@ Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How ?

@ Approach: optimize g with respect to each component of x
successively, fixing all other components to their last obtained value.
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Cyclic coordinate ascent

Algorithm
Case p=2:
o Initialize x; = xl(o)
e Find xz(l) = arg maxy, g(xl(o),xz)
e Find x{l) = arg maxy, g(XlaX2(1))
o Find x{?) = arg max,, g(x"), x2) Y
°:
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Cyclic coordinate ascent

Cyclic coordinate ascent: pros and cons

@ Advantages:

@ Simplifies a potentially difficult problem
@ Solution of each univariate problem is easier and more stable

@ Drawbacks
© Convergence is not guaranteed
@ Can be slow
@ For hard problems (high dimension, complex function shape), we
need more sophisticated optimization procedures.
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Gradient methods

Overview

Gradient methods
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Gradient methods

Gradient ascent

e Gradient methods are based on the gradient

o= (0 B)

which indicates the direction of steepest ascent of function g at x.

@ The steepest ascent method uses the update equation
x(t+1) — X(t) + a ( t))

where a(t) is the step size at iteration t.
@ How to determine the step size?
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S 2 =R
Ascent property

o For small enough o(t), we have g(x(tt1) > g(x(9)).
@ Proof: we have

g(x(H)) — g(x() = g(x) + oV (x(D)) - g(x()
al9g (x)Tg/(x(7) + o(al"),

where the second equality follows from the linear Taylor expansion
g0 + ag/(x9) = g(x9) + 0O (x()) Tg () + o(al?)

o Therefore, ascent can be ensured by choosing a(t) sufficiently small,
yielding
g(xt) — g(x(9) > 0

from (??) since o(a(9)/a(t) — 0 as olt) — 0. O

°¥ %
RS ST

Thierry Denceux Computational statistics February 2017 10 / 36



Gradient methods

Determining a(?)

o Choosing a(t) very small guarantees ascent, but can result in very
slow convergence.

o We need a strategy to adapt a(t), making it as large as possible,
while ensuring uphill steps.

o Backtracking: attempt a step for, say, olt) = 1;
o If it is downhill, backtrack and reduce (e.g.,halve) alt),
o If the step is still downhill, continue halving o(*) until a sufficiently
small step is found to be uphill.
e Step adaptation: attempt a step with the current value a(?);

o If it is downhill, backtrack and set a(t™) = pa(t) with b < 1.
o If it is uphill, keep the last move and set a(t*1) = aa(?) with a > 1
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Gradient methods

Example
AN . !
S
14

%Qé

Steepest ascent with backtracking, using o = 0.25 initially at each step __
The steepest ascent direction is not necessarily the wisest, and fﬁ‘

P

backtracking doesn't prevent oversteps e
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Silva-Almeida algorithm

o Update rule:
X.(t+1) = X(t) — O[(t) 6g(X(t))

J J J Ox;
@ A learning rate aj(.t) is adapted separately for each weight x;.
g(x)

© Case 1: accept the change and set

. \ ozj(-tH) = aaj(-t) with a > 1;
- E i 3 @ Case 2: accept the change and set

E | - . aj(-tH) = baj(.t) with b > 1;

E | : E x @ Case 3: backtrack and
ol = ol with ¢ < 1 for all .
x(t)  x(t+1) x(t+1)  x(t+1) J J PN

e Typically, a=1.2, b=10.8, c =0.5.
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Newton and quasi-Newton methods

Overview

Newton and quasi-Newton methods
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Newton and quasi-Newton methods

Multivariate Newton's method

@ In the Silva-Almeida method, the step at each step is no longer in
the direction of the gradient.

@ Indeed, the gradient direction is not always the best. For instance, if
g is quadratic,
1
g(x) = EXTAX +bTx+c
with A negative definite, the unique maximum can be found in one
step from any starting point x(©) by

= A lp = X(0) _ g//(x(o))—lg/(x(o)) (1)

2
where g”(x) = (gx%(z)) is the p x p Hessian matrix of g at x

e Newton's method: at each time step, approximate g(x) around x(t)ﬁ%

l()y)a second-order Taylor series expansion, and use update equanQfﬁ-
1 . ‘m:;:::’p&
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Newton and quasi-Newton methods

Multivariate Newton's method and Fisher scoring

e 2nd order approximation of g(x) around x(t)

g(x) ~ g(x) + (x—x)T

g'(x) + 2(X x(0) g (x1)(x
0, we get the update equation

W((E+1) _ o ()

e Setting g'(x) =

t))

—g"(x) g (x1).

@ Fisher scoring:

0(t+1) _

=0 1 1(9())"1e'(81)),
where 1(0) =

E{£"(0)} is the Fisher information matrix at 6
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Newton and quasi-Newton methods

Example

Two runs starting from xg ) and x( ) are shown. These converge to the

true maximum and to alocalnnnnnunnrespecﬁvdy

Newton’s method is not guaranteed to walk uphill. It is not guaranteed to-

find a local maximum. Step length matters even when step direction is, i
Q‘ham’*”‘

good.
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Newton and quasi-Newton methods

Newton-like methods

@ Some very effective methods rely on updating equations of the form
x(t+1) = (O _ (M) ~1g'(x(*))

where M(®) is a p x p matrix approximating the Hessian, g”(x(1).
@ Two issues:
We want to avoid calculating Hessian if it is computationally

expensive or analytically difficult
o We want to guarantee uphill steps

HE = N3
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Newton and quasi-Newton methods

Ascent algorithms

o If we use the updating increment
h® — 4 [M(f)]_lg’(x(t))_

then any positive definite matrix —M(®) will ensure ascent for a
sufficiently small a(t)

@ Backtracking can be used, as in the steepest ascient method.
@ Steepest ascent is recovered as a special case, with M(t) = —|.

e Fisher scoring is another special case with —M() = 1(8(9)). Since
1(6()) is positive semi-definite, backtracking with Fisher scoring
avoids stepping downhill.
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Newton and quasi-Newton methods

Discrete Newton method

@ To avoid calculating the Hessian, one could resort to an analogue of
the 1-dimensional secant method.

@ For example,

g (x+ hie)) — gl (x(V)

where g/(x) = dg(x)/dx; is the ith element of g'(x), e; is the
p-vector with a 1 in the jth position and zeros elsewhere, and h,(jt)
are some constants.

° h(-t) = h for all (i,j) and t leads to linear convergence order: = 1.

o Alternatively, h(t) = x(t) Xj(til) for all i gives superlinear
convergence.
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Newton and quasi-Newton methods

Quasi-Newton methods

@ The discrete Newton method strategy is computationally
burdensome because M(9) is wholly updated at every step.

@ A more efficient approach can be designed based on the direction of
the most recent step. From a first order Taylor series expansion of g’
at x(t), we have

g(x(1) — g/(x() ~ g ()l — x(9)
e M(t+1) satisfies the secant condition if
g/(X(t+1)) ( t)) M(t+1 ( (t+1) X(t)). (2)

o Goal: generate M(t™1) from M() in a manner that requires few
calculations and satisfies (2), while learning about the curvature of g
in the direction of the most recent step.

e
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BFGS method

o The widely used BFGS method updates matrix M(t+1) so as to
satisfy the secant condition. It is defined by the following update
equation

MOZEO(MOZO)T (B (y(0)T

(1) — M) _
M M ENTMOZ0 T (Z0)Ty®

where z(t) = x(t+1) _ x(t) and y(t) = g/(x(t+1)) — g’(x(1)).

@ The BFGS update confers hereditary positive definiteness: if —M(®)
is positive definite, so is —M(t+1).

@ Backtracking is normally used.
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Newton and quasi-Newton methods

=

Quasi-Newton optimization with the BFGS update and backtracking to
ensure ascent.

Convergence of quasi-Newton methods is generally superlinear, but not _
quadratic. These are powerful and popular methods, available, for -
example, in the R function optim() .
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Gauss-Newton method

Overview

Gauss-Newton method
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Gauss-Newton method

Gauss-Newton method

Basic idea

@ For nonlinear least squares problems with observed data (y;, z;) for
i=1,...,nand model

\/i = f(zivg) + €

for some non-linear function, f, and random error, ¢;.

@ We seek to estimate 8 by maximizing an objective function

n

g(0)=—Y (vi—f(z1,0)).

i=1

@ Newton's method approximates g via Taylor series. The
Gauss-Newton approach approximates f itself by its linear Taylor / %

. . % ?
series expansion about o). e
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Gauss-Newton method

Gauss-Newton method

Linearized reformulation

@ We have
f(zi,0) ~ f(z;,00) + (0 — 6T (z;,0(1))

where for each i, f'(z;, 8() is the column vector of partial derivatives
of f with respect to 91(;)' for j=1,...,p, evaluated at (z;, 8(")).
e Now, instead of g(0), we maximize

g(0) = — z": <y,- — f(z;, B(t)) — (6 — e(t))Tf/(z,-, O(t)))z

i=1
n 2
==y (x,-(t) —(0- g(t))Tal(t)>
i=1
with respect to 8, with x,.(t) =y, — f(zi, B(t)), and define %;‘\
al) = f(z;,00). N
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Gauss-Newton method

Update equation

@ Then the approximated problem can be re-expressed as minimizing
the squared residuals of the linear regression model

X® = Al (g — () 1 ¢

where X(®) and € are column vectors whose ith elements consist of
Xl.(t) and ¢;, respectively. Similarly, A(t) is a matrix whose ith row is
()T,

@ This is a linear regression problem! Thus,
(t+1) _ g(t) 4 ((A(t))TA(t)>‘1 (AD)Tx(®)

@ Requires no computation of Hessian.

o Works best when the model fits fairly well and f is not severely - %

., <
P

nonlinear. i
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Nelder-Mead algorithm

Overview

Nelder-Mead algorithm
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Nelder-Mead algorithm

Nelder-Mead algorithm
Main idea

@ An algorithm that does not require the calculation of g(x) or g”(x).
o Idea: evaluation g at p + 1 points xq, ..., X, forming a simplex.

@ This simplex defines a region, which is iteratively reshaped by
replacing the worst point (vertex) by a better one.
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Nelder-Mead algorithm

Nelder-Mead algorithm

Definitions
Worst
Let
@ Xpest: Vertex with highest value of g
@ Xyorst: Vertex with lowest value of g 2=
@ Xpag: 2nd worst vertex xi
@ Best face: face opposite to Xyorst, € its centroid. e
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Nelder-Mead algorithm

Transformations of a vertex

Five possible transformations of a vertex:

Refiection Expansion

Outer Contraction Inner Contraction Shrinkage
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Nelder-Mead algorithm

Basic algorithm

@ The location of the new vertex (replacing Xyorst) is based on the
reflection vertex x, = ¢ + a,(€ — Xyorst), usually o, =1

o If g(Xpad) < &(%r) < g(Xpest): keep x, as the new vertex

o If g(x,) > g(Xpest): try an expansion step

o If g(x;) < g(Xpad): try a contraction step

N
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Nelder-Mead algorithm

Expansion, contraction, shrinking

@ Expansion: let xe = ¢ + ae(x, — c), usually ae =2
o If g(xe) > g(x,): set xe as the new vertex
o Otherwise, keep x,
o Contraction:
o If g(x,) > g(Xworst): Outer contraction. Let x, = ¢ + a(x, — c),
usually o, = 0.5.
o If g(xo) > g(x,): keep xo
o Otherwise: perform a shrink transformation
o If g(x,) < g(Xworst): inner contraction. Let x; = ¢ + ac(Xworst — €)-
o If g(xi) > g(Xworst): keep x;
o Otherwise: perform a shrink transformation
@ Shrink transformation: all vertices except Xpest are shrunk toward

Xpest -

/
X;j = Xpest + as(xj — Xbpest :
% g
PSR

usually as = 0.5. R
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Nelder-Mead algorithm

Nelder-Mead algorithm

Example
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Nelder-Mead algorithm

Example
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