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Introduction

Multi-label learning deals with the problems where each instance canddong to multiple
classes at once. It has found many real world applications, such asxt categorization
and semantic scene classi cation. In such problems, the learning taskonsists in pre-
dicting a set of labels for each new instance, based on a training setraditional single-
label learning tasks (binary or multi-class classi cation) are a speciatase of multi-label
learning task, where each instance is assigned only one class. In sinlglbel learning,
all possible classes are considered to be mutually exclusive. In constain multi-label
learning, the classes are not necessary exclusive, and they areuaby correlated in the
sense that, the assignment of an instance to a certain class maygquide information
about the membership of this instance to other classes. It is knownhiat taking label
correlation into account is a crucial issue in multi-label learning and it may improve
the classi cation performance. Multi-label learning problems are this more di cult to
solve than single-label ones.

The most widely used approaches transform a multi-label classi catio problem
into multiple independent binary classi cation problems, and thus use ay conventional
classi er for this purpose. The transformation usually follows one-g-all referred here
to as Binary Relevance approach, i.e. a binary classi er for each podde class and
the outputs of all classi ers are combined for nal decision, or one-g-one referred here
to as Label Ranking approach, i.e. a binary classier for each pair of clsses, the
classes are then ranked according to the number of received veteand are nally split
into relevant and non-relevant classes by thresholding. The main limétion of these
approaches is that they usually fail to capture the correlation betveen classes. Another
approach referred to as Label Powerset considers each label domation appearing in

the training set as a separate class, and thus, it transforms the niti-label classi cation
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problem into a multi-class classi cation one. The limitation of this approach is that it
leads us to deal with an increased amount of classes.

In general, multi-label classi ers are learnt by assuming the existencef training sets
in which each instance is associated with a precise set of labels. Howeyin practice,
gathering such high quality information is not always feasible at a reasnable cost. In
many problems, there is no ground truth for assigning unambiguoug a label set to
each instance, and the opinions of one or several expert have te lelicited. Typically,
an expert will sometimes express lack of con dence for assigning ectly one label
set. If several experts are consulted, some con ict will inevitably aise, which again
will introduce some uncertainty in the labeling process. Thereby, in nany real-world
applications, we are facing situations where we have to deal with impéect labeled
instances and to handle imprecisions and uncertainties in data labeling

Three original methods for multi-label learning will be exposed in this hesis. All
are based on thek-nearest neighbor rule widely used in Machine Learning due to its
simplicity and e ectiveness at the same time, but associated with a dierent theoretical
framework among probability, possibility, and evidence theories.

The rst method relies on the binary relevance approach, while overeaming its label
independence assumption. This methods addresses the problemrepresenting corre-
lation between classes in a probabilistic framework. The classi cation bnew instances
is carried out by exploiting statistical information extracted from t he nearest neighbors
of the instances to classify and through Bayesian inference.

The two other methods address mainly the problem of learning from dta with
imprecise labels, and they have the ability to handle multi-labeled data dtectly. The
basic idea of these two methods is to consider the class labels of mulibeled instances
as set-valued variables, i.e. variables that can assume multiple valuesmultaneously,
and to use formalisms for manipulating imprecise and uncertain inforration about
such variables. Possibility and Dempster-Shafer evidence theorigwovide formalisms
devoted to to handle incomplete knowledge.

A possibilistic formalism for the expression of statements involving vastic variables
has been proposed inl[19. Veristic variables can be viewed as fuzzy set-valued variables.
This formalism provide di erent types of veristic statements and di erent distributions
allowing us to encode any piece of knowledge about veristic variablesAs alternative
to this approach, we study the problem of handling partial knowledg on set-valued
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variables using the evidence theory. The classical approach consisn considering a
set-valued variable taking values in a universe as a single-valued variable on the
power set2 of . If we want to express imprecise information about such a variable,
we will have to manipulate subsets of2 . As there are 22 ! of these subsets, this
approach rapidly becomes intractable as the cardinalityj j of increases, due to the
double-exponential complexity involved.

A main contribution of this thesis is the de nition of an evidence formalism for
representing uncertainty on set-valued variables using the Dempsr-Shafer theory of
belief functions P3J. In this formalism, instead of considering the whole power set a2
to express imprecise information about set-valued variables de nedn , only a class
C() of subsets o2 will be considered which, endowed with set inclusion, has a lattice
structure. Most concepts of Dempster-Shafer theory can beeperalized in this setting.
This formalism will be shown to be rich enough to express evidence abbset-valued
variables with only a moderate increase of complexity as compared tihe classical case
of single-valued ones.

We will show applications of the veristic variable theory and the propsed evidence
formalism for set-valued variables to multi-label learning, conjuncively with the k-
nearest neighbor principle.

Organisation

This thesis is structured in ve main chapters. Chapter 1 will summarize the state of
the art on the multi-label learning problem, and report some relatedlearning problems.
The probabilistic method for multi-label classi cation will be presented in Chapter 2. A
general overview on Bayesian learning will be rst introduced, and tte binary relevance
approach as well the crucial issue of label correlation will be then disissed. Chapter3
will present the possibilistic multi-label classi er. This chapter begins by a review of
possibility and fuzzy set theory. The veristic variable theory will be then introduced.
At the end of the chapter, the veristic k-nearest neighbor rule will be presented. The
evidence-based multi-label learning will be detailed in Chapter. After introducing the
basics of belief function theory, the proposed evidence formalisnoff representing and
handling uncertainty on set-valued variables will be explained. Chapér 4 ends with
an application of the proposed set-valued evidence formalism on muitabel learning.
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Chapter 5 will describe the experimental results of the proposed multi-label lassi ers
on several real-world datasets, in the case of precise and impregidata. Comparisons
with some state-of-the-art methods, over di erent evaluation metrics, will be reviewed.
General conclusion and perspectives will conclude the report.




Multi-label learning

Summary

Several methods have been proposed in the literature to deal witthe task of multi-

label learning, which is required by many modern applications such asesnantic scene
classi cation and video annotation. The common point between thesanethods is that
they transform a multi-label learning problem into one or more singlelabel learning
problems. The transformation is based on three approaches: Bima Relevance, Label
Ranking and Label Powerset.

The Binary Relevance approach consists in training a binary classi erdr each pos-
sible class in order to separate the instances belonging to that clageom the others.
The output of the multi-label classi er is the union of the decisions given by the binary
ones.

The Label Ranking approach consists rst in ranking all possible classein decreas-
ing order of relevance to an instance to classify, and then splitting e ordered set of
classes into subsets of relevant and non relevant classes for thastance.

The Label Powerset approach consists in training a multi-class classirefor which,
each combination of labels that exists in the given training set is consigred as a new
class. The most probable class is predicted for each new instancehish represents now
a set of labels.

These di erent multi-label learning approaches will be discussed in tis chapter,

highlighting their positive and negative aspects.
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Résumeé

Plusieurs méthodes ont été proposées dans la littérature pour tir la probléma-
tique d'apprentissage multi-label devenant de plus en plus requise pale nombreuses
applications modernes telles que la classi cation d'images selon la sémante, et I'anno-
tation de vidéos. Le point commun entre ces méthodes est qu'elles cistent a transfor-
mer le probléme d'apprentissage multi-label en un ou plusieurs problées d'apprentis-
sage mono-label. La transformation est basée sur trois approche8inaire, Classement
de Labels, et Combinaisons de Labels.

L'approche Binaire constitue un classi eur binaire pour chaque classegssible an
de séparer les individus appartenant a cette classe des autres inlus. La sortie du clas-
si eur multi-label est déterminée par combinaison des sorties des digents classi eurs
binaires.

L'approche de Classement de Labels consiste d'abord a classer les deétes classes
par ordre décroissant de pertinence pour un individu a classi er, et d diviser ensuite
I'ensemble ordonné de classes en un sous-ensemble de classes getts, et en un autre
sous-ensemble de classes non pertinentes.

L'approche de Combinaisons de Labels consiste a entrainer un classi eunulti-
classes, tel que chaque combinaison de labels qui existe dans l'enskmde données
d'apprentissage est considérée comme une nouvelle classe pour lessi eur. La classe
la plus probable est attribuée a chaque individu a classi er, cette clags représente
désormais un ensemble de labels.

Ces di érentes approches d'apprentissage multi-label seront alsdées dans ce cha-
pitre, en soulignant leurs aspects positifs et négatifs.
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1.1 Introduction

Machine learning is the eld of research that concentrates on the fonal study of learn-
ing systems. Over the years, machine learning has grown rapidly todzome a highly
interdisciplinary eld overlapping with more traditional disciplines such as computer
science, statistics, arti cial intelligence, optimisation theory and many other disciplines
of science and mathematics42][77][6]. The majority of the work in Machine Learn-
ing concerns three principal learning frameworks: supervised, wupervised, and semi-
supervised.

In the supervised framework 2], the learning is performed on labeled examples
(also called instances or samples)in order to de ne a function that pedicts correctly the
labels of the training examples; the performances of the obtainedifiction are evaluated
according to its ability of generalization when predicting the labels of g&amples not in
the training set. If the labeling of the training examples is categorical(discrete labels
or classes), the learning task is calleatlassi cation. If the labeling is numerical, the
task is calledregression

In unsupervised learning 4] the examples are not labeled, i.e., there are no super-
vised target outputs. The algorithm attempts to learn the structure of the given data
and to organize them. The typical unsupervised learning problem iglustering that
identi es groups of examples that have characteristics in common ahare cohesive and
separated from each other.

In semi-supervised learning problem d], the training data is a mixture of both
labeled and unlabeled examples. In fact, the acquisition of labeled datéor a learning
problem is not always feasible; the cost of the labeling process may belatively high and
it requires the e orts of several experts. In contrast, unlabeleddata may be relatively
easy to acquire.

1.1.1 Multi-label classi cation

In this work, we are interested in the classi cation task formulti-label learning [74][91][11].
Given a set ofn training examplesfxy;:::;Xxng X, where X denotes the domain of
instances, and a set of target classes, traditional single-label classi cation assign each
training instance x; to a single labely; 2 Y, and the goal is to learn a single-label clas-
sierh : X 1Y that predicts the class label of unseen examples. If there are onlyb
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Training data

Unseen instance Multi-label Predicted set of
; ; labels

classifier

Figure 1.1: Multi-label learning system.

possible classes, the learning problem is calldadnary classi cation problem. When the
number of classes is greater than two, it is callednulti-class classi cation problem. In
the case of multi-label classi cation problems, each training instancés assigned to a set
of classesY; Y , and the goal of multi-label learning is to learn a multi-label classi er
H:X ! 2Y that predicts a set of labels for each instance to classify (see Figal.1).
Note that for the traditional single-label classi cation task, the target classes are dis-
joint and exclusive and each example belong to one and only one classhile for the
multi-label classi cation task, the target classes are not exclusive ad an example may
belong to an unrestricted set of classes instead of exactly one ctag-igure 1.2 shows an
example of a classi cation problem with two classes that overlap in the éature space.
In the case of single-label learning, the overlapping classes causessiecation errors,
while in multi-label learning, the classes overlap byde nition in the selected feature
space. For multi-labeled data, the membership of an example to morthan one class
is not due to ambiguity (fuzzy membership), but to multiplicity ( full membership) B].
Note that the traditional supervised learning (binary or multi-class) can be regarded as
the special cases of multi-label learning, where the labels associdteith each instance
are restricted to be unique.

In multi-label learning problems, classes are usually correlated and aely challenge
for a multi-label classi cation method is its ability to exploit correlation in formation
among di erent classes. For example, in text categorization, a daement is unlikely

to be labeled aspolitics if we know that it belongs to classentertainment. In scene
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Figure 1.2: Single-label classi cation problem with two overlapping dasses (a), and multi-
label classi cation problem with data ( ) belonging simultaneously to the two possible
classes (b).

classi cation, the probability that an image belongs to classsunset is high if this image
is annotated with label sea Thus, taking label correlations into consideration is a
crucial requirement for the good performance of any multi-label kassi cation method.

1.1.2 Applications

Multi-label learning methods for classi cation are required by many malern applica-
tions where it is quite natural that instances belong simultaneously o several classes.
Hereafter, we will describe some of these applications.

With the rapid growth of online information and the ubiquity of textual data, text
categorization has become an important task for many applications that require teh-
niques for handling and organizing text data [5][92]. Document ltering, browsing and
searching on the web and in large collections of documents, and emalbssi cation are
such applications p8]. Due to the multi-topic nature of documents, multi-label learn-
ing methods seem to be adapted for text categorization9[l][16][44][45]. For example,
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introduction

main
protests
terrorism
boycotts
social

> politics

The Olympic Games have long been used as a political
tool, especially as a toaol of global publicity and to give 5
good political image. Histarically, in 393, Theodosius the
Great banned the Games because there was too much
bribery and carruption going on and the Garmes did nat
return until 1696, More recently, the 1936 games in
Berlin were choreographed by the Nazi Party as a form
of propaganda showing German superiority,

> olympic truce

The Glympic truce
agreement was
unanimously adopted an
the 3rd of November 2003
by the UM General
Assembly, This is the
culmination of avera
decade of negotiations
regarding the truce, which

sconomics Former [OC will ENsUre 3 global
president Avery ceasefire during the 16
london 2012 prundage aimed days in which the games
to "separate are held {from the 13th -
sport fram . 29th August 2004}, The
politics", Sadly it truce was also used in
'E seems that 1992 to allow athletes
i downioad repart.  COUNtries will aim from the former
to use their Yugoslavian states to

teams as a tool,
rather than an
exarmple of what
they can achieve.
This inability to
separate sport
from politics can
be traced back over almast the entire histary of the
Olympic Games.

compete in the
forthcoming winter
Qlympics in Lillehammer,

Following Gresce's appeal,
UM secretary General kafi
Annan announced "The
call to observe the
Olympic truce is an appeal

Figure 1.3: Text categorization

Figure 1.3 shows an electronic document that deals with the olympic games andcheir
in uence and consequence on the hosting country. This documentan be considered as
belonging to the following prede ned topics: sport, politics, society and economy

Scene classi cationis a fundamental problem in image processing and a major task
in computer vision [84][67]. It has received considerable attention in the recent past
years, especially with the development of digital cameras. Scene ek cation is re-
quired for organisation of image collections; it has been explored in atent-based image
retrieval, and used to improve the performance of object recogtion systems [L0§ [10].
Multi-label learning is required in semantic scene classi cation where a atural scene
may contain multiple objects [8][111]. Figure 1.4 shows an example of an image labeled
by three semantic classesmountain, trees and lake.

Other multimedia applications for multi-label learning are music classi cation and
video annotation With the expansion of digital music libraries, the need for classi ca-
tion, retrieval and content-based searching tools through thes les is becoming more
and more apparent p9. For example, music listeners may be interested in browsing
their music by mood [58][71]. Due to the fact that a song can evoke more than one
emotion at the same time, such ammazed happy and excited multi-label classi cation

of music according to emotions has been investigated in recent yeafl01[114. In ad-

10
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Mountain

p Tree

Lake

Figure 1.4: Semantic scene classi cation

dition, video annotation or tagging task is required for browsing andretrieval queries
with the large increase of video dataT9]. The annotation task is a multi-label problem
where a Im can be annotated with several labels or tags, such adrama, fantasy and
romance as shown in Figurel.5[87][25].

In addition to the above applications, multi-label learning has also proed to be
useful in bioinformatics and especially for protein function prediction, where each pro-
tein may be associated with multiple functional labels such asnetabolism energy and

cellular biogenesis[2][13].

1.2 Dierent approaches to multi-label learning

wherex; 2 X and Y; Y . This dataset will be used to build a multi-label classi er H
that de nes a mapping from the domain of instancesX to the power set2” of Y.
Several methods have been proposed in the literature for multi-ladl learning. In
general, these methods consists in transforming the Multi-label Clssi cation problem
(MLC) into one or more Single-Label Classi cation problems (SLC) [L0Z]. The state-
of-the-art methods are usually based on three approachesBinary Relevance Label

Powerset and Label Ranking

11
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Figure 1.5: Film annotation

Hereafter, we will explain the di erent multi-label learning approaches, highlighting

their positive and negative aspects.

1.2.1 Binary Relevance

The Binary Relevance (BR) method is the simplest and most commonly sed approach
to multi-label classi cation [ 59[121][83]. The BR approach transforms the multi-label
learning problem with Q possible classes into Q single-label classi cation rpblems:

the instances belonging to class$ 4 from the others. This problem is solved by training
a binary classi er hgq (0=1 decision) where each instance; in the training dataset D
is considered agositive if it belongs to the class! ¢ (Y; 3 ! 4), and negative otherwise.
Given an instancex to classify, the output of the multi-label classi er H is the union

H(x)=flq2Yjhg(x)=10:

The BR approach is intuitive, simple and it has low computational compleity.
Given a constant number of training examples, the complexity of BR @proach scales
linearly with the number of possible labels. However, the BR method des not take
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independent from the other problems, and is solved separately byunning the single-
label classier hy, in serial or parallel to the other binary classiers, on the training
datasetD. Due to the implicit assumption of label independence, the BR-basethethods
may be penalized and their performances may be poor, especially whapplied to multi-
label learning problems in which the labels are highly correlated.

Any known single-label classi er can be used for the binary classi catia subprob-
lem. A set of binary support vector machine (SVM) [LO7] classi ers were used for
multi-label learning in text categorization [57] and semantic scene classi cation §].
In [70], active learning for multi-label classi cation using an ensemble of binay SVMs
has been presented. Active learning is a mechanism that aims at minimizg the number
of labelled training data while maintaining a good classi cation performarce [L5]. In
practice, active learning is very useful in situations where data arexpensive or di cult
to collect. In [47], an improvement of the BR-based approach using SVM as binary
classi er has also been proposed. The improvement is obtained by tumg the margins
of the SVMs to account for classes that overlap. In the rst iteration, the ensemble of Q
SVMs classi ers is trained. For each trained SVM, the misclassi ed trairing instances
that are close or within a threshold distance from the learnt hypergane are removed.
Then, the ensemble of the SVMs classi ers is re-trained. By removinghe points that
are very close to the resultant hyperplane for a SVM classi er, the athors show that
one can train a better hyperplane with a wider margin and thus improwe the classi -
cation accuracy. Another way proposed in47] to improve the margin is to completely
remove the training instances belonging taconfusing classes. Confusing classes are de-
tected using a confusion matrix learnt using any moderately accur& yet fast classi er
on a held out validation dataset. If the percentage of instances oflass!  that were
misclassi ed as belonging to class ; is above a threshold, we prune away the instances
of class! ; when training the binary SVM classi er corresponding to! .

Using the k-nearest neighbor k-NN) algorithm, a multi-label classi cation method
named MLKNN has been proposed in129. Each binary classier hq is implemented
by means of a combination ofk-NN and Bayesian inference. Given an instance to
classify, its k nearest neighbors in the training dataset are identi ed ; those beloging
to class! 4 are considered as positive for §) and the rest as negatives. The classi cation
of x by the binary classier h is determined by computing the posterior probability
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of "x belongto! 4" based on the prior probability of ! 4 and statistical information
gained from the label sets of the neighboring instances. This metlbwill be presented
in greater detail in the next chapter.

Few methods have been proposed in the literature to remedy the dislvantage of
the BR approach of ignoring label correlations. In §7], multi-label learning is achieved

by creating a two-stage classi cation process and by using labels in thfeature space.

dataset D in the rst classi cation process. The predictions of each binary classer are

used to extend the original dataset with Q additional label features Each object(x;;Y;)

second classi cation process consists in the training of new Q binarylassi ers using
the meta-objects. Given a new instance to classify, the binary clasers of the rst

classi cation process are used and their outputs are appended tde initial features to
form a meta-instance. This meta-instance is then classi ed using théinary classi ers
of the second process. The correlations between labels is taken anaiccount by this
approach through the label feature stacking.

Following a similar idea, aclassi er chain (CC) model involving Q binary classi ers
has been introduced in §9. The classi ers are linked along a chain. At each link,
the feature space of the training data is extended with the 0/1 labé associations of
all previous links. More precisely, given an objec{x;;Y;) in D, the labeling of x; can
be represented by the category vectoy; 2 f 0;1g%?, where its g-th component y;(q)
takes the value 1 if! 3 2 Y; and O otherwise. At link g, the training data is trans-

formed into single-label data in the following way: each elemen(x;;Y;) is transformed

formed data. Given an instancex to classify, the classi cation process is performed by
moving along the chain from the rst link to the last one. Example x is rst classied
by hy, and the 0/1 prediction about the membership or not to class! 1 is appended to
its feature vector in order to be classi ed by hy, and so on. The dependencies between
labels are taken into account by passing label information betweenhe chain classi-
ers. However, it is clear that the classi cation performance depend on the order of
the chain. Therefore, an ensemble of chain models (ECC) is used tageate di erent

random chain orderings.
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In [55], a second process is added upon the BR approach to derive a low-dénsional
subspace share among multiple labels. The idea behind this approach tisat, when
two labels are correlated, the corresponding instances sharedme characteristics in
the feature space. For example, when predicting the topics of domnents, there is
a relation between authorship and topics, since a given author may sually write on
known topics. In the proposed framework, a binary classi er is consticted for each
class in order to discriminate it from the other classes. The input da& are projected
onto a low-dimensional subspace using a common transformation rfall classes, and
this low-dimensional projection is combined with the original represatation to produce
the nal prediction.

1.2.2 Label Ranking

A second approach consists in transforming the multi-label learningask into a label
ranking problem. A label ranking (LR) method predicts a ranking of all possible labels
in decreasing order of relevance to a query instance. Afterwards post-processing is
required in order to determine the output of the multi-label classi er. In the multi-
label case, thetopmost labels and not only the top label, are related to the instance
to classify. Thus, the goal of the post-processing is to provide aero-point that splits
the ordered set of labels into subsets of relevant and non-relevatabels for the query
instance. The LR approach does not explicitly model the correlationsamong labels.
Another problem is that it is di cult to determine into how many labels a p articular
instance should be classi ed. The prediction or the ranked set splittig is usually done
by a thresholding technique.

A straightforward LR-based approach learns a multi-label classierH : X | 2" via
a scoring functionf : X Y ! R that assigns a real value (score) to each instance/label
couple (x;!') 2 X Y . The score corresponds to the probability that the clasd is
relevant to the instance x. In addition, given any instance x with its known set of
labelsY Y , the scoring function f is supposed to give larger scores for labels W
than it does for those not inY. In other words, f (x;! q) >f (x;!) forany! 42 Y and
't 62Y, for each object(x;Y). The scoring function f allows us to rank the di erent
labels according to their scores. For an instance, the higher the rank of a label! ,
the larger the value of the corresponding scoré (x;! ). The output of the multi-label
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classi er H is determined by selecting the labels from the top of the ranking usingome
threshold valuet 2 R :
Hxx)= f! 2Yjf(x;!) tg

The threshold value can be determined by cross-validation or heurgally [40]. For
example, in [LOQ, the threshold value is xed by minimizing the dierence of label
cardinality between training and test datasets. The label cardinality of a giverdataset
is de ned as the average number of labels per instance.

Another ranking-based approach learns a multi-label classi er not Va a scoring
function, but via pairwise comparisons. A recent method is the rankng by pairwise
comparison (RPC) introduced in [53]. The multi-label learning problem is transformed
into a number of binary problems. An independent binary classier hy is trained for
each pair of labels(! ;! /) 2Y2%,1 q<r Q,in order to separate the instances with
label ! 4 from those having label! ;. Thus, a total number of Q(Q 1)=2 is required.
In the classi cation phase, a new instance is submitted to each binary lassi er hq,
and the prediction is interpreted as a vote for either! q or ! ;. The labels with the
highest number of votes are proposed as a nal prediction for the gery instance via
thresholding. Instead of learning a predictor for the correct threshold, a modi ed multi-
label ranking-based approach, called calibrated label ranking (CLR)has been presented
in [43]. In this method, the zero-point at which the learned ranking is split into sets
of relevant (or positive) and irrelevant (or negative) labels is detemined automatically.
In fact, CLR incorporates an additional virtual label ! ¢ in the ranking process, which
calibrates the ranking by splitting it into a positive and a negative part. In addition to
the pairwise classiers hy:, 1 g <r Q asin RPC approach, CLR adds Q classi ers
hq,1 g Q that separate each class$ 4 from the virtual class ! o. Each classier hyp
is learned by considering all instances belonging tb 4 as positive, and the remaining
instances, considered as belonging to the virtual class, as negats: Thus, the binary
classi ers hy are trained as in the BR approach. In CLR, we have to train QQ + 1) =2
pairwise classi ers. For the classi cation of a new instance, all labels naked above the
virtual label ! o, i.e., receiving more votes than! o, are assigned to the instance.

Hereafter, we will present some state-of-the-art methods basl on the ranking ap-
proach.

In [91], a boosting-based system for multi-label learning and especially fotext
categorization, named BoosTexter, has been introduced. The siem is based on two
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extensions of the ensemble learning method AdaBoost]], where a set of weights over
all instance/label pairs is maintained. As boosting progresses, tiaing instances and

their corresponding labels that are hard to predict correctly get ircrementally higher

weights, while instances and labels that are easy to classify get lowerights. The goal

of the rst extended learning algorithm is to predict a set of correct ones for a query
instance. In the second extension, the goal is to design a classi er @h ranks all labels

so that the correct labels for training instances will receive the higkst ranks.

In [39], multi-label ranking approach based on support vector machines§VM) has
been presented. The authors de ne a cost function and a special utti-label margin
and then propose an algorithm named Rank-SVM based on a ranking/stem combined
with a label set size predictor. The set size predictor is computed ém a threshold value
that di erentiates the relevant labels from the others. The value is chosen by solving
a learning problem. The goal is to minimize the Ranking Loss, de ned as th average
number per instance of label pairs that are not correctly orderedwhile having a large
margin. Rank-SVM uses kernels rather than linear dot products, ad the optimisation
problem is solved via its dual transformation.

Following a similar line of reasoning, a multi-class multi-label perceptros algorithm
has been presented inl[8] where one perceptron is trained for each possible label. The
classi ers are not trained independently, but in such a way that theycollectively produce
a reasonable ranking for a given ranking loss function. In7g], pairwise multi-label
perceptrons have been introduced. Based on the RPC approactone perceptron is
trained for each pair of labels independently of other perceptronsA calibrated version
of the pairwise multi-label perceptrons, based on the CLR approacthas been presented
in [43].

In [12§, a neural network algorithm for multi-label learning, named BP-MLL, is
presented. BP-MLL is a single-hidden feed-forward neural netwdr with Q output
neurons, each one corresponding to one of the possible classetie parameters of the
proposed neural network are learnt by minimizing a specic error furction di erent
from the simple sum-of-squares function used in the classical singlabel case. The
error function, de ned as the di erence between the actual and he desired outputs of
the neural network, is adapted for the purpose of multi-label leaning in such a way
that, given an instance x, the labels assigned tax should be ranked higher than those
not assigned to this instance.
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In [126, an adaptation of the traditional radial basis function (RBF) neur al network
for multi-label learning is presented. It consists of two layers of nexons: a rst layer
of hidden neurons representing basis functions associated with @iotype vectors, and
a second layer of output neurons related to all possible classes. &lproposed method,
named ML-RBF, rst performs a clustering of the instances correspnding to each
possible class; the prototype vectors of the rst-layer basis funions are then set to the
centroids of the clustered groups. In a second step, the weightg the second-layer are
xed by minimizing a sum-of-squares error function. The output newon of each class is
connected with all input neurons corresponding to the prototypevectors of the di erent
possible classes. Therefore, information encoded in prototype ators of all classes is
fully exploited when optimizing the connection weights and predicting he label sets of
unseen instances.

Remark that some BR-based multi-label classi ers can also be consided as LR-
based ones, because they are able to provide scoring functions fanking.

1.2.3 Label Powerset

Given the set of possible label& and a setD of n training data for a given multi-label
learning problem, the Label Powerset (LP) approach considers eackubset of Y that
exists in the training dataset D as a di erent class for a single-label classier. The
multi-label classi cation problem is then transformed into a multi-class classi cation
problem, with a number of classes at most equal tonin(29; n). The LP method has the
advantage of taking label correlations into consideration. There ge no binary classi ers
to be learnt independently for each label. Another advantage of tls approach is that
there is no threshold to be tuned, and the LP-based methods outgudirectly a set of
labels. In fact, for each unseen instance, the most probable clasisat represents now a
set of labels is predicted. Nevertheless, one of the drawbacks d&fet LP approach is that
it may lead to imbalanced datasets with a large number of classes and few examples per
class, which makes the learning process di cult and poses comput&inal complexity
problems with the increasing number of labels. Another disadvantag is that LP can
only predict label sets available in the training set when classifying nevinstances.

Few approaches have been presented in the literature in order toedl with the
aforementioned negative aspects of LP principle, while preserving isdvantage of taking
label correlations into consideration. In [L04, a method named RAKEL works by
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randomly breaking the set of labelsY, supposed to be large, into a number of label
setsZ; Y having a small size as compared to the size of, and training a LP-based
multi-label classi er for each of the label sets. More precisely, fora&ch small-sized label
set Z;, a single-label classi er h, having as class values all the subsets &; that are
found in the training set, is trained. The training set for h;, denoted asD; is deduced
from the original dataset D by replacing the label sets of training instances by their

to instances labeled by the empty set. These instances are not duded when training
hi, and one has to consider the empty label set as another class valf@ the single-label
classi cation task of hj. For the classi cation of a new instance, the decisions of the LP-
based classi ers are gathered and combined, usually by a voting press. This method
can predict a label set that was not present in the training set, beause the nal output
of the multi-label classi er is computed from the predictions of the di erent single-label
classi ers. The number of random label sets to be considered and ¢hsize of these sets
have to be tuned heuristically, which is computationally expensive.

In [88], a new extension of the LP approach has been proposed in order teduce
its complexity. The new approach, called Pruned Sets (PS), works aLP but only
the label combinations, subsets ofY, which frequently occur in the training dataset D
are considered as class values for the single-label classier. The ming operation is
controlled by a parameter that indicates how often a label combinaibn must occur in
the training set in order not to be pruned and then to be consideredas a new class
value. For minimal information loss, a post-pruning step is added in oder to break
up the pruned label combinations into more frequently occurring lalel sets, and then
reintroduce the pruned instances in the training process of the sgle-label classi er.

Based on the LP-approach, a probabilistic generative model for muitlabel text cat-
egorization has been introduced in74]. According to this method, each label (topic)
generates di erent words, and a document is produced by a mixtug of the word distri-
butions of its labels. Given a set of classes, each document is gertecaby a mixture
of word distributions and mixture weights, where the weight of clases not belonging
to this set are forced to be zero. The parameters of the model ardetermined using
a maximum a posteriori estimation from a collection of labeled training é&ta. The
Expectation-Maximization (EM) is used to determine the parameters that cannot be
estimated directly from the training dataset. For the classi cation of a new document,
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the Bayes rule is employed in order to calculate the posterior probality of each set of
classes and select the most likely set given the document. A similar wdtbased mixture
model is presented in 105, where two parametric mixture models are proposed. Finally,
a maximum entropy model is introduced in [L3]] in order to capture the pairwise class
correlation by adding second order constraints.

1.3 Related learning problems

The di erent approaches for multi-label learning that have been piesented in the previ-
ous section concern the so-callecht multi-label classi cation task. However, in some
problems, the classes are hierarchically organized, imposing the cgiraint that when
an instance is assigned to a certain class, it should also be assignedatl its super-
classes 90]. This learning task is called hierarchical multi-label classi cation. The
hierarchy of classes can be such that each class has at most onagrd or superclass
(tree structure) or such that classes may have multiple parents direct acyclic graph
structure) [10§. Examples of this kind of problems are found in several domains, in-
cluding text classi cation [90] and functional genomicsf][7][13]. In [103, a method
called HOMER transforms the multi-label classi cation problem with a large set of la-
bels into a tree-shaped hierarchy of multi-label classi cation subprblems with a small
number of labels. The hierarchical splitting of the set of labels is donesing a modi ed
k-means algorithm.

A distinction should be made between multi-label andmultiple-label learning prob-
lems. Multiple-label learning [56] is a semi-supervised learning problem for single-label
classi cation where each instance is associated with a set of labels bonly one of the
candidate labels is the true label for the given instance. For examplethis situation
occurs when the training data is labeled by several experts, and @uto con icts and
disagreements between the experts, a set of labels, instead ofaedy one label, will
be assigned to some instances. The set of labels of an instance @ns the decision
(the assigned label) made by each expert about this instance. It mees that there is an
ambiguity in the class labels of the training instances.

Multi-instance learning for classi cation is an another variation of supervised learn-
ing problems where each training object is represented by bag of instances (feature
vectors) and is assigned a single labelRfl][72]. For example, this learning problem is
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Figure 1.6: Di erent learning problems

encountered in drug activity prediction [24]. A molecule, quali ed to make some drug,
is originally small and works by biding to a larger protein molecule. It is knavn that
the biding strength depends on the shape of the molecule. Each mal@e has multiple
possible shapes and it is generally unknown which of these shapes €oor more) cause
the biding [13(. Thus, for this problem, we have to represent an objet by a bag of
instances, each one describing a shape, and the bag is labeled asregponding to a
drug molecule or a non-drug one.

Another learning problem is multi-instance multi-label learning where each object
is described by a bag of instances and is assigned a set of labdl&7[94]. This learn-
ing problem combines the multi-instance and the multi-label learning taks. Di erent
real-world applications can be handled under this framework. For exmple, in text
categorization, each document can be represented by a bag of iasces, each instance
representing a section of this document, while the document may d¢ with several
topics at the same time, such agulture and society.

Figure 1.6illustrates the di erent learning frameworks: traditional supervised learn-
ing for single-label classi cation, multi-instance learning, multi-label learning and multi-
instance multi-label learning.

In this work, we focused on the study ofnon-hierarchical multi-label learning prob-
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lems, where each training object is described by single feature vector and may belong
to several classes at the same time.

1.4 Contributions

Three original methods for multi-label learning will be exposed in this hesis, using the
k-nearest neighbor rule as base classi er.

The rst method, called DML kNN for Dependent Multi-Label k-NN, is a proba-
bilistic multi-label classi cation method able to exploit information about label inter-
dependencies, which is very important for the success of multi-labelassi cation tech-
niques. This method generalizes the state-of-the-art MKNN algorithm by relaxing the
assumption of label independence. A maximum a posteriori (MAP) démation is used
in order to determine the proper set of labels to be assigned to a temstance x, accord-
ing to statistical information extracted from the labeling of the nearest neighbors. For
each! ¢ 2 'Y, the numbers of neighboring instances belonging to each possible staare
used in order to compute the posterior probabilities thatx belongs and does not belong
to ! q. Depending on which of these probabilities is greater, we decide to sign or not
the class! 4 to test instance x. The decision is made independently for each label, but
correlation between labels is exploited when computing the two aforaentioned proba-
bilities. When computing the posterior probabilities for ! 4, the frequency of occurrence
of a label! [ in the label sets of the neighboring instances will a ect the membeifisip of
X to class! g.

We also propose two multi-label classi cation methods that are able tdhandle multi-
labeled datadirectly. As we have seen above, most existing multi-label learning algo-
rithms transform the multi-label classi cation problem into one or more single-label
learning tasks and adapt conventional classi ers for the multi-labelpurpose. BR, LR
and LP are the three common transformation approaches. In consast, for the proposed
methods, the multi-labeled data are not transformed into single-laleled ones, and thus
there is no information lost in data labeling. The two direct multi-label classi ers are
intrinsically able to capture any relation between labels.

Another motivation behind the two developed methods is that, whenlearning a
multi-label classi er, we generally assume the existence of a labeleddaining set in
which each instance is associated with a perfeatell-known set of labels. However, in
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practice, gathering such high quality information is not always feasile at a reasonable
cost. However, in many real-world applications, we are facing situéns where we have
to deal with imperfect labeled instances and to handle imprecisions @huncertainties in

data labeling. Such situations occur for exemple, when the data adabeled subjectively
by one or many experts. Possibility [L24[33] and evidence §3][99 theories provide
frameworks for reasoning under uncertainty and make it possiblea handle easily such
complex problems.

In[119, a possibilistic framework has been proposed for the expressionsiatements
involving veristic variables, which can also be called fuzzget-valuedvariables. Veristic
variables are variables that can assume simultaneously multiple valuewith di erent
degrees. Four types of veristic statements allow us to represeiiny piece of knowledge
about veristic variables: open positive, open negative, exclusive giive, and exclusive
negative statements. In multi-label learning, the class label of eaclinstance can be
considered as a veristic variable, since the instance can belong simatieously to more
than one class. The veristic theory will be used to build a multi-label clasi er called
VERKNN. The labeling of each training instancex; is represented by two distributions:
a verity distribution containing positive information about the labels that should be
assigned tox;, and arebu distribution encoding negative information about the la-
bels that should not be assigned to that instance. The verity and rebu distributions
corresponding to the neighboring training instances are discountedepending on the
distance to the instance to classify, and are then combined in ordeto determine the
set of classes to assign to the unseen instance.

In evidence theory, aframe of discernment is de ned as the set of all possible
exclusivesolutions of a given problem, where each variable can have one andlpmone
solution in . In a multi-label learning problem, the label setY of each instancex is a
set-valued variable taking values in the set of all classe¥. A straightforward approach
to study the problem of multi-label learning under evidence theory is of course, to
de ne the frame of discernment as the set of all subsets off. Each label setY that
represents a set-valued variable orY is then considered as a single-valued variable on
the frame of discernment = 2 Y. However, this approach often implies working in a
space of very high cardinality, as the size of the frame of discernmeis j j=29. If we

want to express imprecise information aboutY , we will have to manipulate subsets of
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. As there are 22° of these subsets, this approach rapidly becomes intractable aséh
number of possible classes Q increases.

A major contribution of this thesis is the de nition of an approach able to handle
and represent uncertainty about set-valued variables using the Bmpster-Shafer theory
of belief functions P3] and with only a moderate increase of complexity. Our approach
represents an alternative to veristic theory for manipulating setvalued variables. The
proposed approach will be based on a simple representation of a c$a3(Y) of subsets of

=2 Y which, endowed with set inclusion, has a lattice structure. Using reent results
about belief functions on lattices {9, we will be able to generalize most concepts
of Dempster-Shafer theory in this setting. This formalism will be shavn to allow the
expression of a wide range of knowledge about set-valued variab)egth only a moderate
increase of complexity (from2° to 39) as compared to the usual single-valued case.

Using the belief function framework for set-valued variables, we willpresent an
evidence-theoretick-NN rule for multi-label learning called EML KNN. For this method,
each neighbor of an instance to classify is considered as an item of evidence supporting
certain hypotheses regarding the class label of that instance. Tendegree of support is
de ned as a function of the distance between the two examples. Eadtem of evidence
is represented by two disjoint subsets ofY, a subset of classes that surely apply to the
unseen instancex, and a subset of classes that surely do not apply ta. The evidence
of the k nearest neighbors is then pooled by means of a combination rule in ced to
estimate the set of labels of the unseen instance.

1.5 Conclusion

In this chapter, an analysis of the state-of-the-art of the multi-label learning task has
been exposed. We have shown that there are three main approah for multi-label
learning: BR, LR, and LP. The basic idea of these approaches consisits transforming
a multi-label learning problem into one or more single-label learning ore

Di erent real-world applications requiring multi-label learning have been described,
and related learning problems have been also summarized.

Finally, we have discussed the aim of this thesis. Exploiting label coriation, and
handling imprecision in data labeling are the main motivations.

In the next chapters, the three methods for multi-label learning will be detailed.
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Bayesian approach for multi-label
learning

Summary

In this chapter, we propose a Bayesiark-nearest neighbor rule for multi-label learning.
This method is able to take into consideration the correlation betwea labels. In fact,
in multi-labeled data, the membership of an instance to a given class, ay provide
information on the membership of that instance to another class. Br example, if an
image is assigned to class Desert, one can deduce that the imageosid not belong
to class Lake . Each query instance is classi ed on the basis of statisal information
extracted from its nearest neighbors. More precisely, the proHality of the assignment
of an instance to a certain class is estimated, from the training datset, based on the
number of neighbors belonging to that class and also the number ofeighbors belonging
to each of the other classes. Since that the size of the training sé&t usually limited,
the posterior probabilities are computed based on the@pproximate number of neighbors
belonging to each class existing in the neighborhood.

Résumé

Dans ce chapitre, nous présentons une méthode Bayésienne pdlapprentissage
multi-label basée sur la régle dek-plus proches voisins. Cette méthode est capable de
prendre en considération les correlations entre les di érentes class. En fait, en ce qui
concerne les données multi-étiquetées, I'appartenance d'un individiuune classe donnée,
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peut donner une certaine information sur l'appartenance de ce méeindividu a une
autre classe. Par exemple, si on associe la classe Désert a ungaiee image, on peut
en déduire que cette image n'appartient pas a la classe Lac . Dans lagthode proposée,
la classi cation de chaque nouveau individu est basée sur des infornmians statistiques
extraites de ses plus proches voisins. Plus précisément, la probakdlid'appartenance
d'un individu donné a une certaine classe est estimée a partir de la bad&pprentissage,
en fonction du nombre de voisins appartenant a cette méme classeaussi en fonction
du nombre de voisins appartenant a chacune des autres classesieVque la taille de
données d'apprentissage est souvent limitée, les probabilités a pesiori sont calculées en
fonction du nombre approximatif de voisins appartenant a chacune des classes existant
dans le voisinage.

26



Chapter 2: Bayesian approach for multi-label learning

2.1 Introduction

Binary Relevance (BR) is the most common approach for multi-label larning. A bi-
nary classier is trained to separate one class from the others. Theutputs of the
di erent binary classi ers are combined in order to determine the nal output of the
multi-label classi er. The binary classi ers tacitly assume the non-dependency between
labels. This assumption is questionable in many multi-label learning prolems. In
general, multi-labeled data exhibit relationships between labels, andibary classi ers
fail to capture this e ect. For example, fentertainment; music g is more likely than
f entertainment; politics g, because documents that are under the labehusic are more
likely to have also labelentertainment in their label sets than label politics. Despite
of this limitation, the BR approach is simple and intuitive and has the advantage of
having low computational complexity.

A Bayesian algorithm for multi-label learning will be presented in this chapter. The
proposed method is derived from thek-nearest neighbor rule and is able to capture
dependencies between labels. The classi cation of an instance is ci&d out by exploit-
ing statistical information extracted from its k nearest neighbors and through Bayesian
inference. This method is called DMIKNN and generalizes the MIKNN algorithm pre-
sented in [L29. The proposed method relies on the binary relevance approach, ime
sense that a decision is made separately for each class, while ovening the label in-
dependence assumption.

This chapter is organized as follows. In Sectior2.2, a general overview about
Bayesian classi cation will be presented. In Sectior?.3, the well-known k nearest neigh-
bor rule will be described. Label correlation in multi-label learning will be discussed in
Section 2.4. Section 2.5 will present the proposed multi-label classi cation algorithm
based on a Bayesian interpretation of thek-NN rule. An illustration on a simulated
dataset will be reported in Section2.6. Finally, Section 2.7 will conclude this chapter.

2.2 Bayesian rule for classical classi cation problems

Di erent probabilistic model speci cations can be designed in order toaddress the
classi cation problem. Bayesian classi cation methods are in general &#ised on the
Bayes theorem $1][42]. This is a generative approach to classication and it o ers
a useful conceptual framework. It allows us to develop practical kErning algorithms
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providing, based on a training set, prior knowledge and observed infmation about
instances to classify.

The generative probability model for a Bayesian classi er can be desibed as follows.
Let x be an instance to classify, and let Iﬂ denote the hypothesis thatx belongs to
class! ¢ 2 Y if b= 1, and the hypothesis that x does not belong to! 4 if b = 0.
Pr(HJjE) represents theposterior probability that x belongs to!  given the observed
evidence E that represents knowledge about the instance to classify. Badeon the
maximum a posteriori (MAP) rule, a Bayesian classi er h assignsx to the class with
the maximum posterior probability. For the computation of Pr (HJE), for eachq 2

a likelihood Pr(EjH?), using the Bayes theorem:

Pr(EjH)Pr(H}) .
Pr(E) '

where Pr(H‘j) is the probability that an instance belongs to class! g, Pr(EjH‘j) is the

Pr(HJjE) =

probability of observing E giving that the instance belongs to! 4, and Pr(E) is the
probability of observing E. For example, suppose that we have a dagnent classi cation
problem with two possible classed ; for scientic and !, for literary. A training
dataset contains 60% of scienti c documents and 40% of literary oree Consider the
observation that 70% of all scientic documents contain the word typothesis and
5% contain the word literary . Let E represents the evidence of oberving the word
hypothesis in a document. The probability Pr(E) of observing this word is P(E) =
Pr(EjH})Pr(H}) + Pr(EjH?)Pr(H?) = 0:7 0:6+0:05 0:4 = 0:44. The probability
Pr(H}E) of a document containing hypothesis and belonging to clas$ ; is 0:7
0:6=0:44 = 0:95, while the probability Pr (H?JE) of such a document belonging to the
literary class is0:4 0:05=0:44 = 0:05.

Note that Pr(E) may be considered as a normalization factor that can be ignored
in practice when computing the posterior probability correspondingto each class! g,
as it does not depend on the classes. Thus, the output of the Bag@n classier h is

determined in general as follows:
h(x) = !';; such that:
r =argmax Pr(EjH])Pr(H);
g=1::Q

the prior probabilities and the likelihoods being estimated from training data.
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2.3 Nearest Neighbor classi cation

The Nearest neighbor (NN) rule is one of the simplest and most poputamethods for
statistical learning [17]. This is an instance-based classi er that has been shown to be
very e ective in many classi cation problems [37][19]. The intuition is simple. Giving
a single-labeled training set, the classi cation of a query instancex is performed by
assigning it the label of the least distant training pattern accordingto some distance
measure. The votingk-nearest neighbor rule, withk 1, is a generalization of the NN
approach where the most frequent class occurring in th& neighbors ofx is predicted.
The voting k-NN rule is less sensitive to noise on the available training data.

Clearly, the performances of thek-NN rule depend on the distance metric ¢:;:)
used to identify nearest neighbors, and the numbek of neighbors to be considered for
the classi cation of unseen instancesdg]. Note that, usually, when feature variables are
not of comparable units and scales and there is a great di erence irhe range of their
di erent values, distance metrics implicitly assign greater weight to features with large
ranges than those with small ones. In such cases, feature normaition is recommended
to approximately equalize ranges of the features such that they i have the same e ect
on distance computation.

The Euclidean metric is the most popular distance function and it is widdy used
in K-NN classi cation. This metric, however, does not exploit any statistical properties
and information that can be extracted and estimated from the traning data. Many
researches have been focused on the de nition of distance metrits improve the k-NN
classi cation. Ideally, the distance metric should belocally adapted to the classi cation
problem under study, and thus should be learnt a metric from the lakeled training data.
In [52], local linear discriminant analysis is used to estimate an e ective metc for
computing neighborhoods. The idea is to locally determine feature tevance for each
query instance x, so that its neighborhood gets an ellipsoidal shape elongated along
the true decision boundary (the most relevant feature), and attened in the direction
orthogonal to it. A similar approach has been presented in46]. Locally adaptive
metric was proposed using a Chi-squared distance that measurdsd similarities between
two instances in terms of the di erence between their two class pdsrior probabilities.
In [48], a distance metric has been presented by learning a linear transfmation of the
input space such that in the transformed spacek-NN performs well. A method for
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learning a Mahalanobis distance measure by semi-de nite linear programing has been
proposed in L17. The metric is trained with the goal that the k nearest neighbors
always belong to the same class while instances from di erent classase separated by
a large margin. In [L10, an adaptive distance metric has been proposed. It consists in
normalizing the ordinary distance (e.g. Euclidean one) between the ugry instance x
and a training instance x; by the shortest distance betweenx; and training instances
belonging to classes di erent from the class ok;. Although these proposed metrics
may improve the performance of thek-NN classi er, their computational complexity is
higher than that of the conventional Euclidean distance.

We have to specify as well the value of the parametek that controls the size of
the neighborhood. A major issue ink-NN classi cation is how to nd an optimal
value of k. In general, the value ofk depends on the size of the training datan. As
shown in [L7], k should vary with n in such a way thatk ! 1 andk=n! O0as
n!l . However, for nite values of n, there is no theoretical guideline for choosing
the value of k. In [85], a study on the relationship between the size of the training
dataset and the parameterk, and the impact of k on classi cation accuracy have been
reviewed. It has been shown that for large training sets, a broad $ef values of k
leads to similar results, while small training sets require more carefudelection ofk. For
larger training sizes, accuracy becomes increasingly stable with igsct to k. In general,
larger values ofk tend to produce smoother models and are less sensitive to label nejs
however, they increase the computational burden and include fdaher training instances
in label estimation, so there is nolocality in that estimation [17]. In [109, a method
for neighborhood size selection based on the concept of statisticeon dence has been
proposed. In this approach, a de ned criterion is used to determine lte needed value
of k. The number of nearest neighbors is dynamically adjusted until a d#sfactory level
of con dence is reached. In 113, it has been shown that the best value ok not only
depends on the training dataset, but also on the given instance tolassify. Instead
of using a xed value of k, a local value is estimated for each query instance. The
adaptive choice ofk has also been studied in46]. Using di erent values of k instead
of single value adds more exibility to the classi cation process, but, havever, makes it
more di cult and more computationally complex because, the optimization of k has to
be made for each instance. Cross-validation is still the most widely &sl approach to
estimate the optimal value of the neighborhood parametek.
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2.4 Label correlation in multi-label applications

In multi-label learning, the possibility of joint membership of an instance to several
classes may imply the existence of some information in the label spa@bdout the in-
terdependency between di erent labels. The assignment of class to an instance x
may provide information about the membership of that instance to dher classes. Label
correlation exists when, the possibility for an instance to belong to alass depends on
its membership to other classes. For example, a document with theopic politics is
unlikely to be labeled asentertainment, but the probability that the document belongs
to classeconomicis high.

In general, relationships between labels have high order or even fultaer, i.e., there
is a relation between a label and all remaining labels, but these relatianare more
di cult to represent than second-order relations, i.e., relations that exist between each
pair of labels. Label correlation can be represented in the form of aontingency matrix
mat that allows us to express onlysecond-order relations between labels. Given a
multi-labeled dataset D with Q possible labels,mat[q][r] = Pr(HjjH}), whereqand r 2

Pr(H‘jorl) represents the proportion of data inD that are assigned label! 4, knowing
that they also belong to! ;. mat[q][q] = Pr(H(l‘) indicates the frequency of label 4 inthe
datasetD. Figures 2.1, 2.2 and 2.3 show, respectively, the contingency matrices for the
emotion (Q = 6), scene (Q=6) and yeast (Q = 14) datasets used in our experiments,
which will be described in Chapter5. For example, in the emotion dataset, each object
represents a song and is labeled by the emotions evoked by this son@/e can see in
Figure 2.1that mat[1][4] = Pr(H}jH}) = 0, meaning that labels! ; and! 4 cannot occur
together. This is easily interpretable, as! ; corresponds to amazed-surprised while
I 4 corresponds to quiet-still, and these two emotions are clearly oposite. We can
also see thatmat[5][4] = Pr(H3jH}) = 0:6 , which means that ! 5 representing sad-
lonely frequently coexists in the label sets with! 4. We can see from these examples
that labels in multi-labeled datasets are often correlated, and expliting relationships
between labels will be very helpful for improving classi cation performance.

The most intuitive and straightforward way for multi-label learning is the BR ap-
proach, which decomposes a multi-label classi cation problem into seral binary clas-
si cation problems; one binary classi er is trained for each label and ued to predict
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Figure 2.1: Contingency matrix of emotion dataset
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Figure 2.2: Contingency matrix of scene dataset
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Figure 2.3: Contingency matrix of yeast dataset

whether, for a given test instance, this label is relevant or not (se Section1.2.1). An
advantage of the BR approach is that it is simple, intuitive, and a multi-label classi er
can be built by directly using any state-of-the-art binary classi cation algorithm. How-
ever, BR learns the binary classi ers independently, and ignores anyelation between
labels. It may also predict labels that would never co-occur in reality.

In fact, for optimal performance, a probabilistic multi-label classi er should esti-
mate the set of labels with the highestjoint probability, instead of the combination
of labels with largest individual probabilities. For example, given an evat E about
an instance to classifyx, we suppose that the joint posterior probability Pr(HZ; HgojE)
of the two possible classe$ 1 and ! , are shown in Table2.1. Suppose also that we
trained a single-label probabilistic classi er for each of the two classe and, as a result,
we obtained the two individual posterior probabilities Pr(H%jE) and Pr(Hﬁoj E). We can
see that PH3JE) = 0:3 is less than P(H}E) = 0:7, and the binary approach will
assign clasd ;1 to instance x. For the same reasonx is assigned clas$ ,. However,
if we take a look at Table 2.1, we can remark that Pr(H3; H2JE) = 0:4 is bigger than
Pr(H1; H%jE) = 0:3, which means that the true label set ofx only contains class! ».
Therefore, combining independent binary classi ers may not be reallye ective for the
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purpose of multi-label classi cation, as the mutual correlations amag di erent classes
are completely ignored. A more adequate approach for multi-label Brning might be to

take into account the di erent combinations of labels and to compute the correspond-
ing joint probabilities. In practice, in the absence of prior knowledge,this approach

estimates the joint probabilities from a given training dataset D of sizen. Moreover,

the number of label combinations expands exponentially with the incease of the num-
ber of possible labels Q, and the number of joint probabilities to be eghated is upper
bounded bymin(n; 2Q). Consequently, estimating all joint probabilities has higher com-
putational complexity but, some joint probabilities have to be estimated from possibly
small number of training instances, which may introduce some bias inthte learning pro-
cess and degrade the overall classi cation accuracy. In fact, whecalculating the joint

probabilities of di erent possible label combinations, only a small numker of training

instances may be associated with each combination, specially if it coains many labels.
Another limitation of this approach is that an instance to classify canonly be associated
to a label set that exists in the training dataset.

Table 2.1: An example of joint distributions of two labels.

Pr(Hg; HYJE) | b=0 b=1 | Pr(H&E)
=0 0 04 0.4
=1 03 03 0.6

Pr(HLE) 03 07

In this chapter, we propose a Bayesian multi-label classi cation methd based on
the k-NN rule, which is able to capture correlations among labels while maintaing
acceptable computational complexity. This method is called DMIKNN for dependent
multi-label k-nearest neighbor. It is BR-based approach in the sense that a bima
decision is made separately for each label given an instance to clagstut it overcomes
the label independence assumption of BR. In our method, label coetation is exploited
by extracting statistical information from training instances, which will be used to
assign or not each label to a given test instance. This method is a geralization of the
MLKNN algorithm proposed in [129. In this algorithm, a decision is made separately
for each label by taking into account the number of neighbors beloging at least to that
label. Thus, this method fails to take into consideration the interdependency between
labels. In contrast, after identifying the k-NNs of the instance to classify, our method
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uses a MAP rule for each label, which takes into account the numbersf neighboring
instances belonging to the di erent labels instead of only consideringhe number of
neighbors having the label in question.

2.5 DML kNN for multi-label classi cation

As in the rst chapter, let X = RY denote the domain of instances, each one represented

consisting of n training examples, independently drawn fromX 2Y, and identically

distributed, where x; 2 X and Y; 2 2¥. The DMLKNN method learns a multi-label

classier H : X I 2Y from the given training data, which predicts a set of labels to
each unseen instance 2 X. In addition to H, DML kNN de nes a scoring function

f :X Y ! R that assigns a real number to each instance/label combination. Fo
each clasd 2, the scoref (x;! ) represents the probability that ! is relevant for the

instance x. The scoring function f is used to rank the labels corresponding to their
relevance for the instance to classify. Note that the multi-label clasier H() and the

scoring functionf (; ) are linked by the following relation:

H(x)= f! 2Yjf(x;!)>tg;

wheret is a threshold value.

Given an instancex and its associated label set Y , let NX denote the set of the
k closest training examples ok in D according to a distance function d:;:), and let yy
be the Q-dimensionalcategory vector of x whoseqth component indicates if x belongs
to class! 4 or not:

1 iflq2Y
0 otherwise

yx(a) =

Let us represent bycy the Q-dimensional membership countingvector of x, the gth
component of which indicates how many examples amongst thie-NNs of x belong to

class! q:
X

cx () = yx (@; 892fl1:::;Qg

Xi2N K
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2.5.1 MAP principle

Let x now denote an instance to classify. Like in alk-NN based methods, for the test
instance x, the set N of its k nearest neighbors should be rstly identi ed. Under
the multi-label assumption, the counting vector ¢k is computed. As mentioned before,
let H‘j denote the hypothesis thatx belongs to clasd 4, and Hg the hypothesis that x
should not be assigned 4. Let qu (j 210;1;:::;kg) denote the event that there are
exactly j instances inN ¢ belonging to class g- To determine the gth component of the
category vectoryy for instance x, the MLKNN algorithm uses the following MAP [129:

po(q = angjer?; Pr(HpiEQ (); (2.1)

while for the DML kNN algorithm, the following MAP is used:

N

P«(d) = argmax Pr(Hj  E )
b2f 0;1g 12y N
= argmax Pr(HgiE] ; Et, () (2.2)
b2f 019 112Ynf ! qg

In contrast to decision rule (2.1), we can see from Equation 2.2) that the assignment
of label ! 4 to the test instance x depends not only on the event that there are exactly

V
cx(Q) instances having label! ¢ in NX, i.e., E but also on E'CX(I), which

cx (a)’ |
112Ynf ! q9
is the event that there are exactly cy(I) instances having label! | in Nk, for each

' 2Ynfl 40. Thus, it is clear that label correlation is taken into account in (2.2) since
all the components of the counting vectorck are involved in the assignment or not of
label ! 4 to x, which is not the case in Equation @.1).

2.5.2 Posterior probability estimation

Vv
Regarding the counter vectorcy, the number of possible events E'CX(I) is upper
2y

bounded byk®. This means that, in addition to the complexity problem, the estimation
of (2.2) from a relatively small training set will not be accurate. To overcone this
di culty, we will adopt a fuzzy approximation for ( 2.2). This approximation is based
on the event F} j 2 £0;1;:::;kg, which is the event that there are approximately
j instances in N belonging to class! |, i.e., F}; denotes the event that the number
of instances iNN )X that are assigned label! | is in the interval [j ;] + 1, where
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AN

by (q) =argmax Pr(Hlj  F )): (2.3)
b2f 0;1g 12y
To remain closer to the initial formulation and for comparison with ML kNN, (2.3) will

be replaced by the following rule:

P« (q) = argmax Pr(HJE] ,; Fe, ) (2.4)

b2f 0:1g 112Ynf 1 qg
For large values of , the results of our method will be similar to those of MLKNN. In
fact, for = k, the MLKNN algorithm is a particular case of the DMLKNN algorithm,

\
where FLX(I) will be certain event because for each| 2 Ynf! 4g, the number of
112Ynf ! 40

instances inN ¢ belonging to clasd | will surely be in the interval [ k;j + k]. For small
values of , the assignment or not of label! 4 to test instance x will not only depend
on the number of instances inN X that belong to label ! 4, but also on the number of

instances inN ¥ belonging to the remaining labels.

Using the Bayes' rule, Equations @.1) and (2.4) can be written as follows:

Pr(HDPr(EZ . jHP)

— x ()
2(g) = argmax =
) b2f 0;1g Pr(ng (q))
= arg max Pr(Hg)Pr(ng(q)ng): (2.5)
b2f 0;1g
Pr(HOPIES ; © FL jHd
r(Hg)Pr( @, o Fe) b)
b«(q) = argmax rET v, 'Tj
b2f 0;1g r( @) it cx (1)
= argmax Pr(H)Pr(EJ Fe, iyiHD): (2.6)
b2f 019 1,2Ynf ! 49

To rank labels in Y, a Q-dimensional real-valued vectory can be calculated. The
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q .V FLoay):
ox (@ 112Ynf 1 4g ox ()

gth component ofr is de ned as the posterior probability Pr(H‘ij

N

Pr(HJjE

. |
rx(q) gx ()’ FCX(I))

12Ynf!

Pf(H(f)Pr(Eﬂ (@’ FL (|)jH?)
X 1 2Ynf ! 4g *

Pr(EY i FL )
ox (@ 12Ynf |49 ox()
Pr(HY)Pr(EY o; Fe, iyiHD)
_ D 112Ynf ! ag, .
b2f 0;1g Pr(Hg)Pf(ng(q)i F!:X(I)jHlb)
112ynf ! qg

2.7)

For comparison, the real-valued vectorr? for MLKNN has the following expression:

2 = Pr(HYED o)
Pr(HY)Pr(EZ, iHD
Pr(E, )
. Pr(H)Pr(E{ oiHD) 28
" bt 019 PF(HDPI(EL iHY) '
In order to determine the category vector x and the real-valued vectorry of
instance x, we need to determine the prior probabilities P(H'b) and the likelihoods

V
. @ . gF'CX(I)ng), foreachq2f1 Qg, andb2 f 0;1g. These probabilities
L s q

are estimated from a training datasetD.

Given an instance x to classify, the output of the DMLKNN method for multi-
classi cation is determined as follows:

H(x)= flq2Y] bx(d=1g;
and
f(x;!q) = rx(q),; foreach! 42Y:
Figure 2.4 shows the pseudo code of the DMKNN algorithm. The value of may
be selected through cross-validation and provided as input to the lgorithm. The prior

probabilities Pr(Hg), b= f0;1g, for each clasd 4 are rst calculated and the number of
instances belonging to each label is counted (steps 1 to 3):

Py @
n1 I_Iér(Hlﬁ): (2.9)

Pr(HS)
Pr(HJ)
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&

10.

11.

12.

13.

14.

15.

16.

17.

[yx;rx]= DML KNN(D;x;k;s; )

%Computing the prior probabilities and the number of instanc  es belonging to each class
For q=1 Q
=] qy — P m = . qy — qy-
r(H7) =( i=1 yx,(OI))—(n). Pr(Hg) =1 Pr(H;);
P n . 0, .
u@= iy yx;(@; ui(@)=n u(a);
EndFor

%For each test instance x

Identify N (x) and cy
%Counting the training instances whose membership counting ve ctors satisfy the constraints ( 2.11)

For q=1 Q

v(@)=0; vg)=0
EndFor
For i=1 n
Identify N (x;) and cy;,
If cx (a) cx; (@) cx(q)+ ;8q9g2Y Then
For g=1 Q
If cx;(q) == cx(q) Then
fy(@==1 Thenv ()= v(aq)+1;
Else v %(q) = v%(q)+1 ;
EndFor
EndFor

%Computing yx and ry

For q=1 Q

\% . .
Pr(EY () Foy(pIHD = (s+ v(@)=(s Q-+ u(a);
ty2vynf 1 gg
Pr(EY v FloniHD = (s+ vo(q)=(s Q+ u’q));
cx ()’ cx (1Mo a a);
tp2ynf ! qg
q q v | ind
yx (q) =argmax Pr(H;)Pr(E ; Fe ijb)
b2f 0;1g DT ovnt 1 g X
q q . A | q
- Pr(Hl)Pr(ECx(q),! v !ngCX(I)jHl)
x(q4)=# q q - v Ha
bar 0;1 PT(HRIPT (B (g7, v ng'cX(,)JHb)
EndFor

Figure 2.4: DML kNN algorithm.
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Recall that n is the number of training instances. u(q) counts the number of instances
belonging to class 4, and uq) indicates the number of instances not having q in their
label sets:

u(q) "y ()
e = n o ue: (210)

For test instance x, the k-NNs are identi ed and the membership counting vectorcy

is determined (step 4). In order to assign or not label 4 to x, we must determine the

likelihoods Pr(ng(q); F'CX(I)ng), b 2 f 0;1g, using the training instances such

112Ynf ! g9
as their corresponding membership counting vectors satisfy theoflowing constraints:

Cx; (@) = cx(0)

cx () Cx;(I) cx(l)+ ; foreach!|2Ynf! 40 (211)
This is illustrated in steps 5 to 12. The number of instances from the raining set
verifying these constraints, and belonging to class q is stored inv(qg). The number of
remaining instances verifying the previous constraints and not hawg ! ¢ in their sets

of labels is stored inv{q). The likelihoods Pr(ng(q); F'CX(I)ng), b2f0;1g, are
112Ynf 49
then computed:
8 \Y
2 Pr(E, (o Fe, yiHD) = %
x4 L2Y ! ag i 512
Pr(El o FLoHY = s (2.12)
ox (@)’ o()ITo) = sTgruy

12ynf ! 49

where s is a smoothing parameter §6. Smoothing is commonly used to avoid zero
probability estimates. When s = 1, it is called Laplace smoothing. Finally, the cate-
gory vector yx and the real-valued vectorry to rank labels in Y are calculated using
equations 2.6) and (2.8), respectively (steps 13 to 17).

Note that, in the ML kNN algorithm, only the rst constraint in ( 2.11) is considered
in order to compute the likelihoods PI(ng(q)ng), b2 f0;1g. As a result, the number
of examples in the learning set satisfying this contraint is larger thanthe number of
examples satisfying 2.11). Thus, the MLKNN and DML KNN should not necessary be
compared with the same smoothing parameter.

2.6 lllustration on a simulated dataset

In this section, we illustrate the behavior of the DMLKNN and MLKNN methods using
simulated data.
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The simulated dataset contains 1019 instances ifR? belonging to three possible
classes)Y = f! 1;!2;! 39. The data were generated from seven Gaussian distributions
with means (0,0), (1,0), (0.5,0), (0.5,1), (0.25,0.6), (0.75,0.6), (0.5,0)5, respectively,

. .10 : : :
and equal covariance matrix 01 The number of instances in each class is chosen

arbitrarily (see Table 2.2). Taking into account the geometric distribution of the gaus-
sian data, the instances of each set were respectively assignedlabel(s) f! 19, f! »g,
fla;log, f1ag, f1a;!ag, floitag fas! 2! 50

Table 2.2: Summary of the simulated data set.

Label set | Number of instances

flig 150
fl >0 162
flq;120 304
fl 30 262
flq;!30 43
flo;!30 78
fl;02;1 30 20

Figure 2.5 shows the neighboring training instances and the estimated label séor
a test instancex using DMLKNN and MLkNN. For both methods, k was set to 8, and
Laplace smoothing 6 = 1) was used. For DMLKNN, was xed to 1. Hereafter, for the
test instance in question, we will describe the di erent steps for tle estimation of the
label set ofx using the DMLKNN and MLkNN algorithms. For the sake of clarity, we
will recall the de nition of some events introduced before. The memiership counting
vector of the test instance iscy = (7;3;2). Using the DMLKNN method, in order
to estimate the label set ofx, the following probabilities have to be computed from
Equation (2.6):

(1) = artgfr(r)\?x Pr(HE)Pr(E3; F3; F3jHL)
1g

P (2) = agfrg?x Pr(HZ)Pr(E3; F3; F3jH2)
1g

(3 = arbgzlfrg?x Pr(H3)Pr(ES; F3; F3iH3):
1g

We recall that E3 is the event that there are seven instances itN X which have label
I 1, F3 is the event that the number of instances inN X belonging to label! ; is in the
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el

Figure 2.5: Estimated label set (in bold) for a test instance using the DMLKNN (top)
and MLKNN (bottom) methods.

interval [3 ;3+ ] =1[2;4]. In contrast, for estimating the label set of the unseen

instance using the MLKNN method, the following probabilities have to be computed
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from Equation (2.5):

p2(1) = argmax Pr(HE)Pr(ELjHE)
b2f 0;1g

p2(2) = argmax Pr(H2)Pr(E3jH2)
b2f 0;1g

p2(3) = argmax Pr(H)Pr(E3jH}):
b2f 0;1g

First, the prior probabilities are computed from the training set according to Equa-
tion (2.9):

Pr(H}) = 0:4527  Pr(H}) = 0:5473
Pr(H?)=0:5038  Pr(H3) = 0:4962
Pr(H3) =0:4396  Pr(H}) = 0:5604

Second, the posterior probabilities for the DMLKNN and MLKNN algorithms are cal-
culated ! using the training set:

Pr(E3; F3;F3jH}) = 0:0478  Pr(E3; F3; F3jHS) = 0:0139

Pr(E3; Fi;F3jH?) = 0:0237  Pr(E3; F%; F3jH3) = 0:0218

Pr(E3; Fi;F3jH3) = 0:0394  Pr(E3; Fi; F3jH3) = 0:1161
Pr(E}jH}) =0:1108  Pr(E}jH}) = 0:0431
Pr(E3H?)=0:1231  Pr(E3jH3) = 0:1746
Pr(E3jH3) = 0:0655  Pr(E3jH3) = 0:0593

Using the prior and the posterior probabilities, the category vectos associated to the
test instance by the DMLKNN and MLKNN algorithms can be calculated:

b()=1 p1)=1
P«(2=1 $(2)=0
b3)=0 P@3)=0:

Thus, the estimated label set for test instancex given by the DMLKNN method is
P =11 1;! 29, while that given by ML kNN is Po= f 19. The true label set for x is

1Using the DML kNN method, this is done according to steps 7 to 15, as shown in Figure 2.4 and
explained in Section 2.5.
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Y = f! ;! »0. In this case, we can see that no error has occurred when estimatjrthe
label set ofx using the DMLKNN method, while for the other method, the estimated
label set is not identical to the ground truth label set. Seven trairing instances inN X

have label! ; in their label sets while only three instances belong to label ». In fact,

the existence of label! 1 in the neighborhood ofx gives some information about the
existence or not of label! , in the label set of x. If we take a look at the training

dataset, we can remark that 14,7% of instances belong tb1, 15.9% to! », and 29.8%
to ! ; and ! » simultaneously. Thus, the probability that an instance belongs to bah

classed 1 and! , is approximately twice the probability that it belongs to only one of

the two classes. DMIKNN is able to capture the relationship between labeld ; and ! »

in order to improve the estimation of label sets, while MLKNN is not able to capture this
correlation. This example shows that the DMLKNN method, which takes into account
correlation between labels when calculating the assignment or not af label to the test
instance, may improve classi cation performance.

2.7 Conclusion

In this chapter, we have presented an original multi-label learning algrithm derived
from the k-NN rule, in which the dependencies between labels are taken into amant.
Our method is based on the binary relevance approach, which is oftecriticized for its
ignorance of correlation between labels. However, here, this diseahtage is overcome.
The classi cation of an instance is carried out through local statistial information
extracted from the k nearest neighbors of the instance to classify and using Bayesian
inference. This method, called DMLKNN, generalizes the MIKNN algorithm presented
in [129.

The illustrative example using a simulated dataset demonstrates the ciency and
the usefulness of our approach to represent and explore interdendencies between la-
bels. However, for DMLKNN, as compared to MLKNN, there is one additional parameter
that needs to be optimized, namely the fuzziness parameter. Moreover, MLKNN is
faster than DMLKNN. In fact, in the ML kNN method, the likelihoods Pr(ng(q)ng),
b 2 f 0;1g, are calculated from the training set, stored and then just used \wen pre-
dicting the label set of each query instance. In contrast, using DMkKNN, the number

of likelihoods Pr(ng(q); F'CX(I)ng), b2 f 0;1g, is much bigger, and thus, it will

112Ynf ! 40
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not be an easy task to calculate these probabilities in advance and ate them as in
MLKNN. The probabilities are computed locally for each query instance.
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Chapter 3

Multi-label learning under veristic
variables

Summary

Veristic variables are fuzzy set-valued variables that can assumensultaneously multi-
ple values with di erent degrees. In multi-label learning, class labels cabe considered
as veristic variables since each instance can belong to more than ookass at the same
time. Based on the approximate reasoning framework for represting and manipulat-
ing knowledge involving veristic variables, we propose in this chapter geristic k-nearest
neighbor rule for multi-label classi cation. The labeling of each instane is represented
by two distributions: a rst distribution called Verity which gives positive information
about the labeling of this instance, and a second distribution calledrebu which rep-
resents negative information about the di erent possible classesGiven an instance to
classify, each neighbor represents a piece of knowledge about tlabeling of this in-
stance. The verity and rebu distributions of the neighboring examples are discounted
depending on the distance to the instance to classify and are thenombined in order
to determine the set of labels of that instance. This method is espé@ily addressed to
handle data with imprecise labels.

Résumeé

Les variablesvéristiques sont des variables multi-valuées oues qui peuvent avoir
plusieurs valeurs simultanément, mais avec di érents degrés. Darfapprentissage multi-
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label, les étiquettes des di érents individus peuvent étre considésicomme des variables
véristiques, vu que chaque individu appartient a une ou plusieurs clags simultanément.
Dans ce chapitre, nous proposons une meéethode de classi cation milabel basée sur
la régle desk-plus proches voisins et utilisant le cadre de raisonnement approxinif
des variables véristiques qui nous permet de représenter et manier de connaissances
impliquant de telles variables. L'étiquetage de chaque exemple est refgenté par deux
distributions : une distribution appelée Verity qui donne des informations positives sur
I'étiquetage de cet exemple, et une autre distribution appelé®ebu représentant des
informations négatives sur I'appartenance aux di érentes classesossibles. Etant donné
un nouveau individu a classi er, chaque voisin fournit une certaine conaissance sur
I'étiquetage de cet individu. En tenant compte de la distance par rapprt a l'individu

a classi er, les distributions représentant I'étiquetage des di érens voisins sont consti-
tuées en premier lieu, et sont ensuite combinées a n de déterminer I'esemble de classes
de cet individu. Cette méthode s'adresse spécialement a la classi catiode données

étiquetées d'une facon imprécise.
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3.1 Introduction

One may di erentiate between two important classes of variables:single-valued and

set-valued variables. Single-valued variables, also calledisjunctive variables, are re-
stricted to take one and only value in their universe of discourse. Inantrast, set-valued

variables, also calledconjunctive ones, are allowed to take more than one value in their
universe [L29[32]. For instance, variables such as the current temperature, youday

of birth are single-valued variables while, for example, the languagegou speak, the

countries you have visited are set-valued variables. When talking ahg fuzzy variables,

single-valued ones are calledossibilistic variables, while set-valued ones are callederis-

tic variables [L15.

In [119, an approximate reasoning framework has been proposed for tmepresenta-
tion and manipulation of knowledge concerning veristic variables. Dugo the fact that
knowledge about set-valued variables may be uncertain and impred@s the developed
theory is based on fuzzy sets rather than crisp sets, in order to ake it rich enough to
handle all kinds of information.

As stated in the previous chapters, in multi-label learning problems,each instance
may belong simultaneously to several classes, contrary to standésingle-label problems
where objects belong to only one class. Thus, in multi-label learningthe class label
of each instance can be considered as a veristic variable. In this wqrkve propose
a veristic k-nearest neighbor rulek-NN) for multi-label learning. This method uses
the approximate reasoning framework based on veristic variablef representing and
combining knowledge about an unseen instance and predicting the mesponding set
of labels. The labeling of each instance is represented by two distriltions: a verity
distribution that provides positive information about the labeling of t his instance, and
a rebu distribution that represents negative informations about the posible classes.
Given an unseen instance, each neighbor provides positive and néiga information
about the label set of this object according to the distance betwen the two patterns.
The verity and rebu distributions induced by each neighboring instance are discounted
depending on the distance and are combined in order to determine ¢hlabeling of the
instance to be classi ed.

This chapter is organized as follow. Sectior8.2 presents the background on fuzzy
sets and possibility theory. Elementary de nitions and properties of fuzzy set and
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possibility theories will be rst recalled. The approximate reasoning famework for
veristic variables will then be presented in Sectior8.3. The representation of knowledge
about veristic variables, verity and rebu distributions, as well as the combination and
discounting of veristic information will be addressed in this section. InSection 3.4,
the task of multi-label learning in the framework of veristic variables will be studied.
We will rst discuss the labeling issue of multi-labeled instance in this framework, and
the veristic-based method for multi-label classi cation will then be introduced. Finally,

Section 3.5 will conclude this chapter.

3.2 Background

3.2.1 FRuzzy sets

In this section, we recall the basics of the theory of fuzzy sets. Me details can be
found in [123 and [31].

Let A be a (fuzzy or crisp) subset of the universe of discourse. If A is a crisp set,
each element! in is either afull member of A or not. In contrast, if A represents a
fuzzy set, full membership is not necessary, and an elemehtin  can be a membeito
some degree

Given a fuzzy setA de ned over , areal value in the interval [0; 1], represented by
A(!), is associated to each elemerit 2 . A(!) represents thedegree of membership
of I in A, and the function! |  A(!) (sometimes denoted as A) is referred to as
the membership function of fuzzy setA. The concept of fuzzy set thus generalizes that
of crisp set. In fact, the degree of membership of each elemeht2 to a crisp setA
of takes values inf0; 1g instead of the unit interval. Hereafter, we will review some

de nitions and properties concerning fuzzy sets.

3.2.1.1 Basic de nitions

Two fuzzy subsetsA and B are equal, if and only if the degree of membership is the

same for each in

A=B , A(l)=B(), 8! 2
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A is a subset ofB if and only if, for all ! in , the degree of membership of in A is
less than the degree of membership df in B:

A B, A(l) B(), 8!2

The complement of A, denoted by A, is a fuzzy set of for which the degree of mem-
bership of each element 2 is de ned as:

A(l)=1 A(); 8! 2

The cardinality j:j of a fuzzy setA may be de ned as:

. . X
JAj= A():
12

The -cut of A, denoted by A , with 2 [0; 1], is de ned as follows:
A =fl 2 JA(!) g

The empty set; can be viewed as a fuzzy set to which the membership degree of each
element in is equal to 0.

The union of two fuzzy setsA and B de ned over is a fuzzy setC of written as

C = A[ B andits is de ned by:

C(')=max(A(!);B(1)); 8! 2

Let C represent now the intersection ofA and B, denoted asC = A\ B. C is a fuzzy
set of de ned by:
C(')=min(A(' );B(1)); 8! 2

3.2.1.2 Properties of fuzzy sets

The fuzzy set operations de ned above have many properties in comon with their crisp
counterparts, such as commutativity, associativity, distributivit y, transitivity, idempo-
tency, De Morgan's laws, etc. More precisely:

Commutativity:
A[ B=B][ A

A\ B=B\ A
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Associativity:

Distributivity:

Idempotency:

Identity:

Absorption:

Involution:

De Morgan's laws:

3.2.2 Possibility theory

AL BIC)=(ALB)[ G

A\ (B\ C)=(A\ B)\ C:

AL (BN C)=(A[ B)\ (A[ C);

A\ (B[ C)=(A\ B)[ (A\ C):

Al A=A
A\ A=A
Al; = A
A\ = A

A[ (A\ B)= A;

A\ (A[ B)= A:

>l
I
>

>
v
I
>|
o

>
o8}
I

>|
|

Possibility theory was rst introduced by Zadeh based on fuzzy set heory [124]. Before
presenting an overview about this theory, we have to note that it ircludes two variants:
guantitative (numerical) and qualitative. These two variants mainly di er by the condi-
tioning operation [35]. This section is devoted to a review about quantitative possibility
theory. In the following, it will simply be referred to as possibility theory.
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3.2.2.1 Possibility distribution

Let v denote a possibilistic variable taking one and only one value in . For example,
is a nite set of classes, andv is the class label of an instance to classify. Aossibility
distribution on is a mapping from to the unit interval [O; 1]:

I [0;1]:

It represents a piece of knowledge abowt. The identity (! ) =0 meansthat! 2 s
an impossible value ofv and it is totally excluded, while (! ) =1 just means thatv = !
is normal and unsurprising and is one of the most possible values of A possibility
distribution on can be regarded as the membership function of a fuzzy subset of

[124). s said to be normalized if (! ) =1 for at least one element! in , in which
case is considered to be exhaustive33).

Complete knowledge aboulv is represented by a possibility distribution such that

(o) =1 forsome element g2 ,and (!)=0 for! & ! (. The situation of complete
ignorance about the true value ofv is represented by a possibility distribution such
that (!') =1 for each element! in . Given two possibility distribution and ©
representing two pieces of knowledge about, we say that ©is more informative or
more speci ¢ than if, for each element! 2 , (1) (') [118. The set of possible
values ofv according to Cis then more restricted than the set of possible values of
according to  [29]. The possibility distribution  such that (!)=1 forall! 2 s
the greatest element of this partial ordering relation.

3.2.2.2 Possibility and Necessity measures

Two measures on can be derived from . They are called possibility and necessity
measures and they are denoted by and N, respectively. Formally, the possibility
measure is the mapping from the power set of to the interval [0,1], de ned by:

2 1[04
(A)=sup (!); 8A
1 2A
The necessity measure is de ned as follows:

N:2 ' [01]
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N(A)=1 (A)=inf (1 (1)) 8A

The number ( A) represents the degree of possibility of the proposition (or event)
v2A , while N (A) represents the degree of necessity (certainty) of that propo-
sition. In other words, ( A) measures to what extent at least one element irA is

possible, andN (A) measures to what extent no element not belonging t@ is possible.

Possibility measures satisfy the maxitivity property, i.e, the posgbility degree of a
disjunction of events is the maximum of the possibility degrees of thee events:

N !

i=1
Dually, the necessity degree of a conjunction of events is the mininm of the necessity
degrees of the events:

Given di erent possibility distributions  ;;(i = 1;:::;n) representing knowledge about
the value ofv, there exist di erent combination rules to aggregate these distritutions [5].
The basic combination rules are the conjunctive and disjunction on& Let ¢, and

disj be the possibility distributions obtained by combining the j's,i =1;:::;n, con-
junctively and disjunctively, respectively. We have:

and,

In general, the conjunctive rule is used when all pieces of knowledgeeaconsidered to
be reliable, while the disjunctive rule corresponds to a weaker reliabilit hypothesis. If

forall! 2 , conj(!) is much smaller than 1, we can infer that at least one of the
combined pieces of knowledge is likely to be wrong, and the disjunctivaule may be

more adequate to that case.
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3.2.2.4 Comparison with Probability Theory

In Probability Theory, probability measures are self-dual in the sense that Pi(A) =
1 Pr(A). Incontrast, in possibility theory, necessity measures are the duaf possibility
measures, as we hawd (A) =1 ( A). Given a possibility measure and a probability
measure Pr, Pr is said to be covered by if:

Pr(A) ( A); 8A

This relation means that what is possiblemay not be probable, while what is impossible
is also improbable [36].

Notions of conditioning and independence have been proposed foogsibility mea-
sures. By analogy with probability theory, we may de ne:

(A\ B),

(AB) = gy
and

N(AjB)=1 ( AjB);

for eachA and eachB such that ( B) 6 0 [3].

3.2.2.5 Certainty-quali ed knowledge

Usually, pieces of knowledge about the true value ot are expressed in a way that
some trust quali cation is attached. Certainty-quali ed pieces of knowledge about the
true value of v are of the form v is A is certain, where 2 [0; 1] represents the
degree of certainty of the proposition v is A . Note that is is a relation to represent
knowledge about possibilistic variables 34]. If A is a crisp subset of , such piece of
certainty-quali ed knowledge means that it is certain at least at the degree that the
value of v is in A, or, equivalently, that any value outside A is at most possible to the
complementary degreel [33]. A possibility distribution  on can be induced from
such piece of knowledge verifying the following constraints:

(') max(A(');1 ); forall! 2 ;

and we have,
N (A)
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The principle of minimum speci city results in attributing possibility 1 to va lues in A,
and 1 to values not in A, and to assign as certainty degree to the proposition
vis A . When increases from 0 to 1, our knowledge evolves from complete igno@n
about v to complete certainty in v is A .

In the general case of fuzzy subsets of, the piece of knowledgevis A is  certain
leads to v is B such that, the membership function of B can be de ned as B4:

B(!')=max(A(');2 ); forall! 2

3.3 \Veristic variables

In [119, Yager develops a theory for the expression within the language @afpproximate
reasoning of statements involving veristic variables, i.e., variables tang as values fuzzy
subsets of the universe of discourse.

3.3.1 \Veristic statements

Let denote a universe of discourse, and a variable taking zero, one or several values
in ,i.e, V takes a single value in the set of fuzzy subsets of . Such a variable is
said to be veristic. LetVp 2 | denote the unknown true value ofV. Giving a fuzzy
setA 2 |1 , the following statements can be made to associate variabM with A [119:

1. V isv A, meaning that A Vp;

2. V isv(n) A, meaning that Vo  A;
3. V isv(c) A, meaning that Vo = A;
4. V isv(c;n) A, meaning that Vo = A.

In the above expressions, the relatiorisv has two parameters: ¢ for closed andn for
negative. The following example gives an illustration of these notatios.

Example 1 For a multi-label classi cation problem, assume that instances are sugs
and classes are emotions generated by these songs, as in the dorotlataset used in the
experiments reported in Chapter5. Upon hearing a song, more than one emotion can
be generated at the same time. LelV be a variable that corresponds to the emotions
evoked by a given song. LefA be the set containing the emotions sad and quiet.
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V isv A, means that the song evokes sadness and quietness but it can aigmerate
other emotions such as anger, calm, surprise, etc. This statemerepresents an
open positive (or a rmative) information;

V isv(n) A, means that the song evokes neither sadness nor quietness. Wavé
no idea about the remaining emotions. This is an open negative inforntn;

V isv(c) A, means that the songonly evokes sadness and quietness, no more
emotions being generated by this song. This is a closed (or exclusivgpsitive
information;

V isv(c;n) A, means that the songonly does notevoke sadness and quietness.
This is a closed negative information.

As remarked by Yager, any piece of knowledge about a veristic varide V of the
form V isv(:) A, can be interpreted by specifying a crisp or fuzzy seiV of fuzzy subsets
of , such that W contains the possible values oV consistent with that knowledge.
For eachB 2 | , W(B) is the degree of membership oB in W. The most simple
representation is to considerW as a crisp subset off , and thus, for the statement
VisvA,WB)=1ifB A, andW(B)=0 if B 6 A [119. Hereafter, we give the
crisp de nition of W for the four types of veristic statement:

1.VisvA! W=fB2Il jB Ag;
2.Visv(nf Al W=1fB2I jB Ag;
3.Visv(c)A ! W =fAg;

4.V isv(c;n) A ! W = fAg.

3.3.2 \Verity and Rebu distributions

From the veristic statement V isv(:) A, two functions from to [0; 1] associated to
the corresponding setW can be induced, allowing us to provide information about the
di erent elements of the frame of discourse . These functions, called theverity and

rebuff distributions, are de ned as follow:

Ver(!) = anz|r|1 max(B (! ); W(B));
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and,
Rebu (!)=1 max min(B(! ); W(B));

for each! 2
In the special case in whichW is a crisp subset, the de nitions of verity and rebu
distributions are reduced to:

Ver(!) = anzlr\1N B(!);

and,
' — ' — i I "
Rebu (1)=1 mza\%( B(!) ménW B(!);

for each! 2

In the following, we will only consider the case wher&V is a crisp set of fuzzy subsets
of . Ver(!) is then the minimal membership degree ot in any subset in W, while
Rebu (!) is the minimal membership degree of in the complement of any subset in
W. Ver(!) can thus be viewed as the minimal support forl being one of the values
taken by V, while, Rebu (! ) can be interpreted as the minimal support for! not being
one of the values taken byV.

In [120, a possibility distribution Poss has been also introduced. For each eteent
I in , Posg! ) represents themaximal support for ! being one of the values taken by
V. Posg! ) is the complement of Rebu (! ):

Posg! )=1 Rebu (!):rg%l B(!'), 8! 2

We can remark that Ver(! ) represents a lower bound on the truth of the proposition
I is one of the solutions ofV , while Posq! ) represents an upper bound on the truth
of that proposition. We can deduce that Ver(! ) Posg! ), from which it follows that

Ver(!)+ Rebu (!) 1; 8! 2 (8.1

The state of total ignorance about a veristic variableV is represented by verity and
rebu distributions such as: Ver(! ) =0 and Rebu (! ) =0, forall! 2 . Complete
knowledge aboutV can be represented as follows: max(Ver(! );Rebu (!')) =1 and
min(Ver(! ); Rebu (!)) =0, for each element! .

The verity and rebu distributions have the following expressions fa the di erent
veristic statement types:
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1. VisvA) Ver(!)= A(!) and Rebu (!)=0; 8! 2 ;
2. Visv(n)A) Ver(!)=0 and Rebu (1)= A(!); 8! 2 ;

3. Visv()A) Ver(!)= A(')andRebu (1)=1 A('); 8! 2 ;
4. Visv(c;n)A) Ver(!)=1 A(!)and Rebu ()= A(!); 8! 2

For instance, giving the open veristic statementV isv A, the set W of fuzzy subsets of

representing the possible solutions o/ isW = fB 2 1 jB  Ag. For any subset
B in W, we haveB(!) A(!),8! 2 . Thus, for each elementt 2 , the minimal
degree of membership of to a fuzzy subset inW is A(! ), and the maximal degree of
membership is1 because belongs toW as we have A and (!)=1. Therefore,
the verity measure Ver(! ) of each elementt 2 s B[r;i\?v B(!)= A(!), and the rebu
measure Rebu(!) of ! is1 Irgnza\/?/( B(1)=0.

In comparison with possibility theory, Poss de nes a possibility measurewhile Ver
and Rebu de ne necessity measures. The dierence is that Ver andRebu are not
de ned on subsets of but, individually, on the elements of

In the following, we will pay special attention to open veristic statements, which
will be more relevant for our purpose.

3.3.3 Combination of veristic information

Given two pieces of knowledge about a veristic variabl®/, the conjunctive combination
of the corresponding veristic statements is de ned as follows:

V isv A; and V isv A, Visv Ar[ Ay

V isv(n) Ay and V isv(n) Az V isv(n) A1 [ Az
The disjunctive combination of veristic statements is de ned by:
V isv Ajor V isv Ap V isv A\ Ag;

V isv(n) A or V isv(n) A, V isv(n) A1\ Ay

We notice the unexpected association of union and intersection withhe conjunctive
and disjunctive combination, respectively. Usually, as for examplehe Dempster's rule
of combination in belief function theory [93], the conjunctive combination of di erent
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pieces of knowledge is associated with intersection and not with unioas it is the case
here.

Example 2 Asin Example 1, let V be a variable representing the emotions evoked by a
given song. A rst expert tells us that the song evokes emotioneamazedand happy. For

a second expert, the evoked emotions ar@mazedand angry. If we trust both experts,
the conjunctive combination of the two pieces of knowledge leads tthe conclusion that
the emotions evoked by the song aramazed happy and angry. In contrast, if only one
of the two experts is reliable, the disjunctive combination is recommeded. Thus, the
emotion that corresponds to the song ismazed

In this chapter, we are interested in the combination of veristic knoledge modeled
by verity and rebu distributions. Let Ver 1 and Rebu ; be the verity and rebu dis-
tributions that correspond to the rst source of information about the veristic variable
V, and let Ver, and Rebu , be the corresponding distributions of the second source
of information about V. Let Ver and Rebu denote the resulted distributions after
combination.

The disjunctive combination of the informations given by the two souces of knowl-
edge is de ned as follows:

Ver(! ) = ( Very or Very)(! ) =min( Very(! ); Very(!));
and,
Rebu (! ) = (Rebu 1 or Rebu 2)(!)=min( Rebu 1(!);Rebu (! ));

for each! 2
The conjunctive combination of the informations given by the two sairces of knowl-
edge is de ned as follows:

Ver(!) = ( Very and Verp)(! ) = max( Very(! ); Vera(!));
and,
Rebu (! ) =(Rebu 1 and Rebu 2)(!) = max( Rebu 1(! ); Rebu 2(!));

for each! 2
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We have to be careful when using the conjunctive combination, bewse we risk to
violate the assumption (3.1) if there is a conict between the two pieces of information
to combine. In fact, if for an element! 2 , Ver(! )+ Rebu (! ) > 1, which means that
the two sources of knowledge are con icting and cannot be combinedThis risk does
not exist when combining the information disjunctively.

Note that the conjunctive (and) and disjunctive (or) combination rules are com-
mutative and associative.

We now propose another combination rule that will be denoted byand =or and that

is de ned as:
Ver(!) = ( Very and =or Very)(!)
_ (Very or Ver)(!) if Ver(! )+ Rebu (1)>1
(Very and Very)(!) otherwise,
and,
Rebu (!)= ( ( Rebu 1 and=or Rebu 5)(!)
_ (Rebu i or Rebu 2)(') ifVer(!)+ Rebu (!)>1
(Rebu ; and Rebu ,)(! ) otherwise,

for each! 2

The proposedhybrid rule of combination allows us to combine di erent informations
conjunctively while avoiding the risk of having conict. This rule is commutative but
not associative. The hybrid rule is inspired from the Dubois and Pradecombination
rule [32] in the framework of belief function theory [95].

3.3.4 Discounting

Let 2 [0;1] be the degree of certainty or reliability associated with the given steement
about a veristic variable V. The equality =1 implies that the given information is
fully reliable, while for = 0, the knowledge will be discarded. We suppose that the
given knowledge is represented by verity and rebu distributions: \er and Rebu . By
taking the parameter into account, the discounted distributions denoted by Ver and
Rebu are de ned as:

Ver (1) =min( Ver(!); );
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and,
Rebu (!)=min( Rebu (!); );

for each! 2
The discounted possibility distribution Poss is:

Poss (! )=max(1 Rebu (!);1 ):

These equations mean that if the source of information is reliable at egree , the
corresponding verity and rebu measures are at most equal to , and the possibility
measures are at least equal td . The discounting introduced here is very close to
the discounting of certainty-quali ed knowledge for possibilistic variables explained in
Subsection3.2.2.5

Example 3 Let V be the label set of a giving song. An expert tell us that this
song certainly evokehappinessand certainly does not evokesadness In the frame-
work of veristic variables, this knowledge is represented as follow: ef(happines3 =1,
Rebu (sadnes} = 1, and the verity and rebu values of the remaining emotions are
equal to 0. If we have a 80% ( = 0:8) condence in the opinion of the expert,
the new verity and rebu distributions after discounting are: Ver (happines$ = 0:8,
Rebu (sadnes} = 0:8, and the verity and rebu values of the remaining emotions
remain equal to 0.

3.4 Multi-label learning based on veristic variable frame-
work

In this section, we propose ak-NN rule for multi-label learning using the theory of
veristic variables presented in Section3.3. k-NN rules, discussed in Section 2.3, are
widely used in classi cation problems due to their simplicity and their competitiveness
with other sophisticated learning methods. The proposed algorithmis called VERKNN
for Veristic k-Nearest Neighbor. Two major issues are related to our proposedethod.
The rst one concerns the in uence of the nearest neighbors on thelassi cation of an
unseen instancex. Each neighbor represents a piece of knowledge about the classica
tion result of x where instead of giving equal importance to all neighbors as in the ¥ing
k-NN rule, a weight or a degree of certainty is assigned to each neigbb according to
the distance to x [60][133. The second issue concerns the class membership of training
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data. In the framework of veristic variables, the knowledge about he labeling of each
instance can be represented by a verity distribution representingositive information,

and a rebu distribution representing negative information.

The issue of the labeling of training instances will be discussed in Sectii3.4.1 The

VERKNN algorithm will be then introduced in Section 3.4.2

3.4.1 Labeling of training data

Usually, the available datasets to train multi-label classi ers are congucted in such a
way that each instancex; is perfectly labeled, i.e.,x; is associated with a crisp subset
Y; of Y. However, such situations are not always possible and feasible at aasonable
cost, and may be especially questioned when training data are labeldyy one or several
experts. In practice, due to lack of con dence and absence of grod truth, an expert
may be undecided about the labeling of a given instance. He may therxpress posi-
tive information about the labels that should be attributed to the given instance, and
negative information about the labels that should not be attributed to that instance.
Thus, the expert will be unable to assign unambiguously a crisp labelet to each in-
stance (see Examplet). The veristic variable framework seems adequate to represent

and manipulate such information.

Example 4 LetY = f! 1;1 ;1 3;!1 4;! 59 be the set of classes, and let be an instance
labeled by an expert. The expert tells us thatx certainly belongs to class! 1 and
certainly does not belong to clasd ,. He is sure at 60% thatx should also be assigned
to class! 3, and with a certainty equal to 75% that x should not be assigned to clask.
The expert is totally undecided about the membership ofx to class! 5. The labeling
of x can be represented by the following verity and rebu vectors: Ver=(1;0; 0:6; 0; 0)
and Rebu =(0;1;0;0:75;0).

andY; Y . We present hereafter two approaches, direct approach and afuzzy one,
which allow us to label training instances by verity and rebu measures instead of crisp

sets of labels.
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3.4.1.1 Direct approach

For each precisely labeled training object(x;;Y;), the corresponding veristic object
(xi; Ver;; Rebu ;) can be derived as follows:

(
. _
Ver,(l) = 1 if! ZY.
0 otherwise
= Yi(')
and,
( 1 if! 62y,
Rebu () = " !
0 otherwise
=1 ()
for each! 2Y.

Note that, these de nitions extend directly to the case whereY; is a fuzzy subset of
Y.

3.4.1.2 Fuzzy approach

For each training instance x;, verity and rebu distributions can also be determined
by taking into account the neighborhood of this instance. Letk® denote the number of
neighbors to be considered in order to determine Verand Rebu ;. Let N;(io denote the
k®nearest neighbors of; in the training dataset D. For a class! 2Y, let p' = (pp; p})
be the probability distribution such as pil (respectively, p‘o) denote the proportion of
instances inN)'(‘i0 which belong (respectively, do not belong) to clas$ . We have:

Cdfx 2N 2 g
1~ ko '

- ifxj 2Nt 62v g
kO !

and,

pL+ Ph = Lt
In accordance with the possibilistic interpretation of a veristic variabe, the probability
distribution p' = (pj; p}) can be transformed into a possibility distribution ' =( }; 1)
using aprobability-possibility transformation. |} is the possibility of the proposition x;
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does not belong to! , and '1 the possibility of x; belongs to! . Several probability-
possibility transformations exist in the literature [61][30]. In this work, the transfor-
mation introduced in [36] will be used. In the following, we recall the principle of this
transformation that will be referred here to asP rob=P osstransformation.

The P rob=P osstransformation Let p=(p1;p2;:::;pn) be a probability distribu-
tion such as p; P2 T pn, and let = 1; 2;::1; n) the corresponding
possibility distribution. Using the Prob=P osstransformation, is the solution that

veri es the following constraints:

Pr(H) ( H), for each hypothesis or propositionH , where Pr (respectively, )
is the probability (respectively, possibility) measure derived fromp (respectively,

)i
p and are order-equivalent, i.e., ifpg  pr, then g r

is maximally speci ¢ (or informative), i.e. for any other solution ¢ we have

q 8;8q2f1;:::;ng.

The possibility distribution  satisfying these requirements is unique and it is derived
from p as follows B6]:
1=1;

and, (p
qu Pr if pg<pgq 1
q 1 otherwise.

Based on theP rob=P osstransformation, | and | are computed as follow:

8 _ _ . . .
2Ifpy>po; 1=1 and = pp;
>prf1<pfo; 5=paand ‘i0:1;
Tfpi=py 1=1 and 5=1:

Thus, for the class! 2 Y, the verity and rebu values for the training instance x; are

de ned as: _
Veri(!)=1 o
Rebu i(!)=1 I:
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We can explain these relations by the fact that, in the context of pasibility theory, the
verity and rebu distributions de ne necessitymeasures. As shown in Sectiof3.2.2 the
necessityN (H) of a proposition H is related to the possibility ( H) of this proposition
by the following equation:

N(H)=1 ( H):

For the class! 2 Y, Ver;(! ) represents the necessity of the propositiotd; X; belongs
to! ,and Rebu (! ) represents the necessity of the propositioily Xx; does not belong
to ! . Thus, Ver;i(!) is the complement of the possibility }) of Hp, and Rebu ;(! ) the
complement of the possibility '1 of Hy.

3.4.2 Proposed method: VER kNN

The VERKNN method builds a multi-label classier H : X ! 2 and a scoring-
function f : X Y ! R from a training dataset D that is assumed to be of the form

labeling is represented by the two distributions Ver and Rebu ; that de ne mappings
from the setY to the interval [0; 1].

Let x be an unseen instance for which we search to estimate the set of Elb. The
classi cation of x is performed by exploiting the information of its k nearest neighbors
in D. The proposed method performs as follows:

1. Search for thek nearest neighbors ok in D, represented byN ¥, based on a certain
distance function d(:; :), usually the Euclidean one.

2. Each element(x;; Ver;; Rebu ;) in NX represents a piece of knowledge about the
labeling of x. The in uence of x; on the classi cation of x depends on the distance
betweenx and x;. If xj is closeto x according to the distance functiond(:;:),
then one will be inclined to believe that both instances have the same keeling.
Let ; represents the degree of certainty associated with the knowledggiven by
(xi; Veri; Rebu ;) on the labeling of x. If d(x;x;) decreases and tends to O,
increases and tends to 1. In our method, as in2[)], the value of ; is determined
using the following equation:

i = oexp( d(x;xi)); (3.2)
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with 0< g< land > 0. Parameter ¢ is xed at a value close to 1 such as
o =0:95, whereas should depend on the scaling of distances and can be either
xed heuristically or optimized [ 20].

. The verity and rebu distributions of each element (x;; Ver;; Rebu ;) in N>'(‘ are
updated using the corresponding parameter ;. That leads to the discounted piece
of knowledge(x;; Ver; ';Rebu ;).

. Combine the verity distributions and the rebu distributions of th e k nearest
neighbors ofx. Let Ver and Rebu represent the aggregated verity and rebu
distributions, respectively. We have:

Ver = Ver,* .. Ver X,

and
Rebu = Rebu ;* ::: Rebu  *;

where denote the combination operator:and, or, or and =or. It seems preferable
to use the hybrid or the disjunctive rules of combination in order to avoid con ict.
Note that, when using the hybrid rule for combination, we have to x an order
to combine the informations about the labeling of x coming from its di erent
neighbors, as the hybrid rule is not associative. The combination cabe done by
going from the nearest neighbor to the furthest one, by going in tk reverse order,
or by using a random order.

. The output of VERKNN is determined as follow:
H(x)= f! 2Yj Ver(!)> Rebu (!)g;

and,
f(x;!)= Ver(!):

3.5 Conclusion

In this chapter, we have presented ak-nearest neighbor rule for multi-label learning

using the framework of veristic variables. This framework allows usd represent dif-

ferent pieces of knowledge about a veristic variable by di erent tygs of statements
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and distributions, and combine them conjunctively or disjunctively, in order to make
decision about the values taken by this variable. By considering thelass label of each
instance as a veristic variable, we have used this theory to build a mullabel classi-
cation method called VER kNN. Each unseen instance is classi ed on the basis of its
k nearest neighbors. The labeling of each training instance is reprasted by a verity
distribution representing positive information, and a rebu distribu tion representing
negative information. The verity and rebu distributions are discounted depending on
the distance to the instance to classify, and are then combined in der to determine the
classes to assigned to the unseen instance. This method is propdge solve multi-label
classi cation problems where training datasets are labeled by one oreseral experts in
the absence of ground truth, and the opinions of experts aboutite class label of training
data are represented by verity and rebu vectors. It will be evaluaed with the other
method proposed in this thesis in Chapter4.
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Chapter 4

Set-valued evidence formalism and
application to multi-label learning

Summary

In this chapter, we propose an evidence formalism for representirgnd handling partial
knowledge about set-valued variables, based on the Dempsterafer theory of belief
functions. Set-valued variables are variables that can take morehtan one value at the
same time, such as the class label of a multi-labeled instance. Given ets/alued variable
de ned over a universe , the straightforward approach is to consider it as a single-
valued variable taking one and only one value in2 . To represent uncertainty about
this variable, we have to de ne mass functions on the frame? , which is usually not
feasible because of the double-exponential complexity involved. @dormalism consists
in de ning a restricted family of subsets of 2 which is closed under intersection and
has a lattice structure. Using recent results about belief functios on lattices, we show
that most notions from Dempster-Shafer theory can be transpsed to that particular
lattice, making it possible to express rich knowledge about set-valuk variables with
only limited additional complexity as compared to the single-valued cas. Based on the
proposed formalism, we introduce an evidential multi-label classi caion method, where
each instance is classi ed on the basis of itk nearest neighbors from a given training
set. This method is proposed to solve multi-label classi cation problera where training

data are imprecisely labeled.
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Résumeé

Dans ce chapitre, nous proposons un formalisme de croyance pdarreprésentation
et la manipulation de connaissances partielles concernant des varias multi-valuées a
l'aide de la théorie des fonctions de croyance de Dempster-Shafées variables multi-
valuées sont des variables qui peuvent avoir plusieurs valeurs en mé temps, comme
par exemple, I'étiquette d'un individu dans un probleme d'apprentissag multi-label.
Etant donnée une variable multi-valuée dé nie sur un univers , l'approche directe et
intuitive consiste a considérer cette variable comme étant une vartde mono-valuée pre-
nant une et une seule valeur dans I'ensembl2 . Une connaissance partielle a propos
de cette variable sera représentée par une fonction de masse diersur I'ensemble2? .
Cette approche directe nous améne a travailler dans un espace des$ grande dimen-
sion, ce qui n'est pas toujours faisable vue la double complexité expentielle impliquée.
L'idée de base du formalisme de croyance que nous proposons est @epas considérer
I'ensemble 22 tout entier, mais juste un sous-ensemble clos par intersection etyant
une structure de treillis. En utilisant des résultats récents concerant la dé nition des
fonctions de croyance sur des treillis, nous montrons que la plupades notions de base
de la théorie de Dempster-shafer peuvent étre transposées a ssus-ensemble particu-
lier, permettant d'exprimer su samment de connaissances partielles sur des variables
multi-valuées avec seulement une légére augmentation de complexip@r rapport au
cas de manipulation de variables mono-valuées. Nous montrons aus$application de
ce formalisme conjointement avec |'approche dek plus proches voisins pour I'appren-
tissage multi-label. Cette méthode est destinée pour la classi cation es individus avec
des étiquettes imprécises.
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4.1 Introduction

In this chapter, we consider the problem of representing partial kowledge about a set-
valued variable V with domain  using the Dempster-Shafer theory of belief functions
[93][99]. This theory is one of the principle techniques for representing andhandling
uncertainty in decision making.

A straightforward approach to the above problem is, of course, d consider a set-
valued variable V on as a single-valued variable on the power set=2 . However,
this approach often implies working in a space of very high cardinality.If, as done in
this chapter, we assume to be nite, then the size of is 2 J. If we want to express
imprecise information about V, we will have to manipulate subsets of . As there
are 22 ! of these subsets, this approach rapidly becomes intractable as ehsize of

increases.

Our approach will be based on a simple representation of a clag¥ ) of subsets of
=2 which, endowed with set inclusion, has a lattice structure. Using reent results
about belief functions on lattices j9], we will be able to generalize most concepts of
Dempster-Shafer theory (including the canonical decompositionand the cautious rule
[21]) in this setting. This formalism will be shown to allow the expression of avide range
of knowledge about set-valued variables, with only a moderate incese of complexity

(from 21 1 to 3 1) as compared to the usual single-valued case.

Originally, the motivation behind this work was to build a multi-label classi er using
the evidence theory in order to handle uncertainties and ambiguitiesvhen classifying
unseen instances. The class label of a multi-labeled instance is an exale of set-valued
variables. An evidential k-NN rule, called EMLKNN, will be presented in this chapter

using the proposed formalism.

This chapter is organized as follows. Background notions on belief fictions in the
classical setting and in general lattices will rst be recalled in Sections4.2 and 4.3,
respectively. Our approach will then be introduced in Sectiord.4, and some relation-
ships with previous work will be outlined in Section4.5. An application to multi-label

classi cation will be presented in Section4.6, and Section4.7 will conclude the chapter.
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4.2 Belief Functions

The basic concepts of the Dempster-Shafer theory of belief futions, as introduced in
[93], will rst be summarized in Subsection4.2.1 The canonical decomposition and the
cautious rule will then be recalled in Subsectior4.2.2

4.2.1 Basic de nitions

Let be a nite set. A mass functionon is a functionm :2 ! [0;1] such that
X

m(A)=1:
A
The subsetsA of such that m(A) > 0 are called thefocal elementsof m. The set of
focal elements ofm will be denoted F (m). m is said to benormal if ; is not a focal
set, and dogmaticif is not a focal set.

A mass function m is often used to model an agent's beliefs about a variabl®
taking a single but ill-known value ! g in  [99]. The quantity m(A) is then interpreted
as the measure of the belief that is committedexactly to the hypothesis! o 2 A. Full
certainty corresponds to the case wheren(f! qg) = 1 for some! 4 2 , while total
ignorance is modelled by thevacuousmass function verifyingm() =1 .

To each mass functionm can be associated aimplicability function b and a belief
function bel de ned as follows:

b(A)

X

m(B) (4.1)
B
bel(A) m(B) = b(A) m(;): (4.2)

B ABG6A

These two functions are equal whem is normal. However, they need to be distinguished
when considering non normal mass functions. Functiorbel has easier interpretation,
as bel(A) corresponds to a degree of belief in the proposition The true valuég of V
belongs toA . However, function b has simpler mathematical properties. For instance,
m can be recovered fronb as

mA)= (D) (4.3)

B A

Function m is said to be the Mobius transform of b. For every function f from 2 to
[0;1] such that f () =1 , the following conditions are known to be equivalent 93]
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P
1. The M0bius transformm of f is positive and veries , m(A)=1.

2. f is totally monotone, i.e., for anyq 2 and for any family Aq;:::;Aqin 2,
| |
@ X .
f A ( 1)Htf A
i=1 61 f 15099 i2l

Hence,b (and bel) are totally mononotone.
Other functions related to m are the plausibility function, de ned as
X

PI(A) m(B) (4.4)

B\ A& ;
1 bA) (4.5)

and the commonality function (or co-M6bius transform of b) de ned as

X
q(A) = m(B): (4.6)
B A

m can be recovered frong using the following relation:

X o
m(A)=  ( 1)®™qB): 4.7)
B A
Functions m, bel, b, pl and g are thus in one-to-one correspondence and can be regarded
as di erent facets of the same information.
Two special cases of interest have to be mentioned:

1) If all focal elements of a mass functionm are singletons m is equivalent to a
probability distribution on  , and corresponds to probabilistic uncertainty.

2) If the focal elements ofm are nested m is then said to be consonant and it is
equivalent to a possibility distribution on , dened as: (!)= pl(f! g) for all
I 2 . Infact, in the case of consonant mass functions, we have:

pI(A[ B) =max(pl(A);pl(B)); 8A;B

The plausibility function pl derived from m is thus a possibility measure corre-
sponding to . Conversely, to each possibility distribution corresponds a unique
consonant mass function $3].
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Let us now assume that we receive two mass functiomsa; and m» from two distinct
sources of information assumed to be reliable. Them; and m, can be combined
using the conjunctive sum (or unnormalized Dempster's rule of combination) de ned as
follows:

X
(m1y mp)(A) = m(B)m2(C): (4.8)
B\ C=A

This rule is commutative, associative, and admits the vacuous massifiction as neutral
element. It is conjunctive as the product of my(B) and m,(C) is transferred to the
intersection of B and C. The quantity (my\ my)(;) is referred to as thedegree of
conict betweenmi and m,.

Let o1\ » denote the commonality function corresponding tom¢\ m». It can be
computed from o and @, the commonality functions associated tom; and m», as
follows:

th 2(A) = d(A) R(A); 8A ; (4.9)
The normalized Dempster's rule [93] is de ned as the conjunctive sum followed
by a normalization step:
if A=

. (4.10)
otherwise.

(M1 M2)(A) = (mi\ mo)(A)
T (mpy mo)(5)

It is clear that m; m3 is de ned as long as(m1\ my)(;) < 1.

Alternatives to the conjunctive sum can be constructed by replammg\ by any binary
set operation in (4.8). For instance, the choice of the union operator results in the
disjunctive sum [97]:

(m1r mp)(A) = m1(B)mz(C): (4.11)
B[ C=A

It can be shown that
b 2(A) = bi(A) b(A); 8A ; (4.12)

which is the counterpart of (4.9). Dubois and Prade R8] have also proposed a hybrid
rule intermediate between the conjunctive and disjunctive sums, inwhich the product
m1(B)my(C) is assigned toB \ C wheneverB\ C 6 ;, and to B[ C otherwise. This
rule is not associative, but it usually provides a good summary of pargélly con icting
items of evidence.
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In [99], Smets proposed a two-level model in which items of evidence are anti ed
by mass functions and combined at thecredal level, while decisions are made at the
pignistic level (from the Latin pignus meaning a bet). Once a decision has to be made,
a mass functionm is thus transformed into a pignistic probability distribution p. The
pignistic transformation consists in normalizingm (assuming thatm(;) < 1), and then
distributing each normalized massm(A)=(1 m(;)) equally between the atomd , 2 A:

X m(A)

;!QZAQW; 8lq2 (4.13)

p(! g) =
fA

Other authors have suggested the so-called plausibility transfor@tion for transforming
a mass function into a probability distribution, by normalizing the plausibilities of
singletons [L4]. In a decision making context, this approach results in selecting the
most plausible single hypothesis.

4.2.2 Canonical Decompositions and Idempotent Rules

According to Shafer P3|, a mass function is said to besimple if it has the following form

m(A) = 1 wy

m() = Wo;
for someA and somewg 2 [0; 1]. Let us denote such a mass function ad"°. The
vacuous mass function may thus be noted\® for any A . It is clear that

AWo AWS = AWOWs:
A mass function may be calledseparableif it can be obtained as the result of the

conjunctive sum of simple mass functions. It can then be written:
m= 1\, A", (4.14)

with w(A) 2 [0;1] for all A

Smets P8 showed that any non dogmatic mass functionm can be uniquely expressed
using (4.14), with weights w(A) now in (0;+1 ). This is referred to as theconjunctive
canonical decompositionof a mass function. Note that, whenw(A) > 1, A¥(*") is no
longer a mass function, but the conjunctive sum can be extendedotsuch generalized

mass functions in an obvious way.
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Function w is called the conjunctive weight function associated tom [21]. It is a
new equivalent representation of a non dogmatic mass function, vith may be computed

directly from q as follows:

Y i i+
w(A) = q(B)¢ VM. ga (4.15)
B A
or, taking logarithms,
X o
Inw(A) = ( 1y)B"WingB); 8A (4.16)
B A

In [98] and [21], w(A) was de ned for all strict subsetsA of . However, function w

can be extended to2 by using (4.15 for A = . We then have:
!
Tl
1 1 Y
w()= —— = = w(A
O~ @ "m0, "W
and
Y
wW(A)=1: (4.17)
A
With this convention, (4.16) can be extended to allA . We notice that (4.16) then

has exactly the same form as4.7), i.e., the formula for computing Inw from Inqis
the same as the one for computingn from g. Conversely,In q can thus be computed
from Inw using a formula similar to (4.6):

X
Inq(A) = Inw(B); 8A
B A

We note that function w has a simple property with respect to the conjunctive
sum. Let w; and w, be two weight functions, and letw;, » denote the result of their
\ -combination. Then the following relation holds:

wiy 2(A) = wi(A)wa(A); BA (4.18)

In [21], Den+ux introduced the cautious rule, noted ~ , which is obtained by replacing

the product by the minimum in (4.18), for all A

Wi 2(A) = min( wi(A); wa(A)) : (4.19)
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The value of wi 2() can then be determined to satisfy the normalization condition
(4.17). This rule is obviously commutative, associative and idempotent. Asshown in
[21], it is suitable for combining conjunctively non independent items of eidence. As
the conjunctive sum, the cautious rule has a normalized version de ed by
(mg~ mp)(A) = O(mlA m2)(A) A=
T (i m2)0) otherwise.
As shown in R1], the conjunctive canonical decomposition also has a disjunctive

(4.20)

counterpart. Any mass functionm such that m(;) > 0 can be decomposed disjunctively

as follows:
m= [ a; Aya); (4.21)
where A, () is a generalized mass function assigning a masgA) > 0 (possibly greater
than 1) to ;,and 1 v(A) to A, for all A , A 6 ;. This de nes a new functionv,
called the disjunctive weight function, which can be computed fromb as follows:
Y jJANB j+
v(A)=  BB) VT 8A A6 (4.22)
B A
or
X R
Inv(A) = ( 1)A"BIInbB); 8A A6 ;: (4.23)
B A
As before, the above equations can be extended # = ;, which leads to
0 1,
1 1 Y
v(;) = = =@ y(AA
bG) mG) .
d
an v
V(A)=1: (4.24)
A

The disjunctive rule (4.11) has a simple expression as a function of disjunctive weights:
vi; 2(A) = vi(A)v2(A); 8A : (4.25)

By replacing the product by the minimum in the above equation, we cande ne a new
rule, denoted _ and called thebold rule in [21]:

vi_ 2(A) =min( vi(A);v2(A)); A A6 (4.26)

1
and vi_2(;) = QA@; vi_2(A) . This rule is obviously commutative, associative
and idempotent; it is suitable for combining disjunctively non indepencent items of
evidence.
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4.3 Extension to General Lattices

As shown by Grabisch 9], the theory of belief function can be extended from the
Boolean lattice (2 ; ) to any lattice, not necessarily Boolean. We will rst recall some
basic de nitions about lattices in Subsection4.3.1 Grabisch's results used in this work
will then be summarized in Subsectiord.3.2

4.3.1 Lattices

A review of lattice theory can be found in [78]. The following presentation follows B9].

Let L be a nite set and a partial ordering (i.e., a re exive, antisymmetric and
transitive relation) on L. The structure (L; ) is called aposet We say that (L; ) is
a lattice if, for every x;y 2 L, there is a unique greatest lower bound (denotec * y)
and a unique least upper bound (denotedk _ y). Operations * and _ are called the
meet and join operations, respectively. For nite lattices, the greatest element(denote
>) and the least element (denoted? ) always exist. We say that x coversy if x >y
and there is noz such that x >z >y . An element x of L is an atom if it covers only
one element and this element i? . It is a co-atom if it is covered by a single element
and this element is>.

Two lattices L and L°are isomorphic if there exists a bijective mappingf from L to
L9suchthatx vy, f(x) f(y). Forany poset(L; ), we can de ne its dual (L; )
by inverting the order relation. A lattice is autodual if it is isomorphic to its dual.

A lattice is distributive if (x_y)"z = (x”z)_(y” z) holds for allx;y;z 2 L. For any
x 2 L, we say thatx has a complement inL if there exists x°2 L such that x » x%= ?
andx_x%= >. L is said to becomplementedif any element has a complement. Boolean
lattices are distributive and complemented lattices. Every Boolean I&ice is isomorphic
to (2 ; ) for some set . For the lattice (2 ; ), we have® =\, =1[,? =; and
> =

A closure systemC on a set is a family of subsets of satisfying the following
properties:

1. 2C.

2. Cl;CzZC) Cl\ C,2C.

78



Chapter 4: Set-valued evidence formalism and applicatioro tmulti-label learning

As shown in [78], any closure system(C; ) is a lattice with the following meet and join
operations

Ci1MGCy
Ci_C

Ci\ G (4.27)
\
fC2CjCi[ C2 Cg (4.28)

4.3.2 Belief Functions on Lattices

Let (L; ) be a nite poset having a least element, and lef be a function fromL to R.
The Mdbius transform of f is the function m : L ! R de ned as the unique solution of
the equation: X
f(x)=  m(y); 8x2L: (4.29)
y X
Function m can be expressed as:

X
m(x) = (y;x)f (y); (4.30)
y X

where (x;y):L?! R isthe M6bius function de ned inductively by:

8
% 1 X if x=vy;

(xy) = —_ (ct) ifx<y; (4.31)
"0 otherwise.

The co-Mo6bius transform of f is de ned as:

X
ax)= m(y); (4.32)
y X
and m can be recovered frong as:

X
m(x) = (x;y)aly): (4.33)
y X
Let us now assume that(L; ) is a lattice. Following Grabisch [49], a function
b:L ! [0;1] will be called an implicability function on L if b(>) = 1, and its M&bius
transform is non negative. The corresponding belief functiorbel can then be de ned
as:

bel(x) = b(x) m(?); 8x2L:
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Note that Grabisch [49] considered only normal belief functions, in which casé= bel.
As shown in 9], any implicability function on (L; ) is totally monotone, i.e., for any

k 2 and for any family x1;:::; Xk in L,
" ! X N A !
b~ x ( 1)J'J+1b Xi
i=1 &1 f 1kg i21

Note, however, that the converse does not hold in general: a tolig monotone function
may not have a non negative Mdébius transform.
As shown in B9, most results of Dempster-Shafer theory can be transposed irhé

general setting of lattices. For instance, the conjunctive sum4.8) becomes:

X
(mzyv mp)(x) = my(y)mz(z); 8x2L; (4.34)

yNz=Xx

and the following relation between commonality functions still holds:

Oy 2(X) = u(X) p(x); 8x 2 L: (4.35)

The normalized Dempster's rule can still be de ned, as in the classical case, by
dividing each number (m\ my)(x) with x 8 ? by 1 (my\ my)(?), provided that
(mpy mo)(?) < 1.

Using a similar line of reasoning as that followed in49], we can also extend the
disjunctive rule (4.11) as:

X
(myr mp)(x) = my(y)mz(z); 8x 2 L; (4.36)
y_z=X
and (4.12 becomes:
bi; 2(X) = bu(x) bp(x); 8x 2 L: (4.37)

Grabisch [49] also extended the conjunctive canonical decomposition of beliefific-
tions in the general lattice setting. He showed that any mass funéon m on L such that

m(>) > 0 can be decomposed as
m= \ o x"™; (4.38)

where x®) is a simple mass function assignind w(x) to V and w(x) to >, with
w(x) 2 (0;+1 ). Clearly, (4.38 generalizes 4.14). As in the classical case, function
w:Lnf>g! (0;+1) can be computed fromqg using the following equation:

Y
w(x)=  oy) ®¥); 8x2L;x8>; (4.39)
y X
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which generalizes 4.15. Obviously, we still have
w1y 2(X) = wi(X)wa(x); 8x 2 L;x 6 >: (4.40)

The existence of thew function also allows us to de ne the cautious rule in the general
lattice setting as

W1 2(X) = min( wi(X);wa(x)); 8x2L;x 6 >: (4.41)

The normalized cautious rule ~ is de ned as in the classical case, by dividing each
Wia o(x) for x 6 ? by 1 wi. 2(?), provided that wy. 2(?) < 1

Although Grabisch did not consider the disjunctive canonical decorposition, it can
also be extended in the general lattice setting. The proof parallelshiat given in [49]
for the conjunctive case. We will only state the main result here. Letx,,) be a mass
function on L assigningl v(x) to V and v(x) to ?, with v(x) 2 (0;+1 ). Any mass

function m on L such that m(?) > 0 can be decomposed as

m= 1y 2 Xv(x)* (4-42)

The function v : L nf?2g ! (0;+1 ) can be computed fromb using the following
equation: v

v(x)=  bly) O%; 8x2L;x 6 ?; (4.43)

y X
which generalizes 4.22). We still have

Vi 2(X) = vi(X)va(x); 8x2L;x 6 ?; (4.44)
and the existence of thev function allows us to de ne the bold rule as
vi_ 2(X) =min(vi(X);Vva(x)); 8x2L;x 6 ?: (4.45)

The extension of other notions from classical Dempster-Shafetheory may require
additional assumptions on(L; ). Forinstance, the de nition of the plausibility function
pl as the dual of b using (4.5 can only be extended to autodual lattices #9). The
de nition of pl from (4.4) remains possible in the other cases, but the relationship
between pl and b (or bel) is lost. Also, probability measures cannot be de ned on
arbitrary lattices. Consequently, the pignistic probability ( 4.13) can only be extended
in restricted settings.
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Remark 1 Although our approach relies essentially on Grabisch's work, we mayate
the existence of another line of research that aims at extending selts of Probability
Theory to some classes of residuated lattices, which are more geakthan Boolean
algebra. In particular, there have been many developments aboutrpbability measures
on MV-algebra (also calledstates), see, e.g.,12][63][64][80] as well as in Gddel algebras
[1]. In addition, a recent work on de ning belief functions on MV-algebrasis introduced

in [65].

4.4 Belief Functions on Set-valued Variables

In this section, the main concepts of Dempster-Shafer theory redled in Section 4.2
will be extended to the case where we want to describe the unceitdy regarding a set-
valued variable V on a nite domain . The key to this extension will be the de nition
of a closure systemC() of =2 , ie., a set of subsets of that is closed under
intersection. Each element ofC() will be shown to have a simple description as a pair
of disjoint subsets of . Belief functions and associated notions will then be de ned
on the lattice (C() ; ), resulting in a simple framework for uncertain reasoning about

set-valued variables.

4.4.1 The Lattice (C() : )

Let V denote a set-valued variable on a nite domain , and let Ag be the unknown
true value of V. We want to describe partial knowledge about that value in the belief
function framework.

As explained in the introduction, the formalism recalled in Section4.2 could be ap-
plied without modi cation to this case, by de ning a mass function m on . However,
such a brute force approach would require the storage of up t8 | = 22" numbers for
each mass function. Basic operations such as the conjunctive orsjunctive sums would
have double-exponential complexity, making the approach inapplichle except for sets

with very small cardinality.

As an alternative, we propose to de ne mass functions and associd functions on
a subset of2 that forms a lattice when equipped with the inclusion relation. The
intuitive idea underlying our approach is the fact that, when expresing knowledge
about a set-valued variableV, it is often convenient to specify sets of values that are
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Figure 4.1: Two subsets of (broken lines) containing A and not intersecting B. The
set of all such subsets is denoted by (A;B).

certainly taken by V, and sets of values that arecertainly not taken by V. This can be
illustrated by the following example.

Example 5 Let V denote the languages spoken by John, de ned on the (very large)
set of existing languages. If we know for sure that John can speak Englisand
French (because he was brought up in the US and he stayed in Fraador a long time),
and that he can speak neither Japanese nor Chinese (because hever traveled to
Asia), then all subsets of containing A = fEnglish; French g and not intersecting
B = fJapanese; Chinesegy are possible values oY/ .

As shown by this example, some families of subsets of or, equivalently, some
subsets of = 2  can be conveniently described by two subset® and B of such
that A\ B = ; (Figure 4.1).

More generally, letQ()= f(A;B)2 2 2 jA\ B = ; gbe the set of ordered pairs
of disjoint subsets of , where; denotes the empty set of . For any (A;B) 2 Q() ,
let ' (A;B) denote the following subset of = 2

"(A;B)=fC iC AC\B=; @ (4.46)

" (A;B) is thus the subset of composed of all subsets of including A and non
intersecting B. Equivalently, it is the set of all subsets of that include A and are
included in B

'(A;B)=fC jA C Bg (4.47)
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It is thus the interval [A; B] in the lattice ( ; ).
Let C() denote the set of all subsets of of the form ' (A;B), completed by the
empty set of , noted ;

)= f"(AB)JA ;B AV B = glff o

C() is thus a subset of2 . For a reason that will become evident later, we will also

use' ( ;) as an alternative notation for ; . Function ' is thus a bijective mapping
fromQ ()= Q() [f ( ;) gto C() . The following proposition states that C() is

a closure system and, consequently, has a lattice structure.

Proposition 1 C() is a closure system of , and

8
C(AB)\ ' (AR = < (A[ ASB[ BY if (A[ A9\ (B[ BY)=;
g otherwise,
for all (A;B) and (A°B9% in Q () .
Proof: Itis obviousthat = ' (; ;; )2C() . Now,
"(A;B)\ ' (A%BY = fCc jc Ac A‘c\B=:; ;C\B°=: g

= fc jc (A[A%c\(B[BY=; o

If (A A9\ (B[ BY=; then' (A;B)\ ' (A®B9 isthus equalto' (A[ A®B[ BY.
Otherwise, no subsetC of can include A [ A°and have an empty intersection with
B [ B® consequently,’ (A;B)\ ' (A%B9Y=; .

As recalled in Section4.3.1, any closure system endowed with the inclusion relation
has a lattice structure with » = \ and _ de ned by (4.28. Here, the inclusion relation
has the following simple expression using thé (A; B) representation:

"(A;B) ' (A°BY, A A%andB BC (4.48)
The least element is? = ' ( ;) = ; . We note that (4.48 remains valid when
A = B = , which explains the interest of the notation' ( ;)= ; . The greatest
elementis> ="' (; ;; )= . The atoms are of the form' (A; A) for A , and

the co-atoms are of the form' (f! g;; )or' (; ;f! g) for! 2 . We can see that the
number of atoms is not equal to the number of co-atoms, which shes that (C, ) is
not autodual. This lattice is also not complemented; consequently, iis not Boolean.
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As a consequence o#(498), it is easy to see that the meet operation_ is the following
operation, hereafter denotedt :

"(A;B)t ' (A%BY =" (A\ A®B\ BY:

It must be noted that t is not identical to set union. The following proposition states
the relation between these two operators.

Proposition 2  For all (A;B) and (A%B9% in Q () ,
“(AB)[ ' (A%BY ' (A;B)t ' (A%BY:
Proof: For everyCin' (A;B)[ ' (A%BY, we have
C AandC A% Cc A\A° (4.49)

and

C\B=: andC\ B°=; ) C\ (B\ BY=: ; (4.50)

henceC 2' (A\ A®B\ BY.

One can notice that the implications in (4.49 and (4.50) are strict. Consequently,
"(A;B)[ ' (A®BY is usually a strict subset of' (A;B)t ' (A%B9Y. As the lattices
(C() ; )and (2 ; ) do not have the same join operator(C() ; ) is not a sublattice
of (2 ; ), although it is a subposet.

As noticed in [50], any ordered pair (A;B) of disjoint subsets of = f!1;:::;! g0
can be represented by a vectofy1;:::;ygq) 2f 1,0, 1g°, with

8

21 if 1i2A;
Yi= 1 if!y2B;

"0 otherwise.

Consequently, any' (A;B) 2 C() suchthat (A;B) 6 ( ;) can be represented in the
same way. For' ( ;)= ; , a special representation can be adopted, e.g(,;:::; ).
This encoding makes it possible to implement the andt operations in a simple way
using generalized truth tables. It also makes it clear that the cardinéity of C() is

equaltod 1 +1.
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4.4.2 Belief Functions on ()

The general theory recalled in Sectior.3.2can be applied directly to the lattice (C() ;
).

Letm:C() ! [0;1]be amass function onC() . The notation m(' (A;B)) will be
simplied to m(A;B). For this reason,m will be called atwo-place mass function We
assume that N

m(A;B)=1:
(AB)2Q ()
The implicability, belief and commonality functions can be computed fran m using the
following formula:

X X

b(A;B) = m(C;D) = m(C;D); (4.51)
"(CD) ' (AB) C AD B

be(A;B) = b(A; E)S() m( ;) ; . (4.52)

a(A;B) = m(C;D) = m(C;D); (4.53)
"(CD) ' (AB) C AD B

where all pairs(A;B) and (C; D) are understood to belong toQ () (the same conven-
tion will be adopted throughout this chapter). The conjunctive sum operation in C()
is de ned as follows:

X
(mzy m2)(A;B) m1(C; D)my(E;F) (4.54)
'8(C;D)\ ‘*E;F )=" (AB)
m1(C;D)m(E; F) if A\ B=; ;
CLE=ADLF=8 (4.55)
2 m1(C;D)my(E;F) ifA=B=
" (CLE) (D[ F)s;

It can be computed using the commonality functions as:
o 2(A;B) = w(AB) ®(AB); 8(A;B)2Q () : (4.56)
Similarly, the disjunctive sum can be computed as:

X
(M1 m2)(A;B)

my(C;D)m2(E; F) (4.57)
' (C;D)>t<' (EiF)="(AB)
= m1(C;D)ma(E;F); (4.58)
C\E=AD\F=B
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or using implicability functions:
by 2(A;B) = bi(A;B) (A;B); 8(A;B)2Q () :

It is also possible to de ne a rule expressing a consensus among items afidence,
somehow in the same spirit as the Dubois-Prade rule recalled in Sectigh2.1. Assume
that we learn from two sources that the value ofV isin' (C;D) and in ' (E;F), but
that ' (C;D)\ '(E;F)=; ,ie,(C[ E)\ (D[ F) 6 ; , so that the two pieces of
information are in conict. It may still be safe to keep (C[ E)n(D [ F) as positive
information, and (D[ F)n(C[ E) as negative information. Denoting byu the following
operation onC() :

"(CD)u(E5F)=" (CLE)n(DLF):(D[ F)n(C[ E));

we may de ne a new combination rule as

X
(my my)(A/B) = m1(C; D)m2(E; F): (4.59)

"(CD)u' (EiF)=" (AB)
This rule will be referred to as theconsensus rule We note that operationsu and are
not associative. However, they are quasi-associative, as it is pdsie to de ne a n-ary
version ofu as:

n [n [I’] [n

"(Ci;Dy)uiiiu’ (CoiDn) = Cin Di; Din G

To compute functionsm, w and v from q or busing (4.30), (4.33), (4.39 and (4.43,
we need the expression of the Mébius function. It is given in the following proposition.

Proposition 3 The Mobius function on (C() ; ) is given, for any(A;B) and (A% B9

inQ () by
8
<( 1)jAnA°j+jBnBOj if ' (A;B) -(AO’B(%

( (AB);" (A%BY) = j
otherwise.

Proof: The proof is similar to that of Theorem 2 in [50] with simple adaptations, due to
the similarity between two-place belief functions onC() and bi-capacities (see Section
4.5 below).
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This result allows us to computem from b as:

X o
m(A;B) = ( 1yCrAItIbmBiyc;D); (4.60)
C AD B
and from g as X
m(A;B) = ( 1yAnci*iBnbigc;D): (4.61)
C AD B

The conjunctive and disjunctive weight functions may be computed respectively, as:

Y ( 1)jAan+jBnDj+l

wW(A;B) = q(C;D) , 8(A;B)8(; 5 ) (4.62)
C AD B

and v
V(A;B) = K(C;D)( VTP g ABYB (1) ; (4.63)

C AD B

which makes it possible to use the cautious and bold rules in this contéx

Example 6 Let V now denote the set of languages spoken by Bernard. Assume that
we are 100 % sure that Bernard speaks no other language than Dult (d), English (€)
and French (f ), so that we can restrict the domain ofV to = fd;e;fg. Suppose that
we have the following items of evidence:

1. Bernard is Belgian. Approximately 60 % of Belgians are Dutch-spdang, and 40
% of Belgians are French-speaking (we neglect here the small Germapeaking
community for simplicity). According to a recent survey, approximately 20 %
of French-speaking Belgians declare to have good knowledge of @bt whereas
around 50 % of members of the Dutch speaking community claim to hav good
knowledge of French.

2. Bernard studied three years in Canada, where most universitieare English-
speaking, and some are French speaking. Based on available evidenwae have a
0.7 degree of belief that Bernard studied in an English-speaking univsity, and a
0.15 degree of belief that he studied in a French-speaking one.

Each of these two items of evidence can be represented by a massdtion on C() .

According to the rstitem of evidence, approximately (0:6 0:5) 100 = 30% of Belgians
speak Dutch and no French, approximately(0:4 0:8) 100 = 32% speak French and
no Dutch, and the rest speak both languages. Knowing that Bernal belongs to this
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population (and nothing else), and assuming these gures to be accate, this would
lead to the following mass function:

my(fdg;ffg)=0:3; mqy(ffg;fdg) =0:32 my(ff;dg;;)=0:38

To account for inaccuracy of these gures, we maydiscount this mass function P3]
by transferring a fraction of the mass (say, 10%) to the greatdselement of C() , i.e.,
" (;33;). We thus have

my(fdg;ffg)=0:3 0:9=0:27, mq(ffg;fdg)=0:32 0:9 0:29
my(ff;dg;;)=0:38 09 0:34 my(;;;)=0:L
The second item of evidence can be represented by a mass function de ned as:
mo(feg;;)=0:7; my(ffg;;)=0:15 my(;;;)=0:15

Assuming these two items of evidence to be distinct, they should beombined using
the conjunctive sum operation\ . This may be achieved in two ways:

1. We may compute the intersection between each focal element of; and each focal
element ofm, and apply formula (4.54). The computations may be presented as
in Table 4.1

2. Alternatively, we may compute the commonality functions g and ¢ using (4.53),
multiply them, and convert the result into a mass function using (4.61). The
intermediate and nal results are shown in Table 4.2

We may check that both approaches yield the same result. In particlar, we can see
that the empty set ; receives a mass equal t®:15 0:27 = 0:0405 which can be
interpreted as a degree of conict betweenm; and m,. Using the consensus rule
(4.59, the mass0:15 0:27 would be transferred to

" (ffg;;)u’ (fdg;ffg) =" (fdg;;);

resulting in a normal, con ict-free mass function.

Table 4.2 also shows the normal mass function computed using the normalized
Dempster's rule , and Table 4.3 displays the intermediate steps and nal results for
computing the combinations of m; and my using the unnormalized and normalized
cautious rules.
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Table 4.1: Computation of the conjunctive sum of m; and m, in Example 6. The
columns and the lines correspond to the focal elements af;, and m,, respectively. Each
cell contains the intersection of a focal element om; and a focal element ofm,. The mass
of each focal element is indicated below it.

(fdg;ffg)  (ffg;fdg) (ff;dg;;) G
0:27 029 034 01
(feg;;) | (fd;eg;f) (fe;fg;fdg) (fe;f;dg;;) (feg:;)
0:7 07 027 a7 0:29 a7 034 a7 01
(ffg:) : (ffgifdg)  (ffidg;;)  (ffg:)
015 | 015 027 (@15 029 015 034 Q15 01
(;53) | (fdg;ffg)  (ffg;fdg) (ff;dg;;) Gy
015 | 015 027 @15 029 015 034 015 01

Remark 2 We may remark here that the concept of two-place mass and belietific-
tions de ned here bears some similarity with bi-capacities introduced lg Grabisch and
Labreuche pQ]. A bi-capacity as de ned in [50] is an increasing function de ned on the
lattice (Q() ;v ), wherev is the partial orderingon Q() denedby (A;B) v (C;D) if
A B andC D. In[50], Grabisch and Labreuche introduce various concepts related
to bi-capacities, with application to cooperative game theory. In p€], they introduce
the concept of bi-belief function, de ned as a totally monotone bi-c@acity from Q()
to [0;1]. They suggest an interpretation in terms of bipolar representatio of uncer-
tainty for the case of a single-valued variable. Bi-belief functions ad two-place belief
functions as introduced here are thus two distinct classes of belidtinctions built on
di erent lattices, with di erent interpretations.

Remark 3 Another remark concerns decision making. As noted in the previousec-
tion, the lattice (C() ; ) is not Boolean, so that the notion of pignistic probability
cannot be de ned in that lattice. In the classical setting, a common alernative to the
rule of maximum pignistic probability for decision making is that of maximum plausibil-
ity: it consists in selecting the element of with the greatest plausibility or, equivalent,
with the greatest commonality (as these two functions coincide oniagletons). In C() ,
we may propose as a reasonable decision rule to select the atorfA; A) with the highest
commonality. Table 4.4 shows the commonalities of the atoms computing fronm; mso,
mi mypand my~ m» in Example 6. In that particular case, we can see that the three
rules lead to the same conclusion, which is that Bernard speaks all the languages.
The second most likely hypothesis is that Bernard speaks English anBrench, but no
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Table 4.2: Computation of m;\ m, and m;  m, in Example 6.

A B mi G Mz G Gz MMz mp mp
fdefg fdefg 0 1 0 1 1 0.0405 0
X f defg 0 0.1 0 0.15 0.015 0 0
X f deg 0 0.1 0 0.15 0.015 0 0
ffg fdeg 0 0.39 0 0.3 0.117 0 0
X fdg 0 0.1 0 0.15 0.015 0 0
X f dg 0 0.1 0 0.15 0.015 0 0
ffg fdg 0.29 0.39 0 0.3 0.117 0.087 0.091
feg fdg 0 0.1 0 0.85 0.085 0 0
feg fdg 0 01 O 085 0085 0 0
fefg fdg 0 0.39 0 1 0.39 0.203 0.212
X fefg 0 0.1 0 0.15 0.015 0 0
: f eg 0 0.1 0 0.15 0.015 0 0
ffg feg O 01 0 03 003 0 0
X ffg 0 0.1 0 0.15 0.015 0 0
X X 0.1 0.1 0.5 0.15 0.015 0.015 0.016
ffg ; 0 0.1 0.15 0.3 0.03 0.015 0.016
feg ffg O 01 O 085 0085 0 0
feg ; 0 0.1 0.7 0.85 0.085 0.07 0.07
fefg ; 0 0.1 0 1 0.1 0 0
fdg fefg 0 0.37 0 0.15 0.0555 0 0
fdg feg O 01 0O 015 0015 0 0
fdg feg O 044 0 03 0132 0 0
fdg ffg 0.2 0.37 0 0.15 0.0555 0.0405 0.0422
fdg ; 0 0.1 0 0.15 0.015 0 0
fdg ; 0.34 0.44 0 0.3 0.132 0.102 0.106
fdeg ffg 0 0.37 0 0.85 0.3145 0.189 0.197
fdeg ; 0 0.1 0 0.85 0.085 0 0
fdefg ; 0 0.44 0 1 0.44 0.238 0.248
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Table 4.3: Computation of m; ~ my and m;~ my in Example 6.

A B m 1 Wq mo Wo Wirog M1~ M2 M~ Mo
fdefg fdefg O 6.349 O 1 1 0.864 0
: f defg 0 1 0 1 1 0 0
; f deg 0 1 0 1 1 0 0
ffg fdeg 0 1 0 1 1 0 0
; fdg 0 1 0 1 1 0 0
; f dg 0 1 0 1 1 0 0
ffg fdg 0.29 0256 O 1 0.256 0.00806  0.0591
feg fdg 0 1 0 1 1 0 0
feg fdg 0 1 0 1 1 0 0
fefg fdg 0 1 0 1 1 0.0376 0.276
X f efg 0 1 0 1 1 0 0
; f eg 0 1 0 1 1 0 0
ffg feg 0 1 0 1 1 0 0
X ffg 0 1 0 1 1 0 0
; ; 0.1 10 0.15 6.67 719.6 0.00139 0.0102
ffg ; 0 1 0.15 0.5 0.5 0.00139 0.0102
feg ffg 0 1 0 1 1 0 0
feg ; 0 1 0.7 0.176 0.176 0.00649 0.0477
fefg ; 0 1 0 1.7 1 0.00649  0.0477
fdg fefg 0 1 0 1 1 0 0
fdg feg 0 1 0 1 1 0 0
fdg feg 0 1 0 1 1 0 0
fdg ffg 0.27 0270 O 1 0.270 0.00375  0.0275
fdg ; 0 1 0 1 1 0 0
fdg ; 0.34 0227 O 1 0.227 0.00945 0.0694
fdeg ffg 0 1 0 1 1 0.0175 0.129
fdeg ; 0 1 0 1 1 0 0
fdefg ; 0 1 0 1 1 0.0441 0.324
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Table 4.4: Commonalities of atoms according tom; my, m; m, and my» ms in
Example 6.

(A A) a 2(A;A) o 2AA) @ 2(AA)

(;;fdefg) 0.0156 0.015 0.0102
(ff g; f deg) 0.122 0.117 0.0796
(feg;fdf g) 0.0889 0.085 0.0578
(fef g; fdg) 0.406 0.39 0.451

(fdg;fefg)  0.0578 0.096 0.0377
(ff g; feg) 0.138 0.173 0.0898
(fdeg; ff g) 0.328 0.355 0.214

(fdef g;;)  0.459 0.481 0.509

Dutch. However, it is clear that di erent combination rules may, in general, result in
di erent decisions.

The following section will be devoted to a review of previous work on ucertainty

representation for set-valued variables.
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45 Relation to Previous Work

This section discusses the relation between the notions introducedbove and related
concepts or other formalisms already proposed for handling setalued variables.

4.5.1 Disjunctive vs. Conjunctive Bodies of Evidence

Yager [1159[114 was among the rst authors to emphasize the fundamental di erence
between single-valued and set-values variables, and to develop spe formalisms for

reasoning with the latter. In [11€], a distinction is made betweendisjunctive and con-
junctive information using set-based representations. Given a variabl¥ taking a single
value in , a statement V isA with A means thatV takes somevalue in A, but

we do not know which one. In contrast, ifV is multiple-valued, the same statement is
understood to mean thatV takesall values in A (and possibly other values outsideA).

The corresponding piece of information is called disjunctive in the érmer case, and
conjunctive in the latter. Yager then proceeds by observing that there is some kind
of duality between disjunctive and conjunctive knowledge. For inséance, the statement
P1: VisA impliesP,: V isB wheneverB A in the disjunctive case, whereas;

can be deduced fromP; wheneverB A in the conjunctive case. If we know thatP1

and P, both hold, then we can deduceV is A\ B in the disjunctive case, and V is

A [ B in the conjunctive case, etc.

Viewing mass functions as generalized sets, Dubois and Prad¥] remarked that the
same distinction holds in the belief function framework. They pointedout that, when
a mass functionm represents a body of evidence pertaining to a set-valued variable
(referred to as a conjunctive body of evidence), the commonalityfunction q is more
appropriate than b for representing degrees of belief, and the disjunctive sum4(11)
should be used for combining information conjunctively.

The formalism developed in Section4.4 sheds new light on this duality between
conjunctive and disjunctive knowledge. The conjunctive statemat V isA corresponds
to the proposition ' (A; ;). Let m be a mass function onC() whose focal elements are
all of the form ' (B; ;) for someB . We can notemYA) = m(A;;) for all A. Using
(4.57), we then have, for all A

X X
bA; ;) = m(B;;) = mqB) = o{A);
B A B A

94



Chapter 4: Set-valued evidence formalism and applicatioro tmulti-label learning

where ¢ is the commonality function corresponding tom® Conversely,

X X
qA;s)= m(B;;)=  myB)= A):
B A B A
As a consequence, lein; and m, be two mass functions onC() with focal elements
of the form described above, and assume that we want to combindiém conjunctively
using (4.56). We get

d 2(A) = (A5 R(A; ) = BABA) = B H(A)

for all A , Which explains why the disjunctive sumseemsto be used when combining
conjunctive bodies of evidence in a conjunctive manner.

45.2 Random sets

Random sets are de ned as random elements taking values as subsaif some space
[73[82]. In the nite case, a random set is thus de ned by a probability function m on
2 suchthat , m(A) =1, whichis mathematically equivalent to a Dempster-Shafer
mass function on [81]. However, as noted by Smetsdg], the semantics of random sets
and (standard) belief functions are di erent, as random sets modl random experiments
with set-valued outcomes, whereas standard belief functions quéfy beliefs regarding
a variable taking a single, but unknown value.

In contrast, random sets are recovered as a special class of beliefhctions on set-
valued variables introduced in this chapter. Letm be a mass function onC() , and
assume that the focal elements ofm are atoms of () , i.e., if they are of the form
(A; A). In that case, the function m®from 2 to [0;1] such that m{A) = m(A; A) for
all A is a random set. Random sets are thus equivalent to mass functiormn C( )
with atomic focal elements, just as probability distributions on  are equivalent to mass

functions on 2 with singleton focal elements.

45.3 \Veristic Variables

In Chapter 3 we have presented the theory of veristic variables proposed by Yar
in [119[117. As we have already mentioned, a veristic variable can be viewed as a
fuzzy set-valued variables. LetV denote such variable de ned over . Clearly, a major
di erence between Yager's approach and ours is the fact that Yagr represents each piece
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of knowledge aboutV as a set offuzzy subsets of , whereas we use a set @irisp subsets
of . However, the kinds of statements considered by Yager as well dse associated
verity and rebu distributions have very close representations in air approach.

To begin with, let us provisionally assume thatA is a crisp subset of . Then, each
of the four types of statements, already introduced in Section 3.3can be expressed by
categorical mass functions orC() as follows:

V isv A ! m(A;;)=1
Visv(n) A ! m(;;A)=1
Visv(c) A ! m(A;A)=1:
Visv(c;n) A ! m(A;A)=1
It is easy to see that, in each of these four cases:
b(f!g;;) = Ver(!) (4.64)
b(;;f!'g) = Rebu (1) (4.65)
forall ! 2 . The verity of ! is thus the belief that ! is one of the values taken

by V, whereas the rebu of ! is the belief that ! is not a value taken by V. This
interpretation can be shown to remain true whenA is a fuzzy subset of . In that case,
the function ! I A(!) can be seen as a possibility distribution, which is known to be
equivalent to a consonant mass functiorm®on  with focal elementsA; i1 A,.
The corresponding plausibility function pl° veri es

X
plfrg = mYA)=A(); 8 2
A;i3!
For instance, let us consider the statementV isv A, and let us translate it as the
following two-place mass function:

m(Ai;;) = mYA); i=1;0n
We have X X
nflg;)= m(Ai;;) = mYA)) = A(l) = Ver(!)
A;3! A;3!
and

b(;;f!' g)=0= Rebu (!):

By handling the three other cases similarly, it can be veri ed that Equations (4.64) and
(4.69 hold in all cases.
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We may thus conclude that, although based on a slightly di erent interpretation,
Yager's framework can be easily translated into the formalism of tweplace belief func-
tions, which is more general. However, this is only true at thestatic level, i.e., as long
as we do not combine di erent pieces of information. For instance, & shown by Yager,
the conjunctive combination of two statementsV isv A and V isv B in the veristic
framework results in a new statementV isv A[ B, where[ denotes fuzzy set union.
This is consistent with our approach only as long asA and B are crisp sets. IfA and
B are fuzzy, then translating the two statements as two-place masfunctions and com-
bining them using either the conjunctive sum or the cautious rule dos not, in general,
yield a consonant mass function corresponding to a veristic constimt on V. The two

formalisms thus di er when combining statements involving fuzzy sulsets.

4.5.4 Two-fold fuzzy sets

To complete this review of previous work on uncertainty represeration for set-valued
variables, we need to mention the representation of incomplete cqumctive information
using a pair of fuzzy sets introduced in 27].

In this work, Dubois and Prade proposed to represent partial knowedge about a
set-valued variable as a possibility distribution on 2 . This is equivalent to de ning
a fuzzy set of crisp subsets of , which contrasts with Yager's approach who de nes a
crisp setW of fuzzy subsets of . To make such a representation more easily tractable,
Dubois and Prade then proposed to approximate by a pair of fuzzy sets(A ;A*) as
follows. Let Aj, i 2 | be the family of subsets of such that (A;) > 0. Let

A (')=1 sup (A)
il 6BA;

and

AT(x)= sup (A):
i1 2A;

The degree of membership oV to A is thus the extent to which is impossible to
nd an A; not containing V, while A* (x) corresponds to the possibility of nding an
A; containing V. The pair (A ;A"), referred to as atwo-fold fuzzy set constitutes
an approximation of in the sense that it is a simpler, but incomplete representation:
several possibility distributions  correspond to the same two-fold fuzzy set. However,
Dubois and Prade showed that the least speci ¢ possibility distribution  induced by
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a two-fold fuzzy set(A ;A*) can be expressedas (;)=1 supA , ()=inf A*,

and

- H H LA | . .. .
(B) =min X|r211I;A(.),!lrén‘;B(l A() ; 8822 nf;; g

To each two-fold fuzzy set(A ;A*) can thus be associated a fuzzy subsét of 2 , with
membership function equal to

We note that this approach has some similarity with ours, since it is basd on the
representation of a subset of2 by a pair of subsets of . Actually, if A and A"
are crisp, then the corresponding crisp subsef of 2 is exactly equal to' (A ;A*).
However, in the general case, the two-fold fuzzy set represetton is based on a pair of
possibility distributions, i.e., consonant belief functions on , whereas our approach is
based on a single two-place belief function o() .

What can be seen as a limitation of the two-fold fuzzy set approach @&es when
combining information from several sources. Given two pairfA ;A*) and (B ;B™)
representing knowledge about two set-valued variable¥; and V,, Dubois and Prade
showed that the knowledge ofv;\ V, can be represented bfA \ B ;A*\ B*), while
the knowledge ofVi[ V, can be represented bfA [ B ;A" [ B™). Applications of this
kind of reasoning to database query evaluation is discussed i&7]. However, a di erent
and maybe more common problem in uncertain reasoning is the situatiowhere we have
two items of evidence about a single set-valued variabl®/, and we want to combine
these two items of evidence. If(A ;A*™) and (B ;B*) correspond, respectively, to
fuzzy subsetsA and B of 2 , the result of the combination should ideally correspond to
A\B orto A[B , depending on the choice of a conjunctive or disjunctive combinatio
mechanism. However, none of these two fuzzy subsets »f generally admits a two-fold
fuzzy set representation, which restricts the use of this formalim for reasoning with
set-valued variables.

We have shown that the formalism of two-place belief functions intraluced in this
chapter seems to compare favorably in terms of expressive powerith existing for-
malisms for representing and reasoning with uncertain conjunctivéenformation. In the
next section, we will demonstrate the usefulness of this formalisnof multi-label clas-

si cation problems.
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4.6 Application to Multi-label Classi cation

In this section, we present an application of the proposed two-placéelief functions
framework to multi-label classi cation.

The class label of each instance may be considered as a set-valuettiable. As
remarked in Section3.4.1, in order to construct a multi-label classi er, we generally
assume the existence of a labeled training set where each instangeis assigned asingle
subsetY; of the setY of classes. In practice, however, gathering such high quality
information is not always possible, especially, when the instances havbeen labeled
subjectively by one or several experts. Uncertainty may be introduced in the laeling
process, and thus, it will be very di cult to precisely label each instance.

For example, assume that instances are songs and classes are &ong generated by
these songs, as in the emotion dataset that will be used later in thexperiments. Upon
hearing a song, an expert may decide that this song certainly evokehappiness and
certainly does not evoke sadness, but may be undecided regarditizge other emotions
(such as quietness, anger, surprise, etc.). In that case, the sprtannot be assigned a
single label set, but we can associate to it the set of all label sets m@ining happiness
and not containing sadness, which has the form suggested abev

The formalism developed in this may can easily be used to handle such sétions.
In the most general setting, the opinions of one or several expextregarding the set
of classes that pertain to a particular instancex; may be modeled by a mass function
m; on C() . A less general, but arguably more workable option is to restrictm; to
be categorical, i.e., to have a single focal elemerit(A;;B;i), with A;j;B; and
Ai\ B; = ;. The set A; is then the set of classes thatertainly apply to x;, while B;
the set of classes that certainlydo not apply. When data are labeled by several experts,
A; might represent the set of classes indicated by all (or most) exp&s as relevant to
describe instancex;, while B; would be the set of classes mentioned by none of the
experts (or only a few of them). The usual situation of precise lablang is recovered in
the special case wher®; = A;.

In [20][132, we introduced a single-labek-nearest neighbor (NN) classi er based on
Dempster-Shafer theory. This method will be brie y recalled in Subsetion 4.6.1, and
will be extended to multi-label classi cation tasks in Subsection4.6.2 The proposed
method is called EMLKNN, for Evidential Multi-Label k-NN.
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4.6.1 Single-label Evidential  k-NN Classi cation

The evidential k-NN method introduced in [20] for single-label classi cation problems

instances, wherex; belongs to the domain of instanceX and A; Y is a set of possible
classes for this instance. We emphasize the fact that, in the comnté considered here,

each instancex; actually belongs to one and only class, but this class is only known to
lie somewhere inA;.

Let x be an new instance that we search to estimate its clags We want to guess
the value of y based on evidence provided by the learning seb. For that purpose,
we consider the setN X of the k nearest neighbors ofx, according to some distance
measured. Each learning object(x;; Aj) with x; 2 N ¥ can then be regarded as a piece
of evidence regarding the unknown value oy, represented as the following simple mass
function on Y:

mi(Ai) = oexp( d(X;xi); (4.66)
mi() = 1 oexp( d(X;xi)); (4.67)
with 0< o< land > 0. Parameter g is usually xed at a value close to 1 such as
o = 0:95, whereas should depend on the scaling of distances and can be either xed
heuristically or optimized [1327. We recall that the same function gexp( d(X;X;)

was used for knowledge discounting in the VERNN method. The evidence of thek
NNs is then pooled using the conjunctive sum:

M=\ xonk Mi; (4.68)

and the class with highest plausibility or pignistic probability is selected. As remarked
in [23] and [22], this method can be easily extended to the case where each learning
instance in D is labeled by a general mass function ol .

4.6.2 Multi-label Evidential k-NN Classi cation

Let us now come back to the multi-label classi cation problem, in which oljects may

the learning set, whereA; Y denotes a set of classes that surely apply to the instance
Xi, and Bj a set of classes that surely do not apply to the same instance. ¥ Y
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denotes the true label set of;, we thus only know that Y; 2 ' (Aj; Bj). The EMLKNN
method builds a multi-label classi er H and a scoring functionf as it will be explained
in the following.

As before, letN ¥ denote the set ofk nearest neighbors of a new instance, and x;
an element of that set with label (A;;B;). This item of evidence can be described by
the following simple two-valued mass function:

mi(Ai;Bi) = exp( d(x;xj)); (4.69)
mi(;;;) = 1 exp( d(x;xj)); (4.70)

with, as before,0< g< land > 0. Thesek mass functions are then combined using
a combination rule (the conjunctive sum, the consensus or the cdious rules).

For decision making, di erent procedures can be used. The followingimple and
computationally e cient rule was implemented. To decide whether to assign each class
I 2 Y or not to instance x, we compute the degree of beliebelf! g;;) that the true
label setY contains! , and the degree of beliebel(;;f! g) that it does not contain ! .
We then de ne the multi-label classier H as

H(x)= fl 2Y jbelf! g:;) bel;f!g)g;
and the corresponding scoring functiorf as

f(x;!)= belf!qg;;):

4.7 Conclusion

We have presented a formalism for quantifying uncertainty on a setalued variable V
de ned on a domain in the belief function framework. This approach relies on the
de nition of a family C() of subsets of2 that is closed under intersection and has
a lattice structure. Each element in C() is indexed by two subsetsA and B, and is
de ned as the set of subsets of containing A and not intersecting B. The number
of such elements (including the empty set oR ) is equal to 3 1 +1: it is thus much
smaller than the size of2? , while being rich enough to express evidence about set-valued

variables in many realistic situations.
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Most notions from Dempster-Shafer theory of belief functions ca be de ned on
C() . The proposed formalism has been shown to be somewhat similar toubar-
guably more general and exible than other approaches introducedn the possibilistic
framework.

Finally, based on the proposed two-place belief functions framewkrformalism, we
have proposed a multi-label classi cation method, called EMIkNN, where each unseen
instance is classi ed on the basis of itk nearest neighbors. In particular, the EMLKNN
method allows us to handle multi-label learning problems with imprecise laels.
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Experiments

Summary

In this chapter, we show a comparison between the proposed mettls and with other
state-of-the-art multi-label learning algorithms on several benbmark datasets and using
di erent evaluation criteria. We report experimental results on both precisely and
imperfectly labeled data. The latter case occurs when, for example¢he data have been
labeled subjectively by one or many experts in the absence of grodriruth. Due to lack
of con dence and con its between experts, noisy and imprecise labelwill inevitably be
introduced in the labeling process.

Résumé

Dans ce chapitre, nous montrons une comparaison, sur plusieursux de données
et en utilisant di érents criteres d'évaluation, entre les méthodes poposées et avec
d'autres algorithmes de I'état de l'art de l'apprentissage multi-label. Nais présentons
des résultats expérimentaux sur des données étiquetées d'uneda précise en premier
lieu, et d'une facon imparfaite en deuxiéme lieu. En fait, il n'est pas tojours possible
de disposer de données qui sont parfaitement étiquetées. En ¢ alans de nombreuses
applications réelles, il n'existe pas de vérité terrain pour I'étiquetagales di érents in-
dividus sans aucune ambiguité, et plusieurs experts doivent étreoosultés. En raison
de con its entre les experts et de manque d'informations, des imprésions et des bruits
seront introduits durant |'étiquetage des données.
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5.1 Introduction

Three methods for multi-label learning have been proposed in this tbsis: DMLKNN,
VERKNN and EMLKNN. We present in this chapter a comparative study between the
proposed methods and with some state-of-the-art algorithms usg several benchmark
datasets and di erent multi-label evaluation measures.

In order to construct a multi-label classi er, we generally assume theexistence of a
labeled training set in which each instance is assignedecise set of labels. In practice,
however, gathering such high quality information is not always feasile at a reasonable
cost. In many problems, there is no ground truth for assigning unariguously a label set
to each instance, and the opinions of one or several expert have be elicited. Typically,
an expert will sometimes express lack of con dence for assigning a livknown label set.
If several experts are consulted, some conict will inevitably arise, wich again will
introduce some uncertainty in the labeling process, and lead to impéect labeled data.
The experimental study presented below address both cases ofggise and imperfect
labeled data.

This chapter is organized as follow. Sectiorb.2 will present the evaluation metrics
used for the comparison of the di erent methods. The benchmarldatasets used in our
experiments will be reported in Section5.3. Experimental results on precise data will
be detailed in Section5.4, and Section5.5will present a comparative study on imperfect
labeled data. Finally,some concluding remarks will be made in SectioB.6.

5.2 Evaluation metrics

The evaluation of multi-label learning systems is more complex from tht of single-label
learning systems. A result can be fully correct, partially correct orfully wrong. Let
H:X ! 2' be a multi-label classi er that assigns a subset off = f! 1;:::;! og for
each instancex 2 X, and letf : X Y ! [0; 1] be the corresponding scoring function
that attributes a score to each clasd ¢ 2 Y interpreted as the probability that x belongs
to ! 4. There exist a number of evaluation criteria that evaluate the perbrmance of a

We give hereafter some of the main evaluation criteria used in the liteature to evaluate
a multi-label learning system P1][104. The evaluation metrics can be divided into two
groups: prediction-based and ranking-based metrics. Prediction-based metrics assess
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the correctnessof the label sets predicted by the multi-label classi erH, while ranking-
based metrics evaluate the label ranking quality depending on the secing function f .
As a scoring function is not computed by all multi-label classi cation methods, the
former category of metrics is of more general use.

5.2.1 Prediction-based metrics

Accuracy  The accuracy metric is an average degree of similarity between therg-
dicted and the ground truth label sets of all test examples:

Acohis) = 1 Y R
N v

where ¥ = H(x;) denotes the predicted label set of instance;.

Fl-measure The Fl-measure is de ned as the harmonic mean of two other metrics
called Precision P rec) and Recall (Rec) [121]. The former computes the proportion of
correct positive predictions while the latter calculates the proporion of true labels that
have been predicted as positives. These metrics are de ned as follow

Prec(H;S) = 1 JY'_\ _b'J;
n._, %
12X v\
Rec(H;S) = — ——;
o ) n 1Yi]

i=1
and,
2 Prec Rec_ 1% 2jvi\ ¥j

F1H:S) = Prec+ Rec n v+
Hamming loss  This metric counts prediction errors (an incorrect label is predictel)
and missing errors (a true label is not predicted):
HLoss(H;S) = rll)@ éjYi vi;
i=1
where  stands for the symmetric di erence between two sets.

Note that the values of the prediction-based evaluation criteria ae in the interval
[0;1]. Larger values of the rst four metrics correspond to higher classi @tion qual-
ity, while for the Hamming loss metric, the smaller the symmetric di erence between
predicted and true label sets, the better the performancel[07[121].
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5.2.2 Ranking-based metrics

As stated before, this group of criteria is based on the scoring fution f (:;:) and
evaluates the ranking quality of the di erent possible labels B9|[129. Let rank; (:;:) be

Xi, the label with the highest scoring value has rank 1, and if (xi;! q) > f (xj;! ), then
ranks (Xi;! q) <rank ¢ (Xi;! ).

One-error  The one-error metric evaluates how many times the top-ranked laél, i.e.
the label with the highest score, is not in the true set of labels of theénstance:

1 X .
OErr (f; S)= =  Hargmaxf (xi;!)] 2 Yii;
n._, r2y
where for any propositionH, hHi equals to 1 ifH holds and O otherwise. Note that, for
single-label classi cation problems, the one-error is identical to orthary classi cation
error.

Coverage The coverage measure is de ned as the average number of stepseded
to move down the ranked label list in order to cover all the labels assited to a test
instance:

1 X

Cov(f; S) = 0 'mza\l()f ranks (x;;!) 1
i=

Ranking loss  This metric calculates the average fraction of label pairs that are e-
versely ordered for an instance:

RLoss(f; S) = 1)@ ! fCa!)2Y Yijfxite f(Xi;!)gj
y - anl JY|”7|JJ Q- r | IJ iv:q |"rgj

where Y; denotes the complement ofY; in Y.

Average precision  This criteria was rst used in information retrieval and was then

adapted to multi-label learning problems in order to evaluate the e ectiveness of label
ranking. This metric measures the average fraction of labels rankieabove a particular
label y 2 Y; which actually are in Y;:

12X 1 X i 2 Y jranke (xi;! ) ranke (xi! q)gi

AvP f; = - N
\Y; reC( ' S) n - iYij ranks (x;;! q)

! qui
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For the ranking-based metrics, smaller values of the rst three metics correspond to

better label ranking quality, while AvPrec(f; S) =1 means that the labels are perfectly

ranked for all test examples B9.

5.3 Multi-labeled datasets

5.3.1 Multi-label Statistics

Given a multi-labeled datasetD = f(x;;Y;);i = 1;:::;ng with x; 2 X andY; Y ,
the following measures give some statistics about the label multiplicg of the dataset
D [102.

The label cardinality of D, denoted by LCard (D), indicates the average number

of labels per instance:
X
LCard(D)= = jYij
Nz
The label densityof D, denoted byLDen (D), is de ned as the average number of
labels per instance divided by the number of possible labels Q:

LCard (D)

LDen (D) = 9

DL (D) counts the number ofdistinct label setsappeared in the datasetD:

DL(D)=jfYi Yj9 x;2 X : (xi;Y;) 2 Dgj

5.3.2 Benchmark datasets

Several real datasets were used in our experiments. The used datasets come from

di erent domains of application: text categorization, bioinformatic s, and multimedia

applications (music and image).

The emotion dataset presented in [LO]], consists of 593 songs annotated by experts
according to the emotions they generate. The emotions are: amed-surprise,
happy-pleased, relaxing-calm, quiet-still, sad-lonely and angry-frful. Each emo-
tion corresponds to a class. There are thus 6 classes, and eachgwvas labeled as

1These datasets can be downloaded fromhttp://mlkd.csd.auth.gr/multilabel.html
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belonging to one or several classes. Each song was also describgd shythmic
features and 64 timbre features, resulting in a total of 72 featugs. The number
of distinct label sets is equal to 27, the label cardinality is 1.868, andhe label
density is 0.311.

The scene datasetconsists of 2407 natural scene images. For each image, spatial
color moments are used as features. Images are divided into 49 bleaksing a7 7
grid. The mean and variance of each band are computed correspding to a low-
resolution image and to computationally inexpensive texture featues, respectively
[8]. Each image is then transformed into a49 3 2 = 294-dimensional feature
vector. A label set is manually assigned to each image. There are 6 dirent
semantic scenessea, sunset, trees, desert and mountainsrhe average number of
labels per instance is 1.074, thus the label density is 0.179 (only 7.35%teaining
instances are labeled by more than one class). The number of distinsets of

labels is equal to 15.

The yeast datasetcontains data regarding the gene functional classes of the yeast
Saccharomyces cerevisiag39]. It includes 2417 genes each represented by 103
features. Each gene is described by the concatenation of micreoray expression
data and phylogenetic prole and is associated with a set of functionhaclasses.
There are 14 possible classes and there exist 198 distinct label coimétions. The
label cardinality is 4.237, and the label density is 0.303.

The medical datasetconsists of 978 examples each one represented by 1449 fea-
tures. Itis issued from theComputational Medicine Centerconcerning a challenge
task on the automated processing of clinical free text. This datast has been used

in [89]. The average cardinality is 1.245, and the label density is 0.028 with 94
distinct label sets.

The Enron email datasetconsists of 1702 examples each one represented by 1001
features. It corresponds to messages belonging to users, mos#ignior manage-
ment of the Enron Corp. This dataset has been used ing9. 753 distinct label
combinations exist in the dataset. The label cardinality is 3.378 and tle label
density is 0.064.
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Table 5.1: Characteristics of datasets

Dataset Domain | Number of | Feature vector | Number of Label Label Distinct
instances dimension labels cardinality density | label sets
emotion music 593 72 6 1.868 0.311 27
scene image 2407 294 6 1.074 0.179 15
yeast biology 2417 103 14 4.237 0.303 198
medical text 978 1449 45 1.245 0.028 94
enron text 1702 1001 53 3.378 0.064 753

Table 5.2: Characteristics of the webpage categorization dataset

Number of | Feature vector | Number of Label Label Distinct

instances dimension labels cardinality density | label sets
Arts&Humanities 5000 462 26 1.636 0.063 462
Business&Economy 5000 438 30 1.588 0.053 161
Computers&Internet 5000 681 33 1.508 0.046 253
Education 5000 550 33 1.461 0.044 308
Entertainment 5000 640 21 1.420 0.068 232
Health 5000 612 32 1.662 0.052 257
Recreation&Sports 5000 606 22 1.423 0.065 322
Reference 5000 793 33 1.169 0.035 217
Science 5000 743 40 1.451 0.036 398
Social&Science 5000 1047 39 1.283 0.033 226
Society&Culture 5000 636 27 1.692 0.063 582

Table 5.1 summarizes the characteristics of the emotion, scene, yeast, dieal
and Enron datasets. We can remark that, for the medical and Enon datasets,
the dimensions of feature vectors are very large as compared tthé number of
training instances. We applied the 2 statistic approach for feature selection on
these two datasets, and we retained 20% of the most relevant feaes [127.

The webpage categorization datasdias been investigated in J09[129. The data
were collected from the yahoo.com domain. Eleven di erent webpge categoriza-
tion subproblems are considered, corresponding to 11 di erent ¢agories: Arts
and Humanities, Business and Economy, Computers and Internet, @ucation,
Entertainment, Health, Recreation and Sports, Reference, Sciee, Social and
Science, and Society and Culture. Each subproblem consists of 3D@ocuments.
Over the 11 subproblems, the number of categories varies from 2@ 40 and the
instance dimensionality varies from 438 to 1,047. Tabl&.2 shows the statistics of
the di erent subproblems within the webpage dataset.

109



Chapter 5. Experiments

5.4 Experiments on precise data

Before presenting the results, we explain hereafter the procedess used for parameter
tuning and con guration of the proposed methods.

5.4.1 Parameter tuning

5.4.1.1 Parameter selection

DML KNN, VERKNN and EMLKNN have one parameter in common that needs to be
optimized: the number of neighborsk. In addition, DML kNN has the fuzziness param-
eter , VERKNN and DMLKNN have the discounting parameter that also have to
be xed. We xed these parameters using grid search and by focusingn the accuracy
measure. k was varied from 1 to 30, from 0 to k, and from O to 3 with 0.05 step.
k =10 with =2 for DMLKNN and with =0:1 for VERKNN and EMLKNN seem to
be a good tuning for the proposed methods.

After ve-fold cross-validation, Figure 5.1 shows the accuracy measure on the emo-
tion and yeast dataset as a function of for k = 10. The maximum of the accuracy
measure is achieved for = 2 on the both datasets. As we can see, =3 can also be a
candidate.

Figures 5.2 and 5.3 show the accuracy measure on the emotion dataset as a function
of for k =10, and as a function ofk for = 0:1, using the VERKNN and EMLKNN
methods, respectively. It is clear thatk = 10 and = 0:1 is a good parametrization
for the both methods. For VERKNN, the hybrid rule of combination was used, and
for EML kNN, we used the conjunctive rule. We will justify this choice in the next two

sections.

5.4.1.2 Con guration of VER KNN

For VERKNN, two rules of combination can be used: the hybrid ruleand =or, and
the disjunctive rule or,. There also exist two approaches to generate verity and rebu
measures from precise labeled data: the direct and fuzzy apprdaes (see Sectior3.4).
When using the fuzzy approach, we need to x the number of neighbark®to be taken
into account in order to determine the appropriate labeling for eachtraining instance.
Figure 5.4 shows the Accuracy measure on the emotion dataset for di erent values
of kK% We can remark that, for values larger than 5, parameterk® has no signi cant
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Figure 5.1: The accuracy measure of DMINN as a function of for k = 10, on the
emotion dataset (top), and on the yeast dataset (bottom).

in uence on the results when using the hybrid and disjunctive rules ofcombination.
In the following, when using the fuzzy approach to determine the vaty and rebu
distributions, the number of neighborsk®will be xed to 8.

Tables5.3and 5.4 show a comparison on the emotion and yeast datasets respectively
between the hybrid and disjunctive rules of combination using the diect and fuzzy
labeling approaches. The conclusion that can be drawn from theseesults is that the
fuzzy labeling approach improves the performance of the VERNN method, and for
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Figure 5.2: The accuracy measure of VERNN on the emotion dataset as a function of
for k =10 (top), and as function of k for =0:1 (bottom).

k =10 and =0:1, the hybrid rule of combination provide the best results on the two
datasets.

5.4.1.3 Con guration of EML kNN

For the EML KNN method, a precisely labeled training instance(x;; Y;), is represented
by (xi;Ai;B;), where A; = yj, and B; = Y; (see Sectior4.6).
Tables5.5and 5.6 show a comparison on the emotion and yeast datasets respectively
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Figure 5.3: The accuracy measure of EMIkNN on the emotion dataset as a function of
for k = 10 (top), and as function of k for =0:1 (bottom).

between the consensus, conjunctive and cautious rules of comhbiion. We can remark
that, on both datasets, the results obtained by using the consesus and the conjunctive
rules are very close, with a slight advantage to the conjunctive ruleand are better
than the results obtained when using the cautious rule. In further &periments, the
conjunctive rule of combination will be used because it is computatioally faster than

the consensus rule due to its associativity propriety.
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Figure 5.4: The accuracy measure on the emotion dataset for the VERNN algorithm as
a function of kC using the hybrid rule (*) and disjunctive rule (o) of combin ation.

Table 5.3: VERKNN on the emotion dataset

VER kNN and =or | VER kNN and =or VER kNN or VER kNN or

(direct approach) (fuzzy approach) (direct approach) (fuzzy approach)
Accuracy * 0.511 0.554 0.429 0.503
Precision™* 0.605 0.666 0.433 0.539
Recall* 0.677 0.626 0.969 0.855
F1* 0.639 0.645 0.598 0.661
Hamming Loss 0.249 0.222 0.447 0.313
One-Error 0.382 0.368 0.645 0.549
Coverage 2.314 2.296 3.214 2.988
Ranking Loss 0.397 0.388 0.953 0.827
Average Precision™* 0.723 0.745 0.555 0.608

+(-): the higher (smaller) the value the better the performa  nce.

5.4.2 Results and discussion

We compared the proposed methods with three existing multi-labellassi cation meth-
ods that were shown to have good performances and that wereperted in Chapter 1:
MLKNN [129 that is the closest to our methods, MLRBF [126 derived from radial
basis function neural networks, and Rank-SVM 89 that is based on the traditional

support vector machine. For each compared algorithm, the paramter tuning suggested
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Table 5.4: VERKNN on the yeast dataset

VER kNN and =or | VER kNN and =or VER kNN or VER kNN or
(direct approach) (fuzzy approach) (direct approach) (fuzzy approach)
Accuracy * 0.477 0.512 0.402 0.495
Precision™ 0.599 0.665 0.409 0.536
Recall* 0.602 0.595 0.955 0.839
F1* 0.601 0.627 0.573 0.654
Hamming Loss 0.244 0.213 0.472 0.300
One-Error 0.438 0.285 0.544 0.349
Coverage 6.844 6.829 10.318 10.212
Ranking Loss 0.284 0.285 0.885 0.721
Average Precision* 0.705 0.724 0.476 0.546
+(-): the higher (smaller) the value, the better the performa  nce.
Table 5.5: EMLKNN on emotion dataset
EML kNN EML kNN EML kNN
(consensus rule) | (conjunctive rule) (cautious rule)

Accuracy * 0.544 0.561 0.470

Precision™* 0.678 0.676 0.645

Recall* 0.626 0.660 0.532

F1* 0.652 0.667 0.583

Hamming Loss 0.194 0.196 0.212

One-Error 0.262 0.267 0.278

Coverage 1.784 1.783 1.845

Ranking Loss 0.165 0.166 0.175

Average Precision* 0.804 0.800 0.791

Table 5.6: EMLKNN on yeast dataset
EML kNN EML kNN EML kNN
(consensus rule) | (conjunctive rule) (cautious rule)

Accuracy * 0.520 0.525 0.488

Precision* 0.692 0.688 0.682

Recall* 0.608 0.613 0.579

F1* 0.647 0.648 0.623

Hamming Loss 0.197 0.198 0.206

One-Error 0.236 0.238 0.243

Coverage 6.522 6.486 6.614

Ranking Loss 0.186 0.185 0.189

Average Precision* 0.758 0.759 0.751

in the literature were used: for ML-KNN, k was set to 10 [29; for MLRBF, the fraction
parameter was set to 0.01 and the scaling factor to 11pg; nally, a polynomial kernel
was used for RankSVM B9].

For all k-NN based algorithms, the Euclidean distance was used. Laplace snibimg
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was used for MLkNN and DML kNN.

Five repetitions of ten-fold cross-validation were performed on ez dataset. Tables
5.7 to 5.11 report the detailed results in terms of the di erent evaluation metrics for
the emotion, scene, yeast, medical and Enron datasets, respigely. On the webpage
dataset, ten-fold cross validation was performed on each subpbem, and Table 5.12
reports the average results.

For each method, the mean values of the di erent evaluation criteia as well as the
standard deviations (std) are mentioned in the tables. A two-tailed paired t-test at
5% signi cance level was performed in order to determine the statistal signi cance of
these results in comparison with the best performances indicated ibold. In addition,
for each dataset, the methods were ranked in decreasing ordef performance. The
average ranks over the di erent evaluation criteria are reportedin the tables.

On the emotion, scene and yeast datasets, the DMINN method had the best aver-
age performance, followed by EMKNN and MLRBF. On the medical, Enron and web-
page datasets, MLRBF performed better than the other methodsfollowed by DMLKNN
and MLKNN.

From the presented experimental results, the following observaons can be induced:

VERKNN and EMLKNN perform better in terms of predicted-based metrics than
in terms of ranking-based metrics. These methods work by combinminformation

about the labeling of the nearest neighbors of each instance to clsify, thus, they

address mainly the pertinence of the predicted sets of labels instédaf the ranking

of all labels.

DML kNN performs better than MLKNN in terms of all ranking-based metrics and
on all datasets. MLKNN gives better predicted-based measures on datasets from
text categorization domain: the medical and Enron datasets.

The proposed methods have a good performance and are more quetitive with
the other algorithms on datasets with high label density, such on tle emotion
and yeast datasets. In fact, the DMLKNN method takes into account label cor-
relation. Moreover, the EMLKNN and VERKNN methods handling multi-labeled
data directly, are intrinsically able to also capture relations betweenlabels. In-
deed, these methods will perform better on datasets with high lademultiplicity,
in which labels may be potentially more correlated.
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Table 5.7: Experimental results (mean std) on the emotion dataset

DML kNN \ VER kNN \ EML kNN \ ML kNN \ MLRBF \ RankSVM
Acc? 0.562 0.029 | 0.538 0.029 | 0.564 0.032 | 0.536 0.032 | 0.548 0.029 | 0.403 0.027
Prec* 0.691 0.032 | 0.647 0.028 | 0.676 0.034 | 0.674 0.033 | 0.686 0.037 | 0.511 0.033
Rec* 0.653 0.030 | 0.626 0.031 | 0.664 0.033 | 0.622 0.041 | 0.639 0.032 | 0.538 0.032

F1* 0.671 0.028 | 0.645 0.027 0.669 0.031 0.648 0.033 0.662 0.031 0.524 0.029
HLoss 0.189 0.015 | 0.222 0.014 0.196 0.017 0.197 0.015 0.191 0.015 0.288 0.016
OErr 0.266 0.033 0.368 0.043 0.270 0.035 0.285 0.035 0.255 0.045 | 0.427 0.046
Cov 1.762 0.111 | 2.281 0.147 1.784 0.110 1.803 0.115 1.765 0.120 2.425 0.129

RLoss 0.161 0.019 0.386 0.034 0.168 0.021 0.167 0.021 0.159 0.021 | 0.278 0.020
AvPrec * 0.804 0.019 0.745 0.027 0.801 0.020 0.794 0.022 0.809 0.024 | 0.692 0.021
| AvRank | 15 \ 4.6 \ 25 \ 338 2.1 5.8
+(-): the higher (smaller) the value, the better the performa  nce.
( ): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

Table 5.8: Experimental results (mean std) on the scene dataset

| DMLKNN [ VERKNN [ EMLKNN | MLKNN [ MLRBF | RankSVM
Acc* 0.676 0.015 | 0.639 0.017 | 0.706 0.015 | 0.668 0.020 | 0.631 0.016 | 0.436 0.015
Prect 0.704 0.017 | 0.659 0.019 | 0.735 0.016 | 0.695 0.021 | 0.652 0.017 | 0.452 0.018
Rec 0.677 0.015 | 0.772 0.017 | 0.707 0.015 | 0.687 0.024 | 0.644 0.017 | 0.661 0.017

F1* 0.690 0.016 0.687 0.018 0.716 0.016 | 0.683 0.023 0.649 0.017 0.508 0.017
HLoss 0.084 0.004 | 0.120 0.004 0.092 0.004 0.087 0.003 0.086 0.003 0.163 0.004
OErr 0.219 0.017 0.319 0.016 0.246 0.015 0.228 0.016 0.206 0.015 | 0.298 0.016
Cov 0.461 0.035 0.725 0.040 0.527 0.030 0.476 0.035 0.451 0.041 | 1.187 0.043

RLoss 0.071 0.007 0.160 0.009 0.098 0.007 0.077 0.009 0.072 0.008 0.120 0.010
AvPrec * 0.869 0.010 0.804 0.010 0.853 0.009 0.865 0.009 0.876 0.009 0.798 0.011
| AvRank | 21 \ 4.3 \ 2.7 \ 31 2.8 5.7
+(-): the higher (smaller) the value, the better the performa  nce.
( ): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

5.5 Experiments on imperfect data

Each of these datasets was constructed in such a way that eachsitancex; is assigned

a well-known set of labelsY;. This choice may sometimes be questioned since in some
cases, as with the emotion and scene datasets, there is no groutrdth and the data
have been labeled subjectively by one or several experts. In sucls#éuation, uncertainty

in class labels will inevitably exist due to con icts between experts or lak of con dence
that an expert may express. The veristic variable framework andhe proposed evidential
set-valued formalism allow us to represent and exploit expert knowldge. To assess the
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Table 5.9: Experimental results (mean std) on the yeast dataset

\ DML kNN VER kNN \ EML kNN \ ML kNN \ MLRBF \ RankSVM
Acc* 0511 0.011 | 0512 0.010 | 0.525 0.012 | 0.508 0.014 | 0.510 0.011 | 0.474 0.019
Prec* 0.726 0.014 | 0.665 0.010 | 0.692 0.013 | 0.724 0.015 | 0.703 0.013 | 0.481 0.085
Rec* 0.577 0.012 | 0595 0.012 | 0.613 0.012 | 0.578 0.017 | 0.594 0.012 | 0.541 0.066

F1* 0.613 0.011 0.627 0.010 0.648 0.011 | 0.612 0.014 0.616 0.011 0.502 0.052
HLoss 0.192 0.005 | 0.229 0.005 0.198 0.005 0.194 0.005 0.197 0.005 0.204 0.010
OErr 0.226 0.021 | 0.285 0.015 0.238 0.016 0.230 0.017 0.239 0.019 0.241 0.029
Cov 6.240 0.104 | 6.829 0.132 6.486 0.124 6.275 0.100 6.489 0.136 7.027 0.489

RLoss 0.165 0.007 | 0.284 0.011 0.185 0.007 0.167 0.006 0.175 0.008 0.189 0.015
AvPrec* | 0.770 0.010 | 0.724 0.009 0.759 0.008 0.765 0.010 0.758 0.011 0.752 0.022
| AvRank | 2 \ 43 \ 2.6 \ 2.9 34 5.6
+(-): the higher (smaller) the value, the better the performa  nce.
( ): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

Table 5.10: Experimental results (mean std) on the medical dataset

| DMLKNN | VERKNN | EMLKNN [ MLKNN [ MLRBF | RanksvMm
Acc* 0.548 0.031 | 0.546 0.023 | 0.628 0.035 | 0.598 0.038 | 0.689 0.029 | 0.462 0.042
Prec* 0.607 0.035 | 0.596 0.025 | 0.694 0.037 | 0.657 0.041 | 0.713 0.031 | 0.502 0.039
Rec* 0.558 0.030 | 0.723 0.029 | 0.644 0.036 | 0.623 0.038 | 0.702 0.025 | 0.549 0.037

F1* 0.571 0.032 0.638 0.024 0.656 0.036 0.629 0.039 0.709 0.027 | 0.520 0.037
HLoss 0.015 0.001 0.028 0.002 0.017 0.002 0.016 0.001 0.011 0.001 | 0.204 0.004
OErr 0.251 0.029 0.474 0.037 0.266 0.036 0.252 0.026 0.141 0.024 | 0.241 0.039
Cov 2.664 0.447 9.927 0.982 3.261 0.451 2.719 0.482 1.458 0.296 | 4.027 0.786

RLoss 0.040 0.009 0.551 0.031 0.101 0.016 0.041 0.008 0.020 0.004 0.189 0.021
AvPrec * 0.806 0.023 0.522 0.029 0.797 0.021 0.802 0.019 0.896 0.014 0.752 0.032
| AvRank | 3.1 \ 4.8 \ 3.2 \ 3.1 11 5.5
+(-): the higher (smaller) the value, the better the performa  nce.
(): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

performances of the proposed methods in such situations, we rdoamly simulated an
imperfect labeling process in order to generate imperfectly labeledada from precisely
labeled ones.

5.5.1 Labeling process

Let Y; Y Dbe the true label set of an instancex;, and let y; = (yi1;:::;Yig) be the
vector of f 1;1g® such that Yig =1 if 142 Y andyiq = 1 otherwise. For each
instance x; and each clasd 4, we generated a probability of errorpiq = p%zz, where
pi% was taken from a beta distribution with parametersa = b= 0:5 (this is a bimodal
distribution with modes at 0 and 1), and we changedyiq to Yiq with probability pig,
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Table 5.11: Experimental results (mean std) on the Enron dataset
| DML kNN VERKNN [ EMLKNN ML kNN MLRBF RankSVM
Acc? 0.341 0.037 0.319 0.018 0.361 0.016 0.352 0.029 0.408 0.021 | 0.269 0.044
Prec* 0.621 0.048 0.529 0.030 0.568 0.025 0.615 0.030 0.643 0.025 | 0.491 0.083
Rec* 0.349 0.037 0.363 0.023 0.401 0.019 0.393 0.032 0.486 0.016 | 0.341 0.061
F1* 0.427 0.037 0.414 0.019 0.444 0.018 0.439 0.030 0.553 0.018 | 0.398 0.064
HLoss 0.052 0.001 0.058 0.001 0.055 0.002 0.053 0.001 0.047 0.001 | 0.085 0.012
OErr 0.308 0.024 0.438 0.053 0.341 0.028 0.310 0.029 0.278 0.018 | 0.850 0.269
Cov 13.134 0586 | 29.265 1.011 | 20.293 0.916 | 13.199 0.588 | 14.206 0.713 | 26.804 2.712
RLoss 0.091 0.006 0.486 0.027 0.258 0.022 0.092 0.006 0.095 0.005 0.273 0.070
AvPrec* | 0.630 0.016 0.365 0.024 0.594 0.015 0.629 0.017 0.688 0.014 | 0.264 0.104
| AvRank | 2.5 48 \ 3.3 \ 2.7 1.4 6

+(-): the higher (smaller) the value, the better the performa  nce.
( ): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

Table 5.12: Experimental results (mean std) on the webpage dataset

| DMLKNN [ VERKNN | EMLKNN [ MLKNN [ MLRBF | RanksvM
Acc* 0.296 0.204 | 0.323 0.168 | 0.339 0.168 | 0.285 0.184 | 0.398 0.146 | 0.234 0.171
Prect 0.351 0.257 | 0.358 0.206 | 0.399 0.193 | 0.340 0.227 | 0.462 0.171 | 0.228 0.212
Rec’ 0.308 0.205 | 0.315 0.173 | 0.353 0.188 | 0.291 0.189 | 0.407 0.153 | 0.276 0.186
F1* 0.319 0.219 | 0.322 0.181 | 0.362 0.182 | 0.304 0.198 | 0.421 0.156 | 0.249 0.195
HLoss 0.041 0.014 | 0.054 0.022 | 0.056 0.023 | 0.043 0.015 | 0.039 0.013 | 0.043 0.014
OErr 0.466 0.165 | 0.066 0.213 | 0.797 0.262 | 0.474 0.157 | 0.375 0.120 | 0.440 0.143
Cov 4069 1.255 | 9.021 3.662 | 12.217 4.985 | 4.097 1.237 | 4.689 1.403 | 7.508 2.396
RLoss 0.099 0.046 | 0.653 0.185 | 0.761 0.196 | 0.102 0.045 | 0.107 0.039 | 0.193 0.065
AvPrec* | 0.630 0.120 | 0.423 0.159 | 0.358 0.162 | 0.625 0.116 | 0.688 0.092 | 0.601 0.117
| AvRank | 2.8 \ 41 42 \ 3.8 1.2 45

+(-): the higher (smaller) the value, the better the performa  nce.
( ): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

probability that the membership of instance x; to class! 4 has been wrongly assessed
by the expert. This number may be turned into a degree of con dene cq by the
transformation:
Cq=1 2piq;

where cig = 1 means that the expert is totally sure about the membership yi% =1)
or non membership yg = 1) of instance x; to class! 4, while cig = 0 means that
he is totally undecided about this membership. We assume that thesaumbers can
be provided by the expert, which allows us to label each instancg; by a pair of sets

(Ai;Bj), or by a pair of verity and rebu distributions (Ver;;Rebu i), as explained

119



Chapter 5. Experiments

below.

Labeling x; by (Aj;Bj) Using the degrees of con dence, we derive the imprecise label
vector y%= (y:::;yg) from y? as follows:

yi% if ciqg  0:6;

y_OO =
q 0 otherwise.

Such a vector off 1;0;1g° encodes an ordered pai(A;;B;) of disjoint subsets ofY
such that:

Ai=flqg2 jyP=1g;

Bi=flq2 jyQ= 1g
The set A; then contains the classes ¢ that can be de nitely assigned to the instance
xi with a high degree of con dence ¢q 0:6), while B; is the set of classes which are
de nitely not assigned tox;. The remaining setY n (A; [ Bj) contains those classes

about which the expert is undecided €ig < 0:6).

Labeling x; by (Veri;Rebu ;) The verity and rebu distributions of each instance
Xj are generated as follows:

(

if yo =1
Veri(! o) = Ga 1 Yig .
0 otherwise.
( if = 1
Rebu (! ¢) = Cg MW Yiq =

0 otherwise.

Veri(! q) represents the degree of con dence of the expert on assigning s&al  to
instancex;, while Rebu (! ¢) is the degree of con dence of the expert omot assigning

5.5.2 Results and discussions

As in the previous experiments, the proposed methods were comial to MLKNN,
MLRBF and RankSVM. Each method was parameterized as in the casef precise data.

After simulated the labeling process as explained in Subsectiof.5.1, noisy data,
where each instancex; is labeled byyio, and imprecise data, where each instancs;
is labeled by (A;; B;) for EMLKNN or by (Ver;; Rebu ;) for VERKNN, were generated
from each benchmark dataset.
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Table 5.13 shows a comparative study between the di erent methods on noiswand
imprecise data generated from the emotion dataset over ten trials EMLKNN and
VERKNN were applied on both noisy and imprecise data, while DMKNN, ML kNN,
MLRBF and RankSVM were only applied on the noisy data as it is not clear low im-
precisely labeled data could be handled using these methods. It is cletrat, in terms
of the di erent evaluation metrics, VER KNN and EMLKNN perform better than the
other methods with a signi cant advantage to the EMLKNN algorithm. We can also
remark that the performances of EMLKNN and VERKNN were clearly improved when
applied on the imprecise data instead of the noisy data. For exampldan terms of the
accuracy measure, the improvement was about 61% for EMINN, and about 23% for
VERKNN. Similar results were obtained on the other datasets.

Figures 5.5 to 5.10 show the accuracy measure on the emotion, scene, yeast, med-
ical, Enron and webpage datasets, respectively. For the webpagtataset, noisy and
imprecise data were generated from each subproblem and the aege performance out
of the 11 di erent categorization problems was reported. For theother datasets, the
performances for 10 di erent generations of noisy and impreciseala were mentioned.
EML-KNN obviously dominates DMLKNN, ML kNN, MLRBF and RankSVM. VER kNN
also performs better than the classical methods on the di erent dtasets, but is always
outperformed by EMLKNN.

These results demonstrate the ability of the proposed evidence rimalism for set-
valued variables to handle imprecisely labeled data in multi-label classi con tasks.
In fact, when the available learning data have been labeled subjectise by a pool of
experts, noisy labels will be inevitably assigned to some instances dteecon icts or lack
of knowledge. If an expert gives a degree of con dence about eaclssigned label, by
using the EMLKNN method we are able to avoid risks of assigning wrongly some labels
to an instance x; when the degrees of con dence are not high. That explains the good
performances of EMLKNN. In a similar manner, the VERKNN algorithm is also able to
represent the knowledge given by the expert about the labeling ofaeh instance in a
proper manner close to the human language. This knowledge is reented by a verity
distribution of positive information, and a rebu distribution of nega tive information.
However, the veristic formalism has not allowed us to reach the samnievel of performance

as the set-valued evidence formalism.
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Table 5.13: Experimental results on the imperfectly labeled emotion dataset

Noisy data Imprecise data
DML kNN | VERKNN [ EMLKNN [ MLKNN [ MLRBF [ RankSVM [ VERKNN | EML kNN
Acc* 0.282 0.277 0.271 0.291 0.271 0.288 0.339 0.438
Prec* 0.341 0.331 0.334 0.342 0.332 0.333 0.427 0.560
Rec' 0.523 0.519 0.524 0.516 0.515 0.518 0.558 0575
F1* 0.424 0.421 0.408 0.428 0.404 0.431 0.484 0.567
HLoss 0.503 0.522 0.498 0.508 0.501 0.535 0.402 0.284
OErr 0.665 0.705 0.669 0.692 0.665 0.677 0.563 0.352
Cov 3.429 3.522 3.479 3.444 3.488 3.525 3.089 2.479
RLoss 0.481 0.667 0.489 0.492 0.493 0.495 0.472 0.314
AvPrec * 0.534 0.529 0.528 0.523 0.529 0.518 0.608 0.728

+(-): the higher (smaller) the value, the better the performa  nce.
(): statistically signi cant (non-signi cant) di erence of perf ormance as compared to the best result in bold,
based on two-tailed paired t-test at 5% signi cance.

5.6 Conclusion

In this chapter, we have presented a comparison between the proped multi-label classi-
cation methods and with some state-of-the-art methods. Di erent benchmark datasets
and several evaluation criteria were used in the experiments. In oustudy, we investi-
gated the cases of precise and impefect (noisy and imprecise) data

In the case of precise data, the proposed methods are competitiveith the other
compared algorithms. We have focused out that the VERNN and EMLKNN algorithms
perform better in terms of predicted-based metrics than in termsof ranking-based met-
rics, and that they are more competitive on datasets with high labeldensity. By taking
into account the interdependencies between labels, the experimsndemonstrate that
DML kNN improves the performance of the probabilistic k-NN rule for multi-label learn-
ing. DML kNN performs better than MLKNN in terms of all ranking-based metrics and
on all datasets.

In the case of noisy and imprecisely labeled data, VERNN and EMLKNN perform
signi cantly better than the other methods and on the di erent dat asets, with a clear
advantage to EMLKNN. These two methods seem to be able to handle practical sit-
uations where data have been labeled by experts, and allow us to meldand exploit
expert knowledge.
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Figure 5.5: Box plots of the accuracy measure on thémperfectly labeled emotion dataset.
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Figure 5.7: Box plots of the accuracy measure on themperfectly labeled yeast dataset.
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Figure 5.8: Box plots of the accuracy measure on themperfectly labeled medical dataset.
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Figure 5.9: Box plots of the accuracy measure on thémperfectly labeled Enron dataset.
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Conclusion and Perspectives

In this thesis, we addressed the problem of multi-label learning that bcome increas-
ingly required by many real-world applications such as, text categdration, semantic

scene analysis, bioinformatics, and music classi cation, where it is vgrfrequent that

instances belong to several classes at the same time. We have shatlat there exist

three main approaches for multi-label learning: Binary Relevance, Lael Ranking, and

Label Powerset. The basic idea of theses approaches consists iansforming a multi-

label learning problem into one or more single-label learning problemsTaking label

correlation into account has been shown to be a key challenge in mulkabel learning,

and it may improve the performance of multi-label classi ers.

A rst method called DML kNN has been introduced, based on a Bayesian learning.
This method generalizes the state-of-the-art MIkNN algorithm by using a maximum a
posteriori principle that models the relations between labels throug statistical infor-
mation extracted from the neighborhoods of instances to classifyAn application on
a simulated dataset asserted the ability of our method to capture arrelation among
labels, and experimental results on several benchmark dataset®emonstrated the ef-
fectiveness of our method as compared to MENN and to other multi-label classi ers
according to di erent evaluation metrics.

By the fact that class labels of multi-labeled data can be consideredsaveristic
variables de ned as fuzzy set-valued variables assuming multiple valsesimultaneously,
the VERKNN method based on the theory of veristic variables has been proged.
In this method, the class label of each instance is represented by arity distribution
representing positive information about the membership of that insance to the di erent
possible classes, and a rebu distribution representing negative iofmation.

The problem of multi-label learning has also been studied in the frameark of the
Dempster-Shafer theory. An evidence formalism to quantity unceainty about set-
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valued variables in general has been proposed, and has been appliedthis thesis
to build the EML kNN method for multi-label classi cation. The basic idea of this
formalism relies on the de nition of the special lattice (C() ; ) on which, most notions
from Dempster-Shafer theory have been expressed with only a rderate increase of
complexity as compared to the case of handling single-valued variatde This formalism
has been shown to be more general than previous attempts to afypthe Dempster-
Shafer framework to represent uncertainty about set-valued ariables. It has also been
shown to be somewhat similar to, but arguably more general and exilke than other
approaches introduced in the possibilistic framework; the veristic &riable theory is one
of them.

We have addressed the problem of learning from data with imprecise leels. Such
problems occur in practical situations where data have been labeleby experts in the
absence of ground truth. Due to con its between experts and lackof con dence that
they may expressed, it will be quite di cult to assign a precise set of ldels to each
instance. It has been shown that the VERKNN and EMLKNN methods allow us to
model expert knowledge and represent imprecise labeling. The expmental results
demonstrated the e ectiveness of these methods in such kind ofrpblems. VERKNN
and EMLKNN perform signi cantly better than the other compared methods on all
datasets, with a clear advantage to EMLKNN.

Perspectives

Some ideas proposed in this thesis may be improved and additional wotin some re-
search directions remains to be done. In the following paragraphs,evsketch a few of
them.

As stated before, the experimental results proved that VERNN and EMLKNN
based on the veristic variable theory and the proposed set-valueé@vidence formal-
ism respectively, are e cient methods to answer the problem of mult-label learning
where data are labeled in an imprecise manner. It will be interesting to emonstrate
theoretically the pertinence of these approaches, and to nd reaworld applications
where applying these methods is specially adequate. Similarly, it remagto demon-
strate mathematically the improvement in the performance of DMLKNN as compared
to MLKNN in several datasets.
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In this thesis, we addressed the problem of supervised multi-label leaing with
both precise and imprecise labeled data. This work may be pursued bywvestigating
the problem of semi-supervised multi-label learning to manipulate bdt labeled and
unlabeled instances at the same time. The problem of unsupervisedutti-label learning
seems also to be an important problem to resolve in order to handle tally unlabeled
data including the special case where we have no prior knowledge aliothe target
classes, i.e. multi-label clustering.

The k-nearest neighbor rule was used in this thesis to build multi-label clas®rs
based on the veristic variable and set-valued evidence framework# will be interesting
to develop other multi-label classi cation methods based on more sdpsticated base
classi ers, such as neural networks, support vector machines anlinear discriminant
analysis, conjunctively with these frameworks. In addition, we can o study the case
of using an ensemble of multi-label classi ers and aggregating them in probabilistic,
possibilistic or evidential framework. It will be also interesting to study the problems of
hierarchical and multi-instance multi-label learning under the frameworks cited above.

Finally, in Chapter 4, we have shown that most basic notions from the theory of
belief functions can be de ned on the special fram&() , such as plausibility and belief
measures, canonical decomposition, combination of pieces of krledge, etc. Other no-
tions still not being investigated in order to show the possibility of extending them to the
special frame, such as, conditioning and deconditioning, expresgjrpartial knowledge
on several set-valued variables taking values in di erent domains ash generalizing the
notions of marginalization and vacuous extension, studying inform@onal comparisons
of belief functions on set-valued variable as the plausibility orderingspecialization and
generalization, etc pP9). It will be also interesting to nd applications of the proposed
set-valued evidence formalism other than multi-label classi cation. Querying databases
and constructing a question-answering system may be a potentiapplication [12(0.
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