Computational statistics Optimizing smooth multivariate functions

Thierry Denœux

February 2017

Thierry Denœux

Computational statistics

February 2017 1 / 36

э

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contents of the course (Part I)

- Optimizing smooth univariate functions: Bisection, Newton's method, Fisher scoring, secant method
- Optimizing smooth multivariate functions: nonlinear Gauss-Seidel iteration, gradient methods, Newton's method, Fisher scoring, Gauss-Newton method, ascent algorithms, discrete Newton method, quasi-Newton methods
- Combinatorial optimization: local search, ascent algorithms, simulated annealing, genetic algorithms
- Expectation-Maximization (EM) algorithm for maximizing the likelihood or posterior density

Multivariate optimization for smooth g

- Let $g: \mathbf{x} \in \mathbb{R}^p \to \mathbb{R}$
- Can use analogous stopping criteria:

$$D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)}) < \epsilon, \quad \frac{D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)})}{D(\mathbf{x}^{(t)}, \mathbf{0})} < \epsilon,$$

or

$$\frac{D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)})}{D(\mathbf{x}^{(t)}, \mathbf{0}) + \epsilon} < \epsilon.$$

for $D(\mathbf{u},\mathbf{v}) = \sum_{i=1}^{p} |u_i - v_i|$ or $D(\mathbf{u},\mathbf{v}) = \sqrt{\sum_{i=1}^{p} (u_i - v_i)^2}$.

 Same strategy of iterative approximation. We will extend previous methods and introduce new options.

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

(日) (同) (目) (日)

Cyclic coordinate ascent

- Also called backfitting or Gauss-Seidel iteration. One key application is for fitting additive models, GAMs, etc.
- Idea: transform a *p*-dimensional optimization problem into *p* univariate optimization problems. How ?

Cyclic coordinate ascent

- Also called backfitting or Gauss-Seidel iteration. One key application is for fitting additive models, GAMs, etc.
- Idea: transform a *p*-dimensional optimization problem into *p* univariate optimization problems. How ?
- Approach: optimize g with respect to each component of x successively, fixing all other components to their last obtained value.

Algorithm

Case
$$p = 2$$
:
• Initialize $x_1 = x_1^{(0)}$
• Find $x_2^{(1)} = \arg \max_{x_2} g(x_1^{(0)}, x_2)$
• Find $x_1^{(1)} = \arg \max_{x_1} g(x_1, x_2^{(1)})$
• Find $x_2^{(2)} = \arg \max_{x_2} g(x_1^{(1)}, x_2)$

• :

3

イロト イヨト イヨト イヨト

Cyclic coordinate ascent: pros and cons

- Advantages:
 - Simplifies a potentially difficult problem
 - 2 Solution of each univariate problem is easier and more stable
- Drawbacks
 - Convergence is not guaranteed
 - 2 Can be slow
- For hard problems (high dimension, complex function shape), we need more sophisticated optimization procedures.

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

э

(日) (同) (目) (日)

Gradient ascent

• Gradient methods are based on the gradient

$$\mathbf{g}'(\mathbf{x}) = \left(rac{\partial g(\mathbf{x})}{\partial x_1}, \dots, rac{\partial g(\mathbf{x})}{\partial x_p}
ight)^T,$$

which indicates the direction of steepest ascent of function g at x.

• The steepest ascent method uses the update equation

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \alpha^{(t)} \mathbf{g}'(\mathbf{x}^{(t)}),$$

where $\alpha^{(t)}$ is the step size at iteration *t*.

• How to determine the step size?

Ascent property

- For small enough $\alpha^{(t)}$, we have $g(\mathbf{x}^{(t+1)}) > g(\mathbf{x}^{(t)})$.
- Proof: we have

$$g(\mathbf{x}^{(t+1)}) - g(\mathbf{x}^{(t)}) = g(\mathbf{x}^{(t)} + \alpha^{(t)}\mathbf{g}'(\mathbf{x}^{(t)})) - g(\mathbf{x}^{(t)})$$
$$= \alpha^{(t)}\mathbf{g}'(\mathbf{x}^{(t)})^{\mathsf{T}}\mathbf{g}'(\mathbf{x}^{(t)}) + o(\alpha^{(t)}),$$

where the second equality follows from the linear Taylor expansion $g(\mathbf{x}^{(t)} + \alpha^{(t)}\mathbf{g}'(\mathbf{x}^{(t)})) = g(\mathbf{x}^{(t)}) + \alpha^{(t)}\mathbf{g}'(\mathbf{x}^{(t)})^{\mathsf{T}}\mathbf{g}'(\mathbf{x}^{(t)}) + o(\alpha^{(t)}).$

 \bullet Therefore, ascent can be ensured by choosing $\alpha^{(t)}$ sufficiently small, yielding

$$g(\mathsf{x}^{(t+1)}) - g(\mathsf{x}^{(t)}) > 0$$

from (??) since $o(\alpha^{(t)})/\alpha^{(t)} \to 0$ as $\alpha^{(t)} \to 0$.

(日) (同) (三) (三)

- 20

Determining $\alpha^{(t)}$

- Choosing $\alpha^{(t)}$ very small guarantees ascent, but can result in very slow convergence.
- We need a strategy to adapt $\alpha^{(t)}$, making it as large as possible, while ensuring uphill steps.
- Backtracking: attempt a step for, say, $\alpha^{(t)} = 1$;
 - If it is downhill, backtrack and reduce (e.g., halve) $\alpha^{(t)}$.
 - If the step is still downhill, continue halving $\alpha^{(t)}$ until a sufficiently small step is found to be uphill.
- Step adaptation: attempt a step with the current value $\alpha^{(t)}$;
 - If it is downhill, backtrack and set $\alpha^{(t+1)} = b\alpha^{(t)}$ with b < 1.
 - If it is uphill, keep the last move and set $\alpha^{(t+1)} = a \alpha^{(t)}$ with a > 1

(日) (同) (目) (日)

Example

Steepest ascent with backtracking, using $\alpha = 0.25$ initially at each step The steepest ascent direction is not necessarily the wisest, and backtracking doesn't prevent oversteps

Thierry Denœux

Computational statistics

February 2017

Silva-Almeida algorithm

• Update rule:

$$x_j^{(t+1)} = x_j^{(t)} - \alpha_j^{(t)} \frac{\partial g(\mathbf{x}^{(t)})}{\partial \mathbf{x}_j}$$

• A learning rate $\alpha_i^{(t)}$ is adapted separately for each weight x_i .

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

(日) (同) (目) (日)

Multivariate Newton's method

- In the Silva-Almeida method, the step at each step is no longer in the direction of the gradient.
- Indeed, the gradient direction is not always the best. For instance, if *g* is quadratic,

$$g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + c$$

with A negative definite, the unique maximum can be found in one step from any starting point $\mathbf{x}^{(0)}$ by

$$x^* = -\mathbf{A}^{-1}\mathbf{b} = \mathbf{x}^{(0)} - \mathbf{g}''(\mathbf{x}^{(0)})^{-1}\mathbf{g}'(\mathbf{x}^{(0)})$$
(1)

where
$$\mathbf{g}''(\mathbf{x}) = \left(\frac{\partial^2 g(\mathbf{x})}{\partial x_i \partial x_j}\right)$$
 is the $p \times p$ Hessian matrix of g at \mathbf{x}

Newton's method: at each time step, approximate g(x) around x^(t) by a second-order Taylor series expansion, and use update equation (1).

Multivariate Newton's method and Fisher scoring

• 2nd order approximation of $g(\mathbf{x})$ around $\mathbf{x}^{(t)}$:

$$g(\mathbf{x}) \approx g(\mathbf{x}^{(t)}) + (\mathbf{x} - \mathbf{x}^{(t)})^T \mathbf{g}'(\mathbf{x}^{(t)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(t)})^T \mathbf{g}''(\mathbf{x}^{(t)}) (\mathbf{x} - \mathbf{x}^{(t)}).$$

 $\bullet\,$ Setting g'(x)=0, we get the update equation

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{g}''(\mathbf{x}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)}).$$

• Fisher scoring:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \mathsf{I}(\boldsymbol{\theta}^{(t)})^{-1} \boldsymbol{\ell}'(\boldsymbol{\theta}^{(t)}),$$

where $I(\theta) = -\mathbb{E}\{\ell''(\theta)\}$ is the Fisher information matrix at θ .

Example

Two runs starting from $x_a^{(0)}$ and $x_b^{(0)}$ are shown. These converge to the true maximum and to a local minimum, respectively. Newton's method is not guaranteed to walk uphill. It is not guaranteed to find a local maximum. Step length matters even when step direction is good.

Newton-like methods

• Some very effective methods rely on updating equations of the form

$$\mathsf{x}^{(t+1)} = \mathsf{x}^{(t)} - (\mathsf{M}^{(t)})^{-1} \mathsf{g}'(\mathsf{x}^{(t)})$$

where $\mathbf{M}^{(t)}$ is a $p \times p$ matrix approximating the Hessian, $\mathbf{g}''(\mathbf{x}^{(t)})$.

- Two issues:
 - We want to avoid calculating Hessian if it is computationally expensive or analytically difficult
 - We want to guarantee uphill steps

Ascent algorithms

• If we use the updating increment

$$\mathbf{h}^{(t)} = -\alpha^{(t)} \left[\mathbf{M}^{(t)} \right]^{-1} \mathbf{g}'(\mathbf{x}^{(t)}).$$

then any positive definite matrix $-\mathbf{M}^{(t)}$ will ensure ascent for a sufficiently small $\alpha^{(t)}$

- Backtracking can be used, as in the steepest ascient method.
- Steepest ascent is recovered as a special case, with $M^{(t)} = -I$.
- Fisher scoring is another special case with $-\mathbf{M}^{(t)} = \mathbf{I}(\boldsymbol{\theta}^{(t)})$. Since $\mathbf{I}(\boldsymbol{\theta}^{(t)})$ is positive semi-definite, backtracking with Fisher scoring avoids stepping downhill.

Discrete Newton method

- To avoid calculating the Hessian, one could resort to an analogue of the 1-dimensional secant method.
- For example,

$$\mathsf{M}_{ij}^{(t)} = \frac{g_i'(\mathsf{x}^{(t)} + h_{ij}^{(t)} \mathbf{e}_j) - g_i'(\mathsf{x}^{(t)})}{h_{ij}^{(t)}}$$

where $g'_i(\mathbf{x}) = dg(\mathbf{x})/dx_i$ is the *i*th element of $\mathbf{g}'(\mathbf{x})$, \mathbf{e}_j is the *p*-vector with a 1 in the *j*th position and zeros elsewhere, and $h^{(t)}_{ij}$ are some constants.

- $h_{ij}^{(t)} = h$ for all (i, j) and t leads to linear convergence order: $\beta = 1$.
- Alternatively, $h_{ij}^{(t)} = x_j^{(t)} x_j^{(t-1)}$ for all *i* gives superlinear convergence.

イロト イポト イヨト イヨト

20 / 36

э

Quasi-Newton methods

- The discrete Newton method strategy is computationally burdensome because $M^{(t)}$ is wholly updated at every step.
- A more efficient approach can be designed based on the direction of the most recent step. From a first order Taylor series expansion of g' at x^(t), we have

$$\mathbf{g}'(\mathbf{x}^{(t+1)}) - \mathbf{g}'(\mathbf{x}^{(t)}) \approx \mathbf{g}''(\mathbf{x}^{(t)})(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)})$$

• M^(t+1) satisfies the secant condition if

$$\mathbf{g}'(\mathbf{x}^{(t+1)}) - \mathbf{g}'(\mathbf{x}^{(t)}) = \mathbf{M}^{(t+1)}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}).$$
(2)

Goal: generate M^(t+1) from M^(t) in a manner that requires few calculations and satisfies (2), while learning about the curvature of g in the direction of the most recent step.

BFGS method

• The widely used BFGS method updates matrix $\mathbf{M}^{(t+1)}$ so as to satisfy the secant condition. It is defined by the following update equation

$$\mathsf{M}^{(t+1)} = \mathsf{M}^{(t)} - \frac{\mathsf{M}^{(t)} \mathsf{z}^{(t)} (\mathsf{M}^{(t)} \mathsf{z}^{(t)})^{\mathsf{T}}}{(\mathsf{z}^{(t)})^{\mathsf{T}} \mathsf{M}^{(t)} \mathsf{z}^{(t)}} + \frac{\mathsf{y}^{(t)} (\mathsf{y}^{(t)})^{\mathsf{T}}}{(\mathsf{z}^{(t)})^{\mathsf{T}} \mathsf{y}^{(t)}}$$

where $z^{(t)} = x^{(t+1)} - x^{(t)}$ and $y^{(t)} = g'(x^{(t+1)}) - g'(x^{(t)})$.

- The BFGS update confers hereditary positive definiteness: if -M^(t) is positive definite, so is -M^(t+1).
- Backtracking is normally used.

イロト イ理ト イヨト イヨト

Example

Quasi-Newton optimization with the BFGS update and backtracking to ensure ascent.

Convergence of quasi-Newton methods is generally superlinear, but not quadratic. These are powerful and popular methods, available, for example, in the R function optim().

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

(日) (同) (三) (三)

Gauss-Newton method Basic idea

• For nonlinear least squares problems with observed data (y_i, z_i) for i = 1, ..., n and model

$$Y_i = f(\mathbf{z}_i, \boldsymbol{\theta}) + \epsilon_i$$

for some non-linear function, f, and random error, ϵ_i .

ullet We seek to estimate $m{ heta}$ by maximizing an objective function

$$g(\boldsymbol{\theta}) = -\sum_{i=1}^{n} (y_i - f(\mathbf{z}_i, \boldsymbol{\theta}))^2.$$

 Newton's method approximates g via Taylor series. The Gauss-Newton approach approximates f itself by its linear Taylor series expansion about θ^(t).

Thierry Denœux

February 2017

Gauss-Newton method

Linearized reformulation

We have

$$f(\mathbf{z}_i, \boldsymbol{\theta}) \approx f(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^T \mathbf{f}'(\mathbf{z}_i, \boldsymbol{\theta}^{(t)})$$

where for each *i*, f'(z_i, θ^(t)) is the column vector of partial derivatives of *f* with respect to θ^(t)_j, for j = 1,..., p, evaluated at (z_i, θ^(t)).
Now, instead of g(θ), we maximize

$$\begin{split} \tilde{g}(\boldsymbol{\theta}) &= -\sum_{i=1}^{n} \left(y_i - f(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}) - (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \mathbf{f}'(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}) \right)^2 \\ &= -\sum_{i=1}^{n} \left(x_i^{(t)} - (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \mathbf{a}_i^{(t)} \right)^2 \end{split}$$

with respect to θ , with $x_i^{(t)} = y_i - f(\mathbf{z}_i, \theta^{(t)})$, and define $\mathbf{a}_i^{(t)} = \mathbf{f}'(\mathbf{z}_i, \theta^{(t)})$.

Thierry Denœux

February 2017

Gauss-Newton method

• Then the approximated problem can be re-expressed as minimizing the squared residuals of the linear regression model

$$\mathsf{X}^{(t)} = \mathsf{A}^{(t)}(heta - heta^{(t)}) + \epsilon$$

where $\mathbf{X}^{(t)}$ and ϵ are column vectors whose *i*th elements consist of $X_i^{(t)}$ and ϵ_i , respectively. Similarly, $\mathbf{A}^{(t)}$ is a matrix whose *i*th row is $(\mathbf{a}_i^{(t)})^T$.

• This is a linear regression problem! Thus,

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \left((\mathbf{A}^{(t)})^{\mathsf{T}} \mathbf{A}^{(t)} \right)^{-1} (\mathbf{A}^{(t)})^{\mathsf{T}} \mathbf{x}^{(t)}.$$

- Requires no computation of Hessian.
- Works best when the model fits fairly well and *f* is not severely nonlinear.

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

(日) (同) (目) (日)

Nelder-Mead algorithm Main idea

- An algorithm that does not require the calculation of g(x) or g''(x).
- Idea: evaluation g at p + 1 points x_1, \ldots, x_p forming a simplex.
- This simplex defines a region, which is iteratively reshaped by replacing the worst point (vertex) by a better one.

→ < ∃ →</p>

Nelder-Mead algorithm

Definitions

Let

- x_{best}: vertex with highest value of g
- **x**_{worst}: vertex with lowest value of g
- x_{bad}: 2nd worst vertex
- Best face: face opposite to x_{worst}, c its centroid.

Thierry Denœux

Computational statistics

Nelder-Mead algorithm

Transformations of a vertex

Five possible transformations of a vertex:

Nelder-Mead algorithm Basic algorithm

- The location of the new vertex (replacing \mathbf{x}_{worst}) is based on the reflection vertex $\mathbf{x}_r = \mathbf{c} + \alpha_r (\mathbf{c} \mathbf{x}_{worst})$, usually $\alpha_r = 1$
- If $g(\mathbf{x}_{bad}) < g(\mathbf{x}_{r}) < g(\mathbf{x}_{best})$: keep \mathbf{x}_{r} as the new vertex
- If $g(\mathbf{x}_r) > g(\mathbf{x}_{best})$: try an expansion step
- If $g(\mathbf{x}_r) < g(\mathbf{x}_{bad})$: try a contraction step

э

イロト イ理ト イヨト イヨト

Nelder-Mead algorithm

Expansion, contraction, shrinking

- Expansion: let $\mathbf{x}_e = \mathbf{c} + \alpha_e(\mathbf{x}_r \mathbf{c})$, usually $\alpha_e = 2$
 - If $g(\mathbf{x}_e) > g(\mathbf{x}_r)$: set \mathbf{x}_e as the new vertex
 - Otherwise, keep **x**_r
- Contraction:
 - If $g(\mathbf{x}_r) > g(\mathbf{x}_{worst})$: outer contraction. Let $\mathbf{x}_o = \mathbf{c} + \alpha_c(\mathbf{x}_r \mathbf{c})$, usually $\alpha_c = 0.5$.
 - If $g(\mathbf{x}_o) > g(\mathbf{x}_r)$: keep \mathbf{x}_o
 - Otherwise: perform a shrink transformation
 - If $g(\mathbf{x}_r) \leq g(\mathbf{x}_{worst})$: inner contraction. Let $\mathbf{x}_i = \mathbf{c} + \alpha_c(\mathbf{x}_{worst} \mathbf{c})$.
 - If $g(\mathbf{x}_i) > g(\mathbf{x}_{worst})$: keep \mathbf{x}_i
 - Otherwise: perform a shrink transformation
- Shrink transformation: all vertices except x_{best} are shrunk toward x_{best}:

$$\mathbf{x}_j' = \mathbf{x}_{best} + \alpha_s (\mathbf{x}_j - \mathbf{x}_{best},$$

33 / 36

э

usually $\alpha_s = 0.5$.

(日) (同) (三) (三)

Nelder-Mead algorithm Example

・ロト ・聞ト ・ヨト ・ヨト

Thierry Denœux

Computational statistics

February 2017 34 / 36

æ

Nelder-Mead algorithm Example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Thierry Denœux

Computational statistics

February 2017 35 / 36

æ