
Computational statistics
Optimizing smooth multivariate functions

Thierry Denœux

February 2017

Thierry Denœux Computational statistics February 2017 1 / 36

Contents of the course (Part I)

1 Optimizing smooth univariate functions: Bisection, Newton’s
method, Fisher scoring, secant method

2 Optimizing smooth multivariate functions: nonlinear Gauss-Seidel
iteration, gradient methods, Newton’s method, Fisher scoring,
Gauss-Newton method, ascent algorithms, discrete Newton method,
quasi-Newton methods

3 Combinatorial optimization: local search, ascent algorithms,
simulated annealing, genetic algorithms

4 Expectation-Maximization (EM) algorithm for maximizing the
likelihood or posterior density

Thierry Denœux Computational statistics February 2017 2 / 36

Multivariate optimization for smooth g

Let g : x ∈ Rp → R
Can use analogous stopping criteria:

D(x(t+1), x(t)) < ε,
D(x(t+1), x(t))
D(x(t), 0)

< ε,

or
D(x(t+1), x(t))
D(x(t), 0) + ε

< ε.

for D(u, v) =
∑p

i=1 |ui − vi | or D(u, v) =
√∑p

i=1(ui − vi)2.

Same strategy of iterative approximation. We will extend previous
methods and introduce new options.

Thierry Denœux Computational statistics February 2017 3 / 36

Cyclic coordinate ascent

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

Thierry Denœux Computational statistics February 2017 4 / 36

Cyclic coordinate ascent

Cyclic coordinate ascent

Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.
Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How ?

Approach: optimize g with respect to each component of x
successively, fixing all other components to their last obtained value.

Thierry Denœux Computational statistics February 2017 5 / 36

Cyclic coordinate ascent

Cyclic coordinate ascent

Also called backfitting or Gauss-Seidel iteration. One key application
is for fitting additive models, GAMs, etc.
Idea: transform a p-dimensional optimization problem into p
univariate optimization problems. How ?
Approach: optimize g with respect to each component of x
successively, fixing all other components to their last obtained value.

Thierry Denœux Computational statistics February 2017 5 / 36

Cyclic coordinate ascent

Algorithm

Case p = 2:
Initialize x1 = x

(0)
1

Find x
(1)
2 = argmaxx2 g(x

(0)
1 , x2)

Find x
(1)
1 = argmaxx1 g(x1, x

(1)
2)

Find x
(2)
2 = argmaxx2 g(x

(1)
1 , x2)

...
Thierry Denœux Computational statistics February 2017 6 / 36

Cyclic coordinate ascent

Cyclic coordinate ascent: pros and cons

Advantages:
1 Simplifies a potentially difficult problem
2 Solution of each univariate problem is easier and more stable

Drawbacks
1 Convergence is not guaranteed
2 Can be slow

For hard problems (high dimension, complex function shape), we
need more sophisticated optimization procedures.

Thierry Denœux Computational statistics February 2017 7 / 36

Gradient methods

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

Thierry Denœux Computational statistics February 2017 8 / 36

Gradient methods

Gradient ascent

Gradient methods are based on the gradient

g′(x) =
(
∂g(x)
∂x1

, . . . ,
∂g(x)
∂xp

)T

,

which indicates the direction of steepest ascent of function g at x.
The steepest ascent method uses the update equation

x(t+1) = x(t) + α(t)g′(x(t)),

where α(t) is the step size at iteration t.
How to determine the step size?

Thierry Denœux Computational statistics February 2017 9 / 36

Gradient methods

Ascent property

For small enough α(t), we have g(x(t+1)) > g(x(t)).
Proof: we have

g(x(t+1))− g(x(t)) = g(x(t) + α(t)g′(x(t)))− g(x(t))

= α(t)g′(x(t))Tg′(x(t)) + o(α(t)),

where the second equality follows from the linear Taylor expansion

g(x(t) + α(t)g′(x(t))) = g(x(t)) + α(t)g′(x(t))Tg′(x(t)) + o(α(t)).

Therefore, ascent can be ensured by choosing α(t) sufficiently small,
yielding

g(x(t+1))− g(x(t)) > 0

from (??) since o(α(t))/α(t) → 0 as α(t) → 0.

Thierry Denœux Computational statistics February 2017 10 / 36

Gradient methods

Determining α(t)

Choosing α(t) very small guarantees ascent, but can result in very
slow convergence.
We need a strategy to adapt α(t), making it as large as possible,
while ensuring uphill steps.
Backtracking: attempt a step for, say, α(t) = 1;

If it is downhill, backtrack and reduce (e.g.,halve) α(t).
If the step is still downhill, continue halving α(t) until a sufficiently
small step is found to be uphill.

Step adaptation: attempt a step with the current value α(t);
If it is downhill, backtrack and set α(t+1) = bα(t) with b < 1.
If it is uphill, keep the last move and set α(t+1) = aα(t) with a > 1

Thierry Denœux Computational statistics February 2017 11 / 36

Gradient methods

Example

Steepest ascent with backtracking, using α = 0.25 initially at each step
The steepest ascent direction is not necessarily the wisest, and
backtracking doesn’t prevent oversteps

Thierry Denœux Computational statistics February 2017 12 / 36

Gradient methods

Silva-Almeida algorithm

Update rule:

x
(t+1)
j = x

(t)
j − α

(t)
j

∂g(x(t))
∂xj

A learning rate α(t)
j is adapted separately for each weight xj .

x(t)	 x(t+1)	 x(t+1)	 x(t+1)	

1	 2	

3	

x

g(x)

1 Case 1: accept the change and set
α
(t+1)
j = a α

(t)
j with a > 1;

2 Case 2: accept the change and set
α
(t+1)
j = b α

(t)
j with b > 1;

3 Case 3: backtrack and
α
(t+1)
j = c α

(t)
j with c < 1 for all j .

Typically, a = 1.2, b = 0.8, c = 0.5.

Thierry Denœux Computational statistics February 2017 13 / 36

Newton and quasi-Newton methods

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

Thierry Denœux Computational statistics February 2017 14 / 36

Newton and quasi-Newton methods

Multivariate Newton’s method

In the Silva-Almeida method, the step at each step is no longer in
the direction of the gradient.
Indeed, the gradient direction is not always the best. For instance, if
g is quadratic,

g(x) =
1
2
xTAx + bTx + c

with A negative definite, the unique maximum can be found in one
step from any starting point x(0) by

x∗ = −A−1b = x(0) − g′′(x(0))−1g′(x(0)) (1)

where g′′(x) =
(
∂2g(x)
∂xi∂xj

)
is the p × p Hessian matrix of g at x

Newton’s method: at each time step, approximate g(x) around x(t)

by a second-order Taylor series expansion, and use update equation
(1).

Thierry Denœux Computational statistics February 2017 15 / 36

Newton and quasi-Newton methods

Multivariate Newton’s method and Fisher scoring

2nd order approximation of g(x) around x(t):

g(x) ≈ g(x(t))+ (x− x(t))Tg′(x(t))+
1
2
(x− x(t))Tg′′(x(t))(x− x(t)).

Setting g′(x) = 0, we get the update equation

x(t+1) = x(t) − g′′(x(t))−1g′(x(t)).

Fisher scoring:

θ(t+1) = θ(t) + I(θ(t))−1`′(θ(t)),

where I(θ) = −E{`′′(θ)} is the Fisher information matrix at θ.

Thierry Denœux Computational statistics February 2017 16 / 36

Newton and quasi-Newton methods

Example

Two runs starting from x(0)a and x(0)b are shown. These converge to the
true maximum and to a local minimum, respectively.
Newton’s method is not guaranteed to walk uphill. It is not guaranteed to
find a local maximum. Step length matters even when step direction is
good.

Thierry Denœux Computational statistics February 2017 17 / 36

Newton and quasi-Newton methods

Newton-like methods

Some very effective methods rely on updating equations of the form

x(t+1) = x(t) − (M(t))−1g′(x(t))

where M(t) is a p × p matrix approximating the Hessian, g′′(x(t)).
Two issues:

We want to avoid calculating Hessian if it is computationally
expensive or analytically difficult
We want to guarantee uphill steps

Thierry Denœux Computational statistics February 2017 18 / 36

Newton and quasi-Newton methods

Ascent algorithms

If we use the updating increment

h(t) = −α(t)
[
M(t)

]−1g′(x(t)).

then any positive definite matrix −M(t) will ensure ascent for a
sufficiently small α(t)

Backtracking can be used, as in the steepest ascient method.
Steepest ascent is recovered as a special case, with M(t) = −I.
Fisher scoring is another special case with −M(t) = I(θ(t)). Since
I(θ(t)) is positive semi-definite, backtracking with Fisher scoring
avoids stepping downhill.

Thierry Denœux Computational statistics February 2017 19 / 36

Newton and quasi-Newton methods

Discrete Newton method

To avoid calculating the Hessian, one could resort to an analogue of
the 1-dimensional secant method.
For example,

M(t)
ij =

g ′i
(
x(t) + h

(t)
ij ej

)
− g ′i

(
x(t)
)

h
(t)
ij

where g ′i (x) = dg(x)/dxi is the ith element of g′(x), ej is the
p-vector with a 1 in the jth position and zeros elsewhere, and h

(t)
ij

are some constants.
h
(t)
ij = h for all (i , j) and t leads to linear convergence order: β = 1.

Alternatively, h(t)ij = x
(t)
j − x

(t−1)
j for all i gives superlinear

convergence.

Thierry Denœux Computational statistics February 2017 20 / 36

Newton and quasi-Newton methods

Quasi-Newton methods

The discrete Newton method strategy is computationally
burdensome because M(t) is wholly updated at every step.
A more efficient approach can be designed based on the direction of
the most recent step. From a first order Taylor series expansion of g′

at x(t), we have

g′(x(t+1))− g′(x(t)) ≈ g′′(x(t))(x(t+1) − x(t))

M(t+1) satisfies the secant condition if

g′(x(t+1))− g′(x(t)) = M(t+1)(x(t+1) − x(t)). (2)

Goal: generate M(t+1) from M(t) in a manner that requires few
calculations and satisfies (2), while learning about the curvature of g′

in the direction of the most recent step.

Thierry Denœux Computational statistics February 2017 21 / 36

Newton and quasi-Newton methods

BFGS method

The widely used BFGS method updates matrix M(t+1) so as to
satisfy the secant condition. It is defined by the following update
equation

M(t+1) = M(t) − M(t)z(t)(M(t)z(t))T

(z(t))TM(t)z(t)
+

y(t)(y(t))T

(z(t))Ty(t)

where z(t) = x(t+1) − x(t) and y(t) = g′(x(t+1))− g′(x(t)).
The BFGS update confers hereditary positive definiteness: if −M(t)

is positive definite, so is −M(t+1).
Backtracking is normally used.

Thierry Denœux Computational statistics February 2017 22 / 36

Newton and quasi-Newton methods

Example

Quasi-Newton optimization with the BFGS update and backtracking to
ensure ascent.
Convergence of quasi-Newton methods is generally superlinear, but not
quadratic. These are powerful and popular methods, available, for
example, in the R function optim().

Thierry Denœux Computational statistics February 2017 23 / 36

Gauss-Newton method

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

Thierry Denœux Computational statistics February 2017 24 / 36

Gauss-Newton method

Gauss-Newton method
Basic idea

For nonlinear least squares problems with observed data (yi , zi) for
i = 1, . . . , n and model

Yi = f (zi ,θ) + εi

for some non-linear function, f , and random error, εi .
We seek to estimate θ by maximizing an objective function

g(θ) = −
n∑

i=1

(yi − f (zi ,θ))2 .

Newton’s method approximates g via Taylor series. The
Gauss-Newton approach approximates f itself by its linear Taylor
series expansion about θ(t).

Thierry Denœux Computational statistics February 2017 25 / 36

Gauss-Newton method

Gauss-Newton method
Linearized reformulation

We have

f (zi ,θ) ≈ f (zi ,θ(t)) + (θ − θ(t))T f ′(zi ,θ(t))

where for each i , f ′(zi ,θ(t)) is the column vector of partial derivatives
of f with respect to θ(t)j , for j = 1, . . . , p, evaluated at (zi ,θ(t)).
Now, instead of g(θ), we maximize

g̃(θ) = −
n∑

i=1

(
yi − f (zi ,θ(t))− (θ − θ(t))T f ′(zi ,θ(t))

)2

= −
n∑

i=1

(
x
(t)
i − (θ − θ(t))Ta(t)i

)2

with respect to θ, with x
(t)
i = yi − f (zi ,θ(t)), and define

a(t)i = f ′(zi ,θ(t)).
Thierry Denœux Computational statistics February 2017 26 / 36

Gauss-Newton method

Gauss-Newton method
Update equation

Then the approximated problem can be re-expressed as minimizing
the squared residuals of the linear regression model

X(t) = A(t)(θ − θ(t)) + ε

where X(t) and ε are column vectors whose ith elements consist of
X

(t)
i and εi , respectively. Similarly, A(t) is a matrix whose ith row is

(a(t)i)T .
This is a linear regression problem! Thus,

θ(t+1) = θ(t) +
(
(A(t))TA(t)

)−1
(A(t))Tx(t).

Requires no computation of Hessian.
Works best when the model fits fairly well and f is not severely
nonlinear.
Thierry Denœux Computational statistics February 2017 27 / 36

Nelder-Mead algorithm

Overview

Cyclic coordinate ascent

Gradient methods

Newton and quasi-Newton methods

Gauss-Newton method

Nelder-Mead algorithm

Thierry Denœux Computational statistics February 2017 28 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Main idea

An algorithm that does not require the calculation of g(x) or g ′′(x).
Idea: evaluation g at p + 1 points x1, . . . , xp forming a simplex.
This simplex defines a region, which is iteratively reshaped by
replacing the worst point (vertex) by a better one.

Thierry Denœux Computational statistics February 2017 29 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Definitions

Let
xbest : vertex with highest value of g
xworst : vertex with lowest value of g
xbad : 2nd worst vertex
Best face: face opposite to xworst , c its centroid.
Thierry Denœux Computational statistics February 2017 30 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Transformations of a vertex

Five possible transformations of a vertex:

Thierry Denœux Computational statistics February 2017 31 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Basic algorithm

The location of the new vertex (replacing xworst) is based on the
reflection vertex xr = c + αr (c− xworst), usually αr = 1
If g(xbad) < g(xr) < g(xbest): keep xr as the new vertex
If g(xr) > g(xbest): try an expansion step
If g(xr) < g(xbad): try a contraction step

Thierry Denœux Computational statistics February 2017 32 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Expansion, contraction, shrinking

Expansion: let xe = c + αe(xr − c), usually αe = 2
If g(xe) > g(xr): set xe as the new vertex
Otherwise, keep xr

Contraction:
If g(xr) > g(xworst): outer contraction. Let xo = c + αc(xr − c),
usually αc = 0.5.

If g(xo) > g(xr): keep xo
Otherwise: perform a shrink transformation

If g(xr) ≤ g(xworst): inner contraction. Let xi = c + αc(xworst − c).
If g(xi) > g(xworst): keep xi
Otherwise: perform a shrink transformation

Shrink transformation: all vertices except xbest are shrunk toward
xbest :

x′j = xbest + αs(xj − xbest ,

usually αs = 0.5.

Thierry Denœux Computational statistics February 2017 33 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Example

Thierry Denœux Computational statistics February 2017 34 / 36

Nelder-Mead algorithm

Nelder-Mead algorithm
Example

Thierry Denœux Computational statistics February 2017 35 / 36

	Cyclic coordinate ascent
	Gradient methods
	Newton and quasi-Newton methods
	Gauss-Newton method
	Nelder-Mead algorithm

