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Introduction

Multi-label learning deals with the problems where each instance can belong to multiple

classes at once. It has found many real world applications, such as text categorization

and semantic scene classification. In such problems, the learning task consists in pre-

dicting a set of labels for each new instance, based on a training set. Traditional single-

label learning tasks (binary or multi-class classification) are a special case of multi-label

learning task, where each instance is assigned only one class. In single-label learning,

all possible classes are considered to be mutually exclusive. In contrast, in multi-label

learning, the classes are not necessary exclusive, and they are usually correlated in the

sense that, the assignment of an instance to a certain class may provide information

about the membership of this instance to other classes. It is known that taking label

correlation into account is a crucial issue in multi-label learning and it may improve

the classification performance. Multi-label learning problems are thus more difficult to

solve than single-label ones.

The most widely used approaches transform a multi-label classification problem

into multiple independent binary classification problems, and thus use any conventional

classifier for this purpose. The transformation usually follows one-vs-all referred here

to as Binary Relevance approach, i.e. a binary classifier for each possible class and

the outputs of all classifiers are combined for final decision, or one-vs-one referred here

to as Label Ranking approach, i.e. a binary classifier for each pair of classes, the

classes are then ranked according to the number of received votes, and are finally split

into relevant and non-relevant classes by thresholding. The main limitation of these

approaches is that they usually fail to capture the correlation between classes. Another

approach referred to as Label Powerset considers each label combination appearing in

the training set as a separate class, and thus, it transforms the multi-label classification
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Introduction

problem into a multi-class classification one. The limitation of this approach is that it

leads us to deal with an increased amount of classes.

In general, multi-label classifiers are learnt by assuming the existence of training sets

in which each instance is associated with a precise set of labels. However, in practice,

gathering such high quality information is not always feasible at a reasonable cost. In

many problems, there is no ground truth for assigning unambiguously a label set to

each instance, and the opinions of one or several expert have to be elicited. Typically,

an expert will sometimes express lack of confidence for assigning exactly one label

set. If several experts are consulted, some conflict will inevitably arise, which again

will introduce some uncertainty in the labeling process. Thereby, in many real-world

applications, we are facing situations where we have to deal with imperfect labeled

instances and to handle imprecisions and uncertainties in data labeling.

Three original methods for multi-label learning will be exposed in this thesis. All

are based on the k-nearest neighbor rule widely used in Machine Learning due to its

simplicity and effectiveness at the same time, but associated with a different theoretical

framework among probability, possibility, and evidence theories.

The first method relies on the binary relevance approach, while overcoming its label

independence assumption. This methods addresses the problem of representing corre-

lation between classes in a probabilistic framework. The classification of new instances

is carried out by exploiting statistical information extracted from the nearest neighbors

of the instances to classify and through Bayesian inference.

The two other methods address mainly the problem of learning from data with

imprecise labels, and they have the ability to handle multi-labeled data directly. The

basic idea of these two methods is to consider the class labels of multi-labeled instances

as set-valued variables, i.e. variables that can assume multiple values simultaneously,

and to use formalisms for manipulating imprecise and uncertain information about

such variables. Possibility and Dempster-Shafer evidence theories provide formalisms

devoted to to handle incomplete knowledge.

A possibilistic formalism for the expression of statements involving veristic variables

has been proposed in [119]. Veristic variables can be viewed as fuzzy set-valued variables.

This formalism provide different types of veristic statements and different distributions

allowing us to encode any piece of knowledge about veristic variables. As alternative

to this approach, we study the problem of handling partial knowledge on set-valued

2
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variables using the evidence theory. The classical approach consists in considering a

set-valued variable taking values in a universe Ω as a single-valued variable on the

power set 2Ω of Ω. If we want to express imprecise information about such a variable,

we will have to manipulate subsets of 2Ω. As there are 22|Ω|
of these subsets, this

approach rapidly becomes intractable as the cardinality |Ω| of Ω increases, due to the

double-exponential complexity involved.

A main contribution of this thesis is the definition of an evidence formalism for

representing uncertainty on set-valued variables using the Dempster-Shafer theory of

belief functions [93]. In this formalism, instead of considering the whole power set of 2Ω

to express imprecise information about set-valued variables defined on Ω, only a class

C(Ω) of subsets of 2Ω will be considered which, endowed with set inclusion, has a lattice

structure. Most concepts of Dempster-Shafer theory can be generalized in this setting.

This formalism will be shown to be rich enough to express evidence about set-valued

variables with only a moderate increase of complexity as compared to the classical case

of single-valued ones.

We will show applications of the veristic variable theory and the proposed evidence

formalism for set-valued variables to multi-label learning, conjunctively with the k-

nearest neighbor principle.

Organisation

This thesis is structured in five main chapters. Chapter 1 will summarize the state of

the art on the multi-label learning problem, and report some related learning problems.

The probabilistic method for multi-label classification will be presented in Chapter 2. A

general overview on Bayesian learning will be first introduced, and the binary relevance

approach as well the crucial issue of label correlation will be then discussed. Chapter 3

will present the possibilistic multi-label classifier. This chapter begins by a review of

possibility and fuzzy set theory. The veristic variable theory will be then introduced.

At the end of the chapter, the veristic k-nearest neighbor rule will be presented. The

evidence-based multi-label learning will be detailed in Chapter 4. After introducing the

basics of belief function theory, the proposed evidence formalism for representing and

handling uncertainty on set-valued variables will be explained. Chapter 4 ends with

an application of the proposed set-valued evidence formalism on multi-label learning.

3
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Chapter 5 will describe the experimental results of the proposed multi-label classifiers

on several real-world datasets, in the case of precise and imprecise data. Comparisons

with some state-of-the-art methods, over different evaluation metrics, will be reviewed.

General conclusion and perspectives will conclude the report.

4
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Multi-label learning

Summary

Several methods have been proposed in the literature to deal with the task of multi-

label learning, which is required by many modern applications such as semantic scene

classification and video annotation. The common point between these methods is that

they transform a multi-label learning problem into one or more single-label learning

problems. The transformation is based on three approaches: Binary Relevance, Label

Ranking and Label Powerset.

The Binary Relevance approach consists in training a binary classifier for each pos-

sible class in order to separate the instances belonging to that class from the others.

The output of the multi-label classifier is the union of the decisions given by the binary

ones.

The Label Ranking approach consists first in ranking all possible classes in decreas-

ing order of relevance to an instance to classify, and then splitting the ordered set of

classes into subsets of relevant and non relevant classes for that instance.

The Label Powerset approach consists in training a multi-class classifier for which,

each combination of labels that exists in the given training set is considered as a new

class. The most probable class is predicted for each new instance, which represents now

a set of labels.

These different multi-label learning approaches will be discussed in this chapter,

highlighting their positive and negative aspects.

5



Chapter 1 : Multi-label learning

Résumé

Plusieurs méthodes ont été proposées dans la littérature pour traiter la probléma-

tique d’apprentissage multi-label devenant de plus en plus requise par de nombreuses

applications modernes telles que la classification d’images selon la sémantique, et l’anno-

tation de vidéos. Le point commun entre ces méthodes est qu’elles consistent à transfor-

mer le problème d’apprentissage multi-label en un ou plusieurs problèmes d’apprentis-

sage mono-label. La transformation est basée sur trois approches : Binaire, Classement

de Labels, et Combinaisons de Labels.

L’approche Binaire constitue un classifieur binaire pour chaque classe possible afin

de séparer les individus appartenant à cette classe des autres individus. La sortie du clas-

sifieur multi-label est déterminée par combinaison des sorties des différents classifieurs

binaires.

L’approche de Classement de Labels consiste d’abord à classer les différentes classes

par ordre décroissant de pertinence pour un individu à classifier, et de diviser ensuite

l’ensemble ordonné de classes en un sous-ensemble de classes pertinentes, et en un autre

sous-ensemble de classes non pertinentes.

L’approche de Combinaisons de Labels consiste à entraîner un classifieur multi-

classes, tel que chaque combinaison de labels qui existe dans l’ensemble de données

d’apprentissage est considérée comme une nouvelle classe pour ce classifieur. La classe

la plus probable est attribuée à chaque individu à classifier, cette classe représente

désormais un ensemble de labels.

Ces différentes approches d’apprentissage multi-label seront abordées dans ce cha-

pitre, en soulignant leurs aspects positifs et négatifs.
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Chapter 1: Multi-label learning

1.1 Introduction

Machine learning is the field of research that concentrates on the formal study of learn-

ing systems. Over the years, machine learning has grown rapidly to become a highly

interdisciplinary field overlapping with more traditional disciplines such as computer

science, statistics, artificial intelligence, optimisation theory and many other disciplines

of science and mathematics [42][77][6]. The majority of the work in Machine Learn-

ing concerns three principal learning frameworks: supervised, unsupervised, and semi-

supervised.

In the supervised framework [62], the learning is performed on labeled examples

(also called instances or samples)in order to define a function that predicts correctly the

labels of the training examples; the performances of the obtained function are evaluated

according to its ability of generalization when predicting the labels of examples not in

the training set. If the labeling of the training examples is categorical (discrete labels

or classes), the learning task is called classification. If the labeling is numerical, the

task is called regression.

In unsupervised learning [54] the examples are not labeled, i.e., there are no super-

vised target outputs. The algorithm attempts to learn the structure of the given data

and to organize them. The typical unsupervised learning problem is clustering that

identifies groups of examples that have characteristics in common and are cohesive and

separated from each other.

In semi-supervised learning problem [9], the training data is a mixture of both

labeled and unlabeled examples. In fact, the acquisition of labeled data for a learning

problem is not always feasible; the cost of the labeling process may be relatively high and

it requires the efforts of several experts. In contrast, unlabeled data may be relatively

easy to acquire.

1.1.1 Multi-label classification

In this work, we are interested in the classification task for multi-label learning [74][91][11].

Given a set of n training examples {x1, . . . ,xn} ⊆ X, where X denotes the domain of

instances, and a set of target classes Y, traditional single-label classification assign each

training instance xi to a single label yi ∈ Y, and the goal is to learn a single-label clas-

sifier h : X −→ Y that predicts the class label of unseen examples. If there are only two

7



Chapter 1: Multi-label learning

Figure 1.1: Multi-label learning system.

possible classes, the learning problem is called binary classification problem. When the

number of classes is greater than two, it is called multi-class classification problem. In

the case of multi-label classification problems, each training instance is assigned to a set

of classes Yi ⊆ Y, and the goal of multi-label learning is to learn a multi-label classifier

H : X −→ 2Y that predicts a set of labels for each instance to classify (see Figure 1.1).

Note that for the traditional single-label classification task, the target classes are dis-

joint and exclusive and each example belong to one and only one class, while for the

multi-label classification task, the target classes are not exclusive and an example may

belong to an unrestricted set of classes instead of exactly one class. Figure 1.2 shows an

example of a classification problem with two classes that overlap in the feature space.

In the case of single-label learning, the overlapping classes cause classification errors,

while in multi-label learning, the classes overlap by definition in the selected feature

space. For multi-labeled data, the membership of an example to more than one class

is not due to ambiguity (fuzzy membership), but to multiplicity (full membership) [8].

Note that the traditional supervised learning (binary or multi-class) can be regarded as

the special cases of multi-label learning, where the labels associated with each instance

are restricted to be unique.

In multi-label learning problems, classes are usually correlated and a key challenge

for a multi-label classification method is its ability to exploit correlation information

among different classes. For example, in text categorization, a document is unlikely

to be labeled as politics if we know that it belongs to class entertainment. In scene
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Figure 1.2: Single-label classification problem with two overlapping classes (a), and multi-

label classification problem with data (∗) belonging simultaneously to the two possible

classes (b).

classification, the probability that an image belongs to class sunset is high if this image

is annotated with label sea. Thus, taking label correlations into consideration is a

crucial requirement for the good performance of any multi-label classification method.

1.1.2 Applications

Multi-label learning methods for classification are required by many modern applica-

tions where it is quite natural that instances belong simultaneously to several classes.

Hereafter, we will describe some of these applications.

With the rapid growth of online information and the ubiquity of textual data, text

categorization has become an important task for many applications that require tech-

niques for handling and organizing text data [75][92]. Document filtering, browsing and

searching on the web and in large collections of documents, and email classification are

such applications [68]. Due to the multi-topic nature of documents, multi-label learn-

ing methods seem to be adapted for text categorization [91][16][44][45]. For example,

9
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Figure 1.3: Text categorization

Figure 1.3 shows an electronic document that deals with the olympic games and their

influence and consequence on the hosting country. This document can be considered as

belonging to the following predefined topics: sport, politics, society and economy.

Scene classification is a fundamental problem in image processing and a major task

in computer vision [84][67]. It has received considerable attention in the recent past

years, especially with the development of digital cameras. Scene classification is re-

quired for organisation of image collections; it has been explored in content-based image

retrieval, and used to improve the performance of object recognition systems [106] [10].

Multi-label learning is required in semantic scene classification where a natural scene

may contain multiple objects [8][111]. Figure 1.4 shows an example of an image labeled

by three semantic classes: mountain, trees and lake.

Other multimedia applications for multi-label learning are music classification and

video annotation. With the expansion of digital music libraries, the need for classifica-

tion, retrieval and content-based searching tools through these files is becoming more

and more apparent [69]. For example, music listeners may be interested in browsing

their music by mood [58][71]. Due to the fact that a song can evoke more than one

emotion at the same time, such as amazed, happy and excited, multi-label classification

of music according to emotions has been investigated in recent years [101][114]. In ad-
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Figure 1.4: Semantic scene classification

dition, video annotation or tagging task is required for browsing and retrieval queries

with the large increase of video data [79]. The annotation task is a multi-label problem

where a film can be annotated with several labels or tags, such as drama, fantasy and

romance, as shown in Figure 1.5 [87][25].

In addition to the above applications, multi-label learning has also proved to be

useful in bioinformatics and especially for protein function prediction, where each pro-

tein may be associated with multiple functional labels such as metabolism, energy and

cellular biogenesis [2][13].

1.2 Different approaches to multi-label learning

Let X denote the domain of instances, and Y = {ω1, . . . , ωQ} the finite set of labels. Let

D = {(x1, Y1), . . . , (xn, Yn)} be a dataset composed of n multi-labeled object (xi, Yi),

where xi ∈ X and Yi ⊆ Y. This dataset will be used to build a multi-label classifier H

that defines a mapping from the domain of instances X to the power set 2Y of Y.

Several methods have been proposed in the literature for multi-label learning. In

general, these methods consists in transforming the Multi-label Classification problem

(MLC) into one or more Single-Label Classification problems (SLC) [102]. The state-

of-the-art methods are usually based on three approaches: Binary Relevance, Label

Powerset, and Label Ranking.
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Figure 1.5: Film annotation

Hereafter, we will explain the different multi-label learning approaches, highlighting

their positive and negative aspects.

1.2.1 Binary Relevance

The Binary Relevance (BR) method is the simplest and most commonly used approach

to multi-label classification [59][121][83]. The BR approach transforms the multi-label

learning problem with Q possible classes into Q single-label classification problems:

SLC1, . . . , SLCQ. Each single-label classification problem SLCq consists in separating

the instances belonging to class ωq from the others. This problem is solved by training

a binary classifier hq (0/1 decision) where each instance xi in the training dataset D

is considered as positive if it belongs to the class ωq (Yi ∋ ωq), and negative otherwise.

Given an instance x to classify, the output of the multi-label classifier H is the union

of the decisions given by the binary classifiers h1, . . . , hQ:

H(x) = {ωq ∈ Y|hq(x) = 1}.

The BR approach is intuitive, simple and it has low computational complexity.

Given a constant number of training examples, the complexity of BR approach scales

linearly with the number of possible labels. However, the BR method does not take
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into account correlations between labels. Each binary problem SLCq (q = 1, . . . ,Q) is

independent from the other problems, and is solved separately by running the single-

label classifier hq, in serial or parallel to the other binary classifiers, on the training

dataset D. Due to the implicit assumption of label independence, the BR-based methods

may be penalized and their performances may be poor, especially when applied to multi-

label learning problems in which the labels are highly correlated.

Any known single-label classifier can be used for the binary classification subprob-

lem. A set of binary support vector machine (SVM) [107] classifiers were used for

multi-label learning in text categorization [57] and semantic scene classification [8].

In [70], active learning for multi-label classification using an ensemble of binary SVMs

has been presented. Active learning is a mechanism that aims at minimizing the number

of labelled training data while maintaining a good classification performance [15]. In

practice, active learning is very useful in situations where data are expensive or difficult

to collect. In [47], an improvement of the BR-based approach using SVM as binary

classifier has also been proposed. The improvement is obtained by tuning the margins

of the SVMs to account for classes that overlap. In the first iteration, the ensemble of Q

SVMs classifiers is trained. For each trained SVM, the misclassified training instances

that are close or within a threshold distance from the learnt hyperplane are removed.

Then, the ensemble of the SVMs classifiers is re-trained. By removing the points that

are very close to the resultant hyperplane for a SVM classifier, the authors show that

one can train a better hyperplane with a wider margin and thus improve the classifi-

cation accuracy. Another way proposed in [47] to improve the margin is to completely

remove the training instances belonging to confusing classes. Confusing classes are de-

tected using a confusion matrix learnt using any moderately accurate yet fast classifier

on a held out validation dataset. If the percentage of instances of class ωq that were

misclassified as belonging to class ωr is above a threshold, we prune away the instances

of class ωr when training the binary SVM classifier corresponding to ωq.

Using the k-nearest neighbor (k-NN) algorithm, a multi-label classification method

named MLkNN has been proposed in [129]. Each binary classifier hq is implemented

by means of a combination of k-NN and Bayesian inference. Given an instance x to

classify, its k nearest neighbors in the training dataset are identified ; those belonging

to class ωq are considered as positive for hq, and the rest as negatives. The classification

of x by the binary classifier hq is determined by computing the posterior probability
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of ”x belong to ωq” based on the prior probability of ωq and statistical information

gained from the label sets of the neighboring instances. This method will be presented

in greater detail in the next chapter.

Few methods have been proposed in the literature to remedy the disadvantage of

the BR approach of ignoring label correlations. In [47], multi-label learning is achieved

by creating a two-stage classification process and by using labels in the feature space.

In the training stage, a set of Q binary classifiers h1, . . . , hQ are run on the training

dataset D in the first classification process. The predictions of each binary classifier are

used to extend the original dataset with Q additional label features. Each object (xi, Yi)

in D is transformed into a meta-object (x′
i, Yi), where x′

i = (xi, h1(xi), . . . , hQ(xi)). The

second classification process consists in the training of new Q binary classifiers using

the meta-objects. Given a new instance to classify, the binary classifiers of the first

classification process are used and their outputs are appended to the initial features to

form a meta-instance. This meta-instance is then classified using the binary classifiers

of the second process. The correlations between labels is taken into account by this

approach through the label feature stacking.

Following a similar idea, a classifier chain (CC) model involving Q binary classifiers

has been introduced in [89]. The classifiers are linked along a chain. At each link,

the feature space of the training data is extended with the 0/1 label associations of

all previous links. More precisely, given an object (xi, Yi) in D, the labeling of xi can

be represented by the category vector yi ∈ {0, 1}Q, where its q-th component yi(q)

takes the value 1 if ωq ∈ Yi and 0 otherwise. At link q, the training data is trans-

formed into single-label data in the following way: each element (xi, Yi) is transformed

into ((xi,yi(1), . . . ,yi(q−1)),yi(q)), and the binary classifier hq is trained on the trans-

formed data. Given an instance x to classify, the classification process is performed by

moving along the chain from the first link to the last one. Example x is first classified

by h1, and the 0/1 prediction about the membership or not to class ω1 is appended to

its feature vector in order to be classified by h2, and so on. The dependencies between

labels are taken into account by passing label information between the chain classi-

fiers. However, it is clear that the classification performance depends on the order of

the chain. Therefore, an ensemble of chain models (ECC) is used to create different

random chain orderings.
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In [55], a second process is added upon the BR approach to derive a low-dimensional

subspace share among multiple labels. The idea behind this approach is that, when

two labels are correlated, the corresponding instances shared some characteristics in

the feature space. For example, when predicting the topics of documents, there is

a relation between authorship and topics, since a given author may usually write on

known topics. In the proposed framework, a binary classifier is constructed for each

class in order to discriminate it from the other classes. The input data are projected

onto a low-dimensional subspace using a common transformation for all classes, and

this low-dimensional projection is combined with the original representation to produce

the final prediction.

1.2.2 Label Ranking

A second approach consists in transforming the multi-label learning task into a label

ranking problem. A label ranking (LR) method predicts a ranking of all possible labels

in decreasing order of relevance to a query instance. Afterwards, a post-processing is

required in order to determine the output of the multi-label classifier. In the multi-

label case, the topmost labels, and not only the top label, are related to the instance

to classify. Thus, the goal of the post-processing is to provide a zero-point that splits

the ordered set of labels into subsets of relevant and non-relevant labels for the query

instance. The LR approach does not explicitly model the correlations among labels.

Another problem is that it is difficult to determine into how many labels a particular

instance should be classified. The prediction or the ranked set splitting is usually done

by a thresholding technique.

A straightforward LR-based approach learns a multi-label classifier H : X −→ 2Y via

a scoring function f : X×Y −→ R that assigns a real value (score) to each instance/label

couple (x, ω) ∈ X × Y. The score corresponds to the probability that the class ω is

relevant to the instance x. In addition, given any instance x with its known set of

labels Y ⊆ Y, the scoring function f is supposed to give larger scores for labels in Y

than it does for those not in Y . In other words, f(x, ωq) > f(x, ωr) for any ωq ∈ Y and

ωr 6∈ Y , for each object (x, Y ). The scoring function f allows us to rank the different

labels according to their scores. For an instance x, the higher the rank of a label ω,

the larger the value of the corresponding score f(x, ω). The output of the multi-label
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classifier H is determined by selecting the labels from the top of the ranking using some

threshold value t ∈ R :

H(x) = {ω ∈ Y|f(x, ω) ≥ t}.

The threshold value can be determined by cross-validation or heuristically [40]. For

example, in [100], the threshold value is fixed by minimizing the difference of label

cardinality between training and test datasets. The label cardinality of a given dataset

is defined as the average number of labels per instance.

Another ranking-based approach learns a multi-label classifier not via a scoring

function, but via pairwise comparisons. A recent method is the ranking by pairwise

comparison (RPC) introduced in [53]. The multi-label learning problem is transformed

into a number of binary problems. An independent binary classifier hqr is trained for

each pair of labels (ωq, ωr) ∈ Y2, 1 ≤ q < r ≤ Q, in order to separate the instances with

label ωq from those having label ωr. Thus, a total number of Q(Q − 1)/2 is required.

In the classification phase, a new instance is submitted to each binary classifier hqr,

and the prediction is interpreted as a vote for either ωq or ωr. The labels with the

highest number of votes are proposed as a final prediction for the query instance via

thresholding. Instead of learning a predictor for the correct threshold, a modified multi-

label ranking-based approach, called calibrated label ranking (CLR), has been presented

in [43]. In this method, the zero-point at which the learned ranking is split into sets

of relevant (or positive) and irrelevant (or negative) labels is determined automatically.

In fact, CLR incorporates an additional virtual label ω0 in the ranking process, which

calibrates the ranking by splitting it into a positive and a negative part. In addition to

the pairwise classifiers hqr, 1 ≤ q < r ≤ Q as in RPC approach, CLR adds Q classifiers

hq0, 1 ≤ q ≤ Q that separate each class ωq from the virtual class ω0. Each classifier hq0

is learned by considering all instances belonging to ωq as positive, and the remaining

instances, considered as belonging to the virtual class, as negatives. Thus, the binary

classifiers hq0 are trained as in the BR approach. In CLR, we have to train Q(Q + 1)/2

pairwise classifiers. For the classification of a new instance, all labels ranked above the

virtual label ω0, i.e., receiving more votes than ω0, are assigned to the instance.

Hereafter, we will present some state-of-the-art methods based on the ranking ap-

proach.

In [91], a boosting-based system for multi-label learning and especially for text

categorization, named BoosTexter, has been introduced. The system is based on two
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extensions of the ensemble learning method AdaBoost [41], where a set of weights over

all instance/label pairs is maintained. As boosting progresses, training instances and

their corresponding labels that are hard to predict correctly get incrementally higher

weights, while instances and labels that are easy to classify get lower weights. The goal

of the first extended learning algorithm is to predict a set of correct ones for a query

instance. In the second extension, the goal is to design a classifier that ranks all labels

so that the correct labels for training instances will receive the highest ranks.

In [39], multi-label ranking approach based on support vector machines (SVM) has

been presented. The authors define a cost function and a special multi-label margin

and then propose an algorithm named Rank-SVM based on a ranking system combined

with a label set size predictor. The set size predictor is computed from a threshold value

that differentiates the relevant labels from the others. The value is chosen by solving

a learning problem. The goal is to minimize the Ranking Loss, defined as the average

number per instance of label pairs that are not correctly ordered, while having a large

margin. Rank-SVM uses kernels rather than linear dot products, and the optimisation

problem is solved via its dual transformation.

Following a similar line of reasoning, a multi-class multi-label perceptrons algorithm

has been presented in [18] where one perceptron is trained for each possible label. The

classifiers are not trained independently, but in such a way that they collectively produce

a reasonable ranking for a given ranking loss function. In [76], pairwise multi-label

perceptrons have been introduced. Based on the RPC approach, one perceptron is

trained for each pair of labels independently of other perceptrons. A calibrated version

of the pairwise multi-label perceptrons, based on the CLR approach, has been presented

in [43].

In [128], a neural network algorithm for multi-label learning, named BP-MLL, is

presented. BP-MLL is a single-hidden feed-forward neural network with Q output

neurons, each one corresponding to one of the possible classes. The parameters of the

proposed neural network are learnt by minimizing a specific error function different

from the simple sum-of-squares function used in the classical single-label case. The

error function, defined as the difference between the actual and the desired outputs of

the neural network, is adapted for the purpose of multi-label learning in such a way

that, given an instance x, the labels assigned to x should be ranked higher than those

not assigned to this instance.
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In [126], an adaptation of the traditional radial basis function (RBF) neural network

for multi-label learning is presented. It consists of two layers of neurons: a first layer

of hidden neurons representing basis functions associated with prototype vectors, and

a second layer of output neurons related to all possible classes. The proposed method,

named ML-RBF, first performs a clustering of the instances corresponding to each

possible class; the prototype vectors of the first-layer basis functions are then set to the

centroids of the clustered groups. In a second step, the weights of the second-layer are

fixed by minimizing a sum-of-squares error function. The output neuron of each class is

connected with all input neurons corresponding to the prototype vectors of the different

possible classes. Therefore, information encoded in prototype vectors of all classes is

fully exploited when optimizing the connection weights and predicting the label sets of

unseen instances.

Remark that some BR-based multi-label classifiers can also be considered as LR-

based ones, because they are able to provide scoring functions for ranking.

1.2.3 Label Powerset

Given the set of possible labels Y and a set D of n training data for a given multi-label

learning problem, the Label Powerset (LP) approach considers each subset of Y that

exists in the training dataset D as a different class for a single-label classifier. The

multi-label classification problem is then transformed into a multi-class classification

problem, with a number of classes at most equal to min(2Q,n). The LP method has the

advantage of taking label correlations into consideration. There are no binary classifiers

to be learnt independently for each label. Another advantage of this approach is that

there is no threshold to be tuned, and the LP-based methods output directly a set of

labels. In fact, for each unseen instance, the most probable class that represents now a

set of labels is predicted. Nevertheless, one of the drawbacks of the LP approach is that

it may lead to imbalanced datasets with a large number of classes and few examples per

class, which makes the learning process difficult and poses computational complexity

problems with the increasing number of labels. Another disadvantage is that LP can

only predict label sets available in the training set when classifying new instances.

Few approaches have been presented in the literature in order to deal with the

aforementioned negative aspects of LP principle, while preserving its advantage of taking

label correlations into consideration. In [104], a method named RAKEL works by
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randomly breaking the set of labels Y, supposed to be large, into a number of label

sets Zi ⊆ Y having a small size as compared to the size of Y, and training a LP-based

multi-label classifier for each of the label sets. More precisely, for each small-sized label

set Zi, a single-label classifier hi, having as class values all the subsets of Zi that are

found in the training set, is trained. The training set for hi, denoted as Di is deduced

from the original dataset D by replacing the label sets of training instances by their

intersections with Zi : Di = {(xj , Yj ∩ Zi), j = 1, . . . ,n}. In particular, this may lead

to instances labeled by the empty set. These instances are not excluded when training

hi, and one has to consider the empty label set as another class value for the single-label

classification task of hi. For the classification of a new instance, the decisions of the LP-

based classifiers are gathered and combined, usually by a voting process. This method

can predict a label set that was not present in the training set, because the final output

of the multi-label classifier is computed from the predictions of the different single-label

classifiers. The number of random label sets to be considered and the size of these sets

have to be tuned heuristically, which is computationally expensive.

In [88], a new extension of the LP approach has been proposed in order to reduce

its complexity. The new approach, called Pruned Sets (PS), works as LP but only

the label combinations, subsets of Y, which frequently occur in the training dataset D

are considered as class values for the single-label classifier. The pruning operation is

controlled by a parameter that indicates how often a label combination must occur in

the training set in order not to be pruned and then to be considered as a new class

value. For minimal information loss, a post-pruning step is added in order to break

up the pruned label combinations into more frequently occurring label sets, and then

reintroduce the pruned instances in the training process of the single-label classifier.

Based on the LP-approach, a probabilistic generative model for multi-label text cat-

egorization has been introduced in [74]. According to this method, each label (topic)

generates different words, and a document is produced by a mixture of the word distri-

butions of its labels. Given a set of classes, each document is generated by a mixture

of word distributions and mixture weights, where the weight of classes not belonging

to this set are forced to be zero. The parameters of the model are determined using

a maximum a posteriori estimation from a collection of labeled training data. The

Expectation-Maximization (EM) is used to determine the parameters that cannot be

estimated directly from the training dataset. For the classification of a new document,
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the Bayes rule is employed in order to calculate the posterior probability of each set of

classes and select the most likely set given the document. A similar word-based mixture

model is presented in [105], where two parametric mixture models are proposed. Finally,

a maximum entropy model is introduced in [131] in order to capture the pairwise class

correlation by adding second order constraints.

1.3 Related learning problems

The different approaches for multi-label learning that have been presented in the previ-

ous section concern the so-called flat multi-label classification task. However, in some

problems, the classes are hierarchically organized, imposing the constraint that when

an instance is assigned to a certain class, it should also be assigned to all its super-

classes [90]. This learning task is called hierarchical multi-label classification. The

hierarchy of classes can be such that each class has at most one parent or superclass

(tree structure) or such that classes may have multiple parents (direct acyclic graph

structure) [108]. Examples of this kind of problems are found in several domains, in-

cluding text classification [90] and functional genomics[4][7][13]. In [103], a method

called HOMER transforms the multi-label classification problem with a large set of la-

bels into a tree-shaped hierarchy of multi-label classification subproblems with a small

number of labels. The hierarchical splitting of the set of labels is done using a modified

k-means algorithm.

A distinction should be made between multi-label and multiple-label learning prob-

lems. Multiple-label learning [56] is a semi-supervised learning problem for single-label

classification where each instance is associated with a set of labels but only one of the

candidate labels is the true label for the given instance. For example, this situation

occurs when the training data is labeled by several experts, and due to conflicts and

disagreements between the experts, a set of labels, instead of exactly one label, will

be assigned to some instances. The set of labels of an instance contains the decision

(the assigned label) made by each expert about this instance. It means that there is an

ambiguity in the class labels of the training instances.

Multi-instance learning for classification is an another variation of supervised learn-

ing problems where each training object is represented by a bag of instances (feature

vectors) and is assigned a single label [24][72]. For example, this learning problem is
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Figure 1.6: Different learning problems

encountered in drug activity prediction [24]. A molecule, qualified to make some drug,

is originally small and works by biding to a larger protein molecule. It is known that

the biding strength depends on the shape of the molecule. Each molecule has multiple

possible shapes and it is generally unknown which of these shapes (one or more) cause

the biding [130]. Thus, for this problem, we have to represent an objet by a bag of

instances, each one describing a shape, and the bag is labeled as corresponding to a

drug molecule or a non-drug one.

Another learning problem is multi-instance multi-label learning where each object

is described by a bag of instances and is assigned a set of labels [127][94]. This learn-

ing problem combines the multi-instance and the multi-label learning tasks. Different

real-world applications can be handled under this framework. For example, in text

categorization, each document can be represented by a bag of instances, each instance

representing a section of this document, while the document may deal with several

topics at the same time, such as culture and society.

Figure 1.6 illustrates the different learning frameworks: traditional supervised learn-

ing for single-label classification, multi-instance learning, multi-label learning and multi-

instance multi-label learning.

In this work, we focused on the study of non-hierarchical multi-label learning prob-
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lems, where each training object is described by a single feature vector and may belong

to several classes at the same time.

1.4 Contributions

Three original methods for multi-label learning will be exposed in this thesis, using the

k-nearest neighbor rule as base classifier.

The first method, called DMLkNN for Dependent Multi-Label k-NN, is a proba-

bilistic multi-label classification method able to exploit information about label inter-

dependencies, which is very important for the success of multi-label classification tech-

niques. This method generalizes the state-of-the-art MLkNN algorithm by relaxing the

assumption of label independence. A maximum a posteriori (MAP) estimation is used

in order to determine the proper set of labels to be assigned to a test instance x, accord-

ing to statistical information extracted from the labeling of the nearest neighbors. For

each ωq ∈ Y, the numbers of neighboring instances belonging to each possible class are

used in order to compute the posterior probabilities that x belongs and does not belong

to ωq. Depending on which of these probabilities is greater, we decide to assign or not

the class ωq to test instance x. The decision is made independently for each label, but

correlation between labels is exploited when computing the two aforementioned proba-

bilities. When computing the posterior probabilities for ωq, the frequency of occurrence

of a label ωr in the label sets of the neighboring instances will affect the membership of

x to class ωq.

We also propose two multi-label classification methods that are able to handle multi-

labeled data directly. As we have seen above, most existing multi-label learning algo-

rithms transform the multi-label classification problem into one or more single-label

learning tasks and adapt conventional classifiers for the multi-label purpose. BR, LR

and LP are the three common transformation approaches. In contrast, for the proposed

methods, the multi-labeled data are not transformed into single-labeled ones, and thus

there is no information lost in data labeling. The two direct multi-label classifiers are

intrinsically able to capture any relation between labels.

Another motivation behind the two developed methods is that, when learning a

multi-label classifier, we generally assume the existence of a labeled training set in

which each instance is associated with a perfect well-known set of labels. However, in
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practice, gathering such high quality information is not always feasible at a reasonable

cost. However, in many real-world applications, we are facing situations where we have

to deal with imperfect labeled instances and to handle imprecisions and uncertainties in

data labeling. Such situations occur for exemple, when the data are labeled subjectively

by one or many experts. Possibility [124][33] and evidence [93][99] theories provide

frameworks for reasoning under uncertainty and make it possible to handle easily such

complex problems.

In [119], a possibilistic framework has been proposed for the expression of statements

involving veristic variables, which can also be called fuzzy set-valued variables. Veristic

variables are variables that can assume simultaneously multiple values with different

degrees. Four types of veristic statements allow us to represent any piece of knowledge

about veristic variables: open positive, open negative, exclusive positive, and exclusive

negative statements. In multi-label learning, the class label of each instance can be

considered as a veristic variable, since the instance can belong simultaneously to more

than one class. The veristic theory will be used to build a multi-label classifier called

VERkNN. The labeling of each training instance xi is represented by two distributions:

a verity distribution containing positive information about the labels that should be

assigned to xi, and a rebuff distribution encoding negative information about the la-

bels that should not be assigned to that instance. The verity and rebuff distributions

corresponding to the neighboring training instances are discounted depending on the

distance to the instance to classify, and are then combined in order to determine the

set of classes to assign to the unseen instance.

In evidence theory, a frame of discernment Ω is defined as the set of all possible

exclusive solutions of a given problem, where each variable can have one and only one

solution in Ω. In a multi-label learning problem, the label set Y of each instance x is a

set-valued variable taking values in the set of all classes Y. A straightforward approach

to study the problem of multi-label learning under evidence theory is, of course, to

define the frame of discernment Ω as the set of all subsets of Y. Each label set Y that

represents a set-valued variable on Y is then considered as a single-valued variable on

the frame of discernment Ω = 2Y . However, this approach often implies working in a

space of very high cardinality, as the size of the frame of discernment is |Ω| = 2Q. If we

want to express imprecise information about Y , we will have to manipulate subsets of
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Ω. As there are 22Q

of these subsets, this approach rapidly becomes intractable as the

number of possible classes Q increases.

A major contribution of this thesis is the definition of an approach able to handle

and represent uncertainty about set-valued variables using the Dempster-Shafer theory

of belief functions [93] and with only a moderate increase of complexity. Our approach

represents an alternative to veristic theory for manipulating set-valued variables. The

proposed approach will be based on a simple representation of a class C(Y) of subsets of

Ω = 2Y which, endowed with set inclusion, has a lattice structure. Using recent results

about belief functions on lattices [49], we will be able to generalize most concepts

of Dempster-Shafer theory in this setting. This formalism will be shown to allow the

expression of a wide range of knowledge about set-valued variables, with only a moderate

increase of complexity (from 2Q to 3Q) as compared to the usual single-valued case.

Using the belief function framework for set-valued variables, we will present an

evidence-theoretic k-NN rule for multi-label learning called EMLkNN. For this method,

each neighbor of an instance x to classify is considered as an item of evidence supporting

certain hypotheses regarding the class label of that instance. The degree of support is

defined as a function of the distance between the two examples. Each item of evidence

is represented by two disjoint subsets of Y, a subset of classes that surely apply to the

unseen instance x, and a subset of classes that surely do not apply to x. The evidence

of the k nearest neighbors is then pooled by means of a combination rule in order to

estimate the set of labels of the unseen instance.

1.5 Conclusion

In this chapter, an analysis of the state-of-the-art of the multi-label learning task has

been exposed. We have shown that there are three main approaches for multi-label

learning: BR, LR, and LP. The basic idea of these approaches consists in transforming

a multi-label learning problem into one or more single-label learning ones.

Different real-world applications requiring multi-label learning have been described,

and related learning problems have been also summarized.

Finally, we have discussed the aim of this thesis. Exploiting label correlation, and

handling imprecision in data labeling are the main motivations.

In the next chapters, the three methods for multi-label learning will be detailed.
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learning

Summary

In this chapter, we propose a Bayesian k-nearest neighbor rule for multi-label learning.

This method is able to take into consideration the correlation between labels. In fact,

in multi-labeled data, the membership of an instance to a given class, may provide

information on the membership of that instance to another class. For example, if an

image is assigned to class “Desert”, one can deduce that the image should not belong

to class “Lake”. Each query instance is classified on the basis of statistical information

extracted from its nearest neighbors. More precisely, the probability of the assignment

of an instance to a certain class is estimated, from the training dataset, based on the

number of neighbors belonging to that class and also the number of neighbors belonging

to each of the other classes. Since that the size of the training set is usually limited,

the posterior probabilities are computed based on the approximate number of neighbors

belonging to each class existing in the neighborhood.

Résumé

Dans ce chapitre, nous présentons une méthode Bayésienne pour l’apprentissage

multi-label basée sur la règle de k-plus proches voisins. Cette méthode est capable de

prendre en considération les correlations entre les différentes classes. En fait, en ce qui

concerne les données multi-étiquetées, l’appartenance d’un individu à une classe donnée,
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peut donner une certaine information sur l’appartenance de ce même individu à une

autre classe. Par exemple, si on associe la classe “Désert” à une certaine image, on peut

en déduire que cette image n’appartient pas à la classe “Lac”. Dans la méthode proposée,

la classification de chaque nouveau individu est basée sur des informations statistiques

extraites de ses plus proches voisins. Plus précisément, la probabilité d’appartenance

d’un individu donné à une certaine classe est estimée à partir de la base d’apprentissage,

en fonction du nombre de voisins appartenant à cette même classe et aussi en fonction

du nombre de voisins appartenant à chacune des autres classes. Vue que la taille de

données d’apprentissage est souvent limitée, les probabilités à posteriori sont calculées en

fonction du nombre approximatif de voisins appartenant à chacune des classes existant

dans le voisinage.
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2.1 Introduction

Binary Relevance (BR) is the most common approach for multi-label learning. A bi-

nary classifier is trained to separate one class from the others. The outputs of the

different binary classifiers are combined in order to determine the final output of the

multi-label classifier. The binary classifiers tacitly assume the non-dependency between

labels. This assumption is questionable in many multi-label learning problems. In

general, multi-labeled data exhibit relationships between labels, and binary classifiers

fail to capture this effect. For example, {entertainment, music} is more likely than

{entertainment, politics}, because documents that are under the label music are more

likely to have also label entertainment in their label sets than label politics. Despite

of this limitation, the BR approach is simple and intuitive and has the advantage of

having low computational complexity.

A Bayesian algorithm for multi-label learning will be presented in this chapter. The

proposed method is derived from the k-nearest neighbor rule and is able to capture

dependencies between labels. The classification of an instance is carried out by exploit-

ing statistical information extracted from its k nearest neighbors and through Bayesian

inference. This method is called DMLkNN and generalizes the MLkNN algorithm pre-

sented in [129]. The proposed method relies on the binary relevance approach, in the

sense that a decision is made separately for each class, while overcoming the label in-

dependence assumption.

This chapter is organized as follows. In Section 2.2, a general overview about

Bayesian classification will be presented. In Section 2.3, the well-known k nearest neigh-

bor rule will be described. Label correlation in multi-label learning will be discussed in

Section 2.4. Section 2.5 will present the proposed multi-label classification algorithm

based on a Bayesian interpretation of the k-NN rule. An illustration on a simulated

dataset will be reported in Section 2.6. Finally, Section 2.7 will conclude this chapter.

2.2 Bayesian rule for classical classification problems

Different probabilistic model specifications can be designed in order to address the

classification problem. Bayesian classification methods are in general based on the

Bayes theorem [51][42]. This is a generative approach to classification and it offers

a useful conceptual framework. It allows us to develop practical learning algorithms
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providing, based on a training set, prior knowledge and observed information about

instances to classify.

The generative probability model for a Bayesian classifier can be described as follows.

Let x be an instance to classify, and let Hq
b denote the hypothesis that x belongs to

class ωq ∈ Y if b = 1, and the hypothesis that x does not belong to ωq if b = 0.

Pr(Hq
1|E) represents the posterior probability that x belongs to ωq given the observed

evidence E that represents knowledge about the instance to classify. Based on the

maximum a posteriori (MAP) rule, a Bayesian classifier h assigns x to the class with

the maximum posterior probability. For the computation of Pr(Hq
1|E), for each q ∈

{1, . . . ,Q}, the posterior probability is decomposed into a prior probability Pr(Hq
1) and

a likelihood Pr(E|Hq
1), using the Bayes theorem:

Pr(Hq
1|E) =

Pr(E|Hq
1)Pr(Hq

1)

Pr(E)
,

where Pr(Hq
1) is the probability that an instance belongs to class ωq, Pr(E|Hq

1) is the

probability of observing E giving that the instance belongs to ωq, and Pr(E) is the

probability of observing E. For example, suppose that we have a document classification

problem with two possible classes ω1 for scientific and ω2 for literary. A training

dataset contains 60% of scientific documents and 40% of literary ones. Consider the

observation that 70% of all scientific documents contain the word “hypothesis” and

5% contain the word “literary”. Let E represents the evidence of observing the word

“hypothesis” in a document. The probability Pr(E) of observing this word is Pr(E) =

Pr(E|H1
1)Pr(H1

1) + Pr(E|H2
1)Pr(H2

1) = 0.7 × 0.6 + 0.05 × 0.4 = 0.44. The probability

Pr(H1
1|E) of a document containing “hypothesis” and belonging to class ω1 is 0.7 ×

0.6/0.44 = 0.95, while the probability Pr(H2
1|E) of such a document belonging to the

literary class is 0.4 × 0.05/0.44 = 0.05.

Note that Pr(E) may be considered as a normalization factor that can be ignored

in practice when computing the posterior probability corresponding to each class ωq,

as it does not depend on the classes. Thus, the output of the Bayesian classifier h is

determined in general as follows:

h(x) = ωr, such that:

r = arg max
q=1...Q

Pr(E|Hq
1)Pr(Hq

1),

the prior probabilities and the likelihoods being estimated from training data.
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2.3 Nearest Neighbor classification

The Nearest neighbor (NN) rule is one of the simplest and most popular methods for

statistical learning [17]. This is an instance-based classifier that has been shown to be

very effective in many classification problems [37][19]. The intuition is simple. Giving

a single-labeled training set, the classification of a query instance x is performed by

assigning it the label of the least distant training pattern according to some distance

measure. The voting k-nearest neighbor rule, with k ≥ 1, is a generalization of the NN

approach where the most frequent class occurring in the k neighbors of x is predicted.

The voting k-NN rule is less sensitive to noise on the available training data.

Clearly, the performances of the k-NN rule depend on the distance metric d(., .)

used to identify nearest neighbors, and the number k of neighbors to be considered for

the classification of unseen instances [38]. Note that, usually, when feature variables are

not of comparable units and scales and there is a great difference in the range of their

different values, distance metrics implicitly assign greater weight to features with large

ranges than those with small ones. In such cases, feature normalization is recommended

to approximately equalize ranges of the features such that they will have the same effect

on distance computation.

The Euclidean metric is the most popular distance function and it is widely used

in k-NN classification. This metric, however, does not exploit any statistical properties

and information that can be extracted and estimated from the training data. Many

researches have been focused on the definition of distance metrics to improve the k-NN

classification. Ideally, the distance metric should be locally adapted to the classification

problem under study, and thus should be learnt a metric from the labeled training data.

In [52], local linear discriminant analysis is used to estimate an effective metric for

computing neighborhoods. The idea is to locally determine feature relevance for each

query instance x, so that its neighborhood gets an ellipsoidal shape elongated along

the true decision boundary (the most relevant feature), and flattened in the direction

orthogonal to it. A similar approach has been presented in [26]. Locally adaptive

metric was proposed using a Chi-squared distance that measures the similarities between

two instances in terms of the difference between their two class posterior probabilities.

In [48], a distance metric has been presented by learning a linear transformation of the

input space such that in the transformed space, k-NN performs well. A method for
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learning a Mahalanobis distance measure by semi-definite linear programming has been

proposed in [112]. The metric is trained with the goal that the k nearest neighbors

always belong to the same class while instances from different classes are separated by

a large margin. In [110], an adaptive distance metric has been proposed. It consists in

normalizing the ordinary distance (e.g. Euclidean one) between the query instance x

and a training instance xi by the shortest distance between xi and training instances

belonging to classes different from the class of xi. Although these proposed metrics

may improve the performance of the k-NN classifier, their computational complexity is

higher than that of the conventional Euclidean distance.

We have to specify as well the value of the parameter k that controls the size of

the neighborhood. A major issue in k-NN classification is how to find an optimal

value of k. In general, the value of k depends on the size of the training data n. As

shown in [17], k should vary with n in such a way that k −→ ∞ and k/n −→ 0 as

n −→ ∞. However, for finite values of n, there is no theoretical guideline for choosing

the value of k. In [85], a study on the relationship between the size of the training

dataset and the parameter k, and the impact of k on classification accuracy have been

reviewed. It has been shown that for large training sets, a broad set of values of k

leads to similar results, while small training sets require more careful selection of k. For

larger training sizes, accuracy becomes increasingly stable with respect to k. In general,

larger values of k tend to produce smoother models and are less sensitive to label noise;

however, they increase the computational burden and include further training instances

in label estimation, so there is no locality in that estimation [17]. In [109], a method

for neighborhood size selection based on the concept of statistical confidence has been

proposed. In this approach, a defined criterion is used to determine the needed value

of k. The number of nearest neighbors is dynamically adjusted until a satisfactory level

of confidence is reached. In [113], it has been shown that the best value of k not only

depends on the training dataset, but also on the given instance to classify. Instead

of using a fixed value of k, a local value is estimated for each query instance. The

adaptive choice of k has also been studied in [46]. Using different values of k instead

of single value adds more flexibility to the classification process, but, however, makes it

more difficult and more computationally complex because, the optimization of k has to

be made for each instance. Cross-validation is still the most widely used approach to

estimate the optimal value of the neighborhood parameter k.
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2.4 Label correlation in multi-label applications

In multi-label learning, the possibility of joint membership of an instance to several

classes may imply the existence of some information in the label space about the in-

terdependency between different labels. The assignment of class ω to an instance x

may provide information about the membership of that instance to other classes. Label

correlation exists when, the possibility for an instance to belong to a class depends on

its membership to other classes. For example, a document with the topic politics is

unlikely to be labeled as entertainment, but the probability that the document belongs

to class economic is high.

In general, relationships between labels have high order or even full order, i.e., there

is a relation between a label and all remaining labels, but these relations are more

difficult to represent than second-order relations, i.e., relations that exist between each

pair of labels. Label correlation can be represented in the form of a contingency matrix

mat that allows us to express only second-order relations between labels. Given a

multi-labeled dataset D with Q possible labels, mat[q][r] = Pr(Hq
1|H

r
1), where q and r ∈

{1, . . . ,Q} with q 6= r, indicates the second-order relationship between labels ωq and ωr.

Pr(Hq
1|H

r
1) represents the proportion of data in D that are assigned label ωq, knowing

that they also belong to ωr. mat[q][q] = Pr(Hq
1) indicates the frequency of label ωq in the

dataset D. Figures 2.1, 2.2 and 2.3 show, respectively, the contingency matrices for the

emotion (Q = 6), scene (Q = 6) and yeast (Q = 14) datasets used in our experiments,

which will be described in Chapter 5. For example, in the emotion dataset, each object

represents a song and is labeled by the emotions evoked by this song. We can see in

Figure 2.1 that mat[1][4] = Pr(H1
1|H

4
1) = 0, meaning that labels ω1 and ω4 cannot occur

together. This is easily interpretable, as ω1 corresponds to “amazed-surprised” while

ω4 corresponds to “quiet-still”, and these two emotions are clearly opposite. We can

also see that mat[5][4] = Pr(H5
1|H

4
1) = 0.6 , which means that ω5 representing “sad-

lonely” frequently coexists in the label sets with ω4. We can see from these examples

that labels in multi-labeled datasets are often correlated, and exploiting relationships

between labels will be very helpful for improving classification performance.

The most intuitive and straightforward way for multi-label learning is the BR ap-

proach, which decomposes a multi-label classification problem into several binary clas-

sification problems; one binary classifier is trained for each label and used to predict
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Figure 2.1: Contingency matrix of emotion dataset
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Figure 2.3: Contingency matrix of yeast dataset

whether, for a given test instance, this label is relevant or not (see Section 1.2.1). An

advantage of the BR approach is that it is simple, intuitive, and a multi-label classifier

can be built by directly using any state-of-the-art binary classification algorithm. How-

ever, BR learns the binary classifiers independently, and ignores any relation between

labels. It may also predict labels that would never co-occur in reality.

In fact, for optimal performance, a probabilistic multi-label classifier should esti-

mate the set of labels with the highest joint probability, instead of the combination

of labels with largest individual probabilities. For example, given an event E about

an instance to classify x, we suppose that the joint posterior probability Pr(H1
b , H

2
b′ |E)

of the two possible classes ω1 and ω2 are shown in Table 2.1. Suppose also that we

trained a single-label probabilistic classifier for each of the two classes, and, as a result,

we obtained the two individual posterior probabilities Pr(H1
b |E) and Pr(H2

b′ |E). We can

see that Pr(H1
0|E) = 0.3 is less than Pr(H1

1|E) = 0.7, and the binary approach will

assign class ω1 to instance x. For the same reason, x is assigned class ω2. However,

if we take a look at Table 2.1, we can remark that Pr(H1
0, H

2
1|E) = 0.4 is bigger than

Pr(H1
1, H

2
1|E) = 0.3, which means that the true label set of x only contains class ω2.

Therefore, combining independent binary classifiers may not be really effective for the
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purpose of multi-label classification, as the mutual correlations among different classes

are completely ignored. A more adequate approach for multi-label learning might be to

take into account the different combinations of labels and to compute the correspond-

ing joint probabilities. In practice, in the absence of prior knowledge, this approach

estimates the joint probabilities from a given training dataset D of size n. Moreover,

the number of label combinations expands exponentially with the increase of the num-

ber of possible labels Q, and the number of joint probabilities to be estimated is upper

bounded by min(n, 2Q). Consequently, estimating all joint probabilities has higher com-

putational complexity but, some joint probabilities have to be estimated from possibly

small number of training instances, which may introduce some bias in the learning pro-

cess and degrade the overall classification accuracy. In fact, when calculating the joint

probabilities of different possible label combinations, only a small number of training

instances may be associated with each combination, specially if it contains many labels.

Another limitation of this approach is that an instance to classify can only be associated

to a label set that exists in the training dataset.

Table 2.1: An example of joint distributions of two labels.

Pr(H1
b , H

′2
b |E) b = 0 b = 1 Pr(H2

b′ |E)

b′ = 0 0 0.4 0.4

b′ = 1 0.3 0.3 0.6

Pr(H1
b |E) 0.3 0.7

In this chapter, we propose a Bayesian multi-label classification method based on

the k-NN rule, which is able to capture correlations among labels while maintaining

acceptable computational complexity. This method is called DMLkNN for dependent

multi-label k-nearest neighbor. It is BR-based approach in the sense that a binary

decision is made separately for each label given an instance to classify, but it overcomes

the label independence assumption of BR. In our method, label correlation is exploited

by extracting statistical information from training instances, which will be used to

assign or not each label to a given test instance. This method is a generalization of the

MLkNN algorithm proposed in [129]. In this algorithm, a decision is made separately

for each label by taking into account the number of neighbors belonging at least to that

label. Thus, this method fails to take into consideration the interdependency between

labels. In contrast, after identifying the k-NNs of the instance to classify, our method
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uses a MAP rule for each label, which takes into account the numbers of neighboring

instances belonging to the different labels instead of only considering the number of

neighbors having the label in question.

2.5 DMLkNN for multi-label classification

As in the first chapter, let X = R
d denote the domain of instances, each one represented

by a d-dimensional feature vector, and let Y = {ω1, ω2, . . . , ωQ} be the finite set of

labels. Let D = {(x1, Y1), (x2, Y2), . . . , (xn, Yn)} represent the multi-labeled dataset,

consisting of n training examples, independently drawn from X × 2Y , and identically

distributed, where xi ∈ X and Yi ∈ 2Y . The DMLkNN method learns a multi-label

classifier H : X → 2Y from the given training data, which predicts a set of labels to

each unseen instance x ∈ X. In addition to H, DMLkNN defines a scoring function

f : X × Y → R that assigns a real number to each instance/label combination. For

each class ω ∈ Y, the score f(x, ω) represents the probability that ω is relevant for the

instance x. The scoring function f is used to rank the labels corresponding to their

relevance for the instance to classify. Note that the multi-label classifier H(·) and the

scoring function f(·, ·) are linked by the following relation:

H(x) = {ω ∈ Y|f(x, ω) > t},

where t is a threshold value.

Given an instance x and its associated label set Y ⊆ Y, let N k
x denote the set of the

k closest training examples of x in D according to a distance function d(., .), and let yx

be the Q-dimensional category vector of x whose qth component indicates if x belongs

to class ωq or not:

yx(q) =

{
1 if ωq ∈ Y

0 otherwise
∀ q ∈ {1, . . . ,Q}.

Let us represent by cx the Q-dimensional membership counting vector of x, the qth

component of which indicates how many examples amongst the k-NNs of x belong to

class ωq:

cx(q) =
∑

xi∈N k
x

yxi
(q), ∀ q ∈ {1, . . . ,Q}.
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2.5.1 MAP principle

Let x now denote an instance to classify. Like in all k-NN based methods, for the test

instance x, the set N k
x of its k nearest neighbors should be firstly identified. Under

the multi-label assumption, the counting vector cx is computed. As mentioned before,

let Hq
1 denote the hypothesis that x belongs to class ωq, and Hq

0 the hypothesis that x

should not be assigned ωq. Let Eq
j (j ∈ {0, 1, . . . , k}) denote the event that there are

exactly j instances in N k
x belonging to class ωq. To determine the qth component of the

category vector yx for instance x, the MLkNN algorithm uses the following MAP [129]:

ŷ′
x(q) = arg max

b∈{0,1}
Pr(Hq

b |E
q
cx(q)), (2.1)

while for the DMLkNN algorithm, the following MAP is used:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b |
∧

ωl∈Y

El
cx(l))

= arg max
b∈{0,1}

Pr(Hq
b |E

q
cx(q),

∧

ωl∈Y\{ωq}

El
cx(l)). (2.2)

In contrast to decision rule (2.1), we can see from Equation (2.2) that the assignment

of label ωq to the test instance x depends not only on the event that there are exactly

cx(q) instances having label ωq in N k
x , i.e., Eq

cx(q), but also on
∧

ωl∈Y\{ωq}

El
cx(l), which

is the event that there are exactly cx(l) instances having label ωl in N k
x , for each

ωl ∈ Y\{ωq}. Thus, it is clear that label correlation is taken into account in (2.2) since

all the components of the counting vector cx are involved in the assignment or not of

label ωq to x, which is not the case in Equation (2.1).

2.5.2 Posterior probability estimation

Regarding the counter vector cx, the number of possible events
∧

ωl∈Y
El

cx(l) is upper

bounded by kQ. This means that, in addition to the complexity problem, the estimation

of (2.2) from a relatively small training set will not be accurate. To overcome this

difficulty, we will adopt a fuzzy approximation for (2.2). This approximation is based

on the event Fl
j , j ∈ {0, 1, . . . , k}, which is the event that there are approximately

j instances in N k
x belonging to class ωl, i.e., Fl

j , denotes the event that the number

of instances in N k
x that are assigned label ωl is in the interval [j − δ; j + δ], where
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δ ∈ {0, . . . , k} is a fuzziness parameter. As a consequence, we can derive a fuzzy MAP

rule:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b |
∧

ωl∈Y

Fl
cx(l)). (2.3)

To remain closer to the initial formulation and for comparison with MLkNN, (2.3) will

be replaced by the following rule:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b |E

q
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)). (2.4)

For large values of δ, the results of our method will be similar to those of MLkNN. In

fact, for δ = k, the MLkNN algorithm is a particular case of the DMLkNN algorithm,

where
∧

ωl∈Y\{ωq}

Fl
cx(l) will be certain event because for each ωl ∈ Y\{ωq}, the number of

instances in N k
x belonging to class ωl will surely be in the interval [j−k; j+k]. For small

values of δ, the assignment or not of label ωq to test instance x will not only depend

on the number of instances in N k
x that belong to label ωq, but also on the number of

instances in N k
x belonging to the remaining labels.

Using the Bayes’ rule, Equations (2.1) and (2.4) can be written as follows:

ŷ′
x(q) = arg max

b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q)|H
q
b)

Pr(Eq
cx(q))

= arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q)|H
q
b). (2.5)

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b)

Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l))

= arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b). (2.6)

To rank labels in Y, a Q-dimensional real-valued vector rx can be calculated. The

37



Chapter 2: Bayesian approach for multi-label learning

qth component of rx is defined as the posterior probability Pr(Hq
1|E

q
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)):

rx(q) = Pr(Hq
1|E

q
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l))

=

Pr(Hq
1)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1)

Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l))

=

Pr(Hq
1)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1)

∑
b∈{0,1} Pr(Hq

b)Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

l
b)

. (2.7)

For comparison, the real-valued vector r′x for MLkNN has the following expression:

r′x(q) = Pr(Hq
1|E

q
cx(q))

=
Pr(Hq

1)Pr(Eq
cx(q)|H

q
1)

Pr(Eq
cx(q))

=
Pr(Hq

1)Pr(Eq
cx(q)|H

q
1)

∑
b∈{0,1} Pr(Hq

b)Pr(Eq
cx(q)|H

l
b)

. (2.8)

In order to determine the category vector ŷx and the real-valued vector rx of

instance x, we need to determine the prior probabilities Pr(Hl
b) and the likelihoods

Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), for each q ∈ {1 · · ·Q}, and b ∈ {0, 1}. These probabilities

are estimated from a training dataset D.

Given an instance x to classify, the output of the DMLkNN method for multi-

classification is determined as follows:

H(x) = {ωq ∈ Y| ŷx(q) = 1},

and

f(x, ωq) = rx(q), for each ωq ∈ Y.

Figure 2.4 shows the pseudo code of the DMLkNN algorithm. The value of δ may

be selected through cross-validation and provided as input to the algorithm. The prior

probabilities Pr(Hq
b), b = {0, 1}, for each class ωq are first calculated and the number of

instances belonging to each label is counted (steps 1 to 3):
{

Pr(Hq
1) = 1

n

∑
n

i=1 yxi
(q)

Pr(Hq
0) = 1 − Pr(Hq

1).
(2.9)
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[yx, rx] = DMLkNN(D, x, k, s, δ)

%Computing the prior probabilities and the number of instances belonging to each class

1. For q = 1 · · ·Q

2. Pr(Hq
1) = (

∑
m
i=1 yxi

(q))/(n); Pr(Hq
0) = 1 − Pr(Hq

1);

3. u(q) =
∑

n

i=1 yxi
(q); u′(q) = n − u(q);

EndFor

%For each test instance x

4. Identify N(x) and cx

%Counting the training instances whose membership counting vectors satisfy the constraints (2.11)

5. For q = 1 · · ·Q

6. v(q) = 0; v′(q) = 0

EndFor

7. For i = 1 · · ·n

8. Identify N(xi) and cxi

9. If cx(q) − δ ≤ cxi
(q) ≤ cx(q) + δ, ∀ q ∈ Y Then

10. For q = 1 · · ·Q

11. If cxi
(q) == cx(q) Then

12. If yxi
(q) == 1 Then v(q) = v(q) + 1;

Else v′(q) = v′(q) + 1;

EndFor

EndFor

%Computing yx and rx

13. For q = 1 · · ·Q

14. Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q

1) = (s + v(q))/(s × Q + u(q));

15. Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q

0) = (s + v′(q))/(s × Q + u′(q));

16. yx(q) = arg max
b∈{0,1}

Pr(Hq

b
)Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q

b
)

17. rx(q) =

Pr(H
q
1)Pr(E

q

cx(q)
,

∧

ωl∈Y\{ωq}
F

l
cx(l)

|H
q
1)

∑
b∈{0,1} Pr(H

q
b
)Pr(E

q

cx(q)
,

∧

ωl∈Y\{ωq}
F

l
cx(l)

|H
q
b
)

EndFor

Figure 2.4: DMLkNN algorithm.
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Recall that n is the number of training instances. u(q) counts the number of instances

belonging to class ωq, and u′(q) indicates the number of instances not having ωq in their

label sets: {
u(q) =

∑
n

i=1 yxi
(q)

u′(q) = n − u(q).
(2.10)

For test instance x, the k-NNs are identified and the membership counting vector cx

is determined (step 4). In order to assign or not label ωq to x, we must determine the

likelihoods Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈ {0, 1}, using the training instances such

as their corresponding membership counting vectors satisfy the following constraints:
{

cxi
(q) = cx(q)

cx(l) − δ ≤ cxi
(l) ≤ cx(l) + δ, for each ωl ∈ Y\{ωq}.

(2.11)

This is illustrated in steps 5 to 12. The number of instances from the training set

verifying these constraints, and belonging to class ωq is stored in v(q). The number of

remaining instances verifying the previous constraints and not having ωq in their sets

of labels is stored in v′(q). The likelihoods Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈ {0, 1}, are

then computed:





Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1) = s+v(l)

s×Q+u(l)

Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
0) = s+v

′(l)
s×Q+u′(l) ,

(2.12)

where s is a smoothing parameter [86]. Smoothing is commonly used to avoid zero

probability estimates. When s = 1, it is called Laplace smoothing. Finally, the cate-

gory vector yx and the real-valued vector rx to rank labels in Y are calculated using

equations (2.6) and (2.8), respectively (steps 13 to 17).

Note that, in the MLkNN algorithm, only the first constraint in (2.11) is considered

in order to compute the likelihoods Pr(Eq
cx(q)|H

q
b), b ∈ {0, 1}. As a result, the number

of examples in the learning set satisfying this contraint is larger than the number of

examples satisfying (2.11). Thus, the MLkNN and DMLkNN should not necessary be

compared with the same smoothing parameter.

2.6 Illustration on a simulated dataset

In this section, we illustrate the behavior of the DMLkNN and MLkNN methods using

simulated data.
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The simulated dataset contains 1019 instances in R
2 belonging to three possible

classes, Y = {ω1, ω2, ω3}. The data were generated from seven Gaussian distributions

with means (0,0), (1,0), (0.5,0), (0.5,1), (0.25,0.6), (0.75,0.6), (0.5,0.5) , respectively,

and equal covariance matrix

(
1 0
0 1

)
. The number of instances in each class is chosen

arbitrarily (see Table 2.2). Taking into account the geometric distribution of the gaus-

sian data, the instances of each set were respectively assigned to label(s) {ω1}, {ω2},

{ω1, ω2}, {ω3}, {ω1, ω3}, {ω2, ω3}, {ω1, ω2, ω3}.

Table 2.2: Summary of the simulated data set.

Label set Number of instances

{ω1} 150

{ω2} 162

{ω1, ω2} 304

{ω3} 262

{ω1, ω3} 43

{ω2, ω3} 78

{ω1, ω2, ω3} 20

Figure 2.5 shows the neighboring training instances and the estimated label set for

a test instance x using DMLkNN and MLkNN. For both methods, k was set to 8, and

Laplace smoothing (s = 1) was used. For DMLkNN, δ was fixed to 1. Hereafter, for the

test instance in question, we will describe the different steps for the estimation of the

label set of x using the DMLkNN and MLkNN algorithms. For the sake of clarity, we

will recall the definition of some events introduced before. The membership counting

vector of the test instance is cx = (7, 3, 2). Using the DMLkNN method, in order

to estimate the label set of x, the following probabilities have to be computed from

Equation (2.6):

ŷx(1) = arg max
b∈{0,1}

Pr(H1
b)Pr(E1

7, F
2
3, F

3
2|H

1
b)

ŷx(2) = arg max
b∈{0,1}

Pr(H2
b)Pr(E2

3, F
1
7, F

3
2|H

2
b)

ŷx(3) = arg max
b∈{0,1}

Pr(H3
b)Pr(E3

2, F
1
7, F

2
3|H

3
b).

We recall that E1
7 is the event that there are seven instances in N k

x which have label

ω1, F2
3 is the event that the number of instances in N k

x belonging to label ω2 is in the
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Figure 2.5: Estimated label set (in bold) for a test instance using the DMLkNN (top)

and MLkNN (bottom) methods.

interval [3 − δ; 3 + δ] = [2, 4]. In contrast, for estimating the label set of the unseen

instance using the MLkNN method, the following probabilities have to be computed
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from Equation (2.5):

ŷ′
x(1) = arg max

b∈{0,1}
Pr(H1

b)Pr(E1
7|H

1
b)

ŷ′
x(2) = arg max

b∈{0,1}
Pr(H2

b)Pr(E2
3|H

2
b)

ŷ′
x(3) = arg max

b∈{0,1}
Pr(H3

b)Pr(E3
2|H

3
b).

First, the prior probabilities are computed from the training set according to Equa-

tion (2.9):

Pr(H1
1) = 0.4527 Pr(H1

0) = 0.5473

Pr(H2
1) = 0.5038 Pr(H2

0) = 0.4962

Pr(H3
1) = 0.4396 Pr(H3

0) = 0.5604.

Second, the posterior probabilities for the DMLkNN and MLkNN algorithms are cal-

culated 1 using the training set:

Pr(E1
7, F

2
3, F

3
2|H

1
1) = 0.0478 Pr(E1

7, F
2
3, F

3
2|H

1
0) = 0.0139

Pr(E2
3, F

1
7, F

3
2|H

2
1) = 0.0237 Pr(E2

3, F
1
7, F

3
2|H

2
0) = 0.0218

Pr(E3
2, F

1
7, F

2
3|H

3
1) = 0.0394 Pr(E3

2, F
1
7, F

2
3|H

3
0) = 0.1161

Pr(E1
7|H

1
1) = 0.1108 Pr(E1

7|H
1
0) = 0.0431

Pr(E2
3|H

2
1) = 0.1231 Pr(E2

3|H
2
0) = 0.1746

Pr(E3
2|H

3
1) = 0.0655 Pr(E3

2|H
3
0) = 0.0593.

Using the prior and the posterior probabilities, the category vectors associated to the

test instance by the DMLkNN and MLkNN algorithms can be calculated:

ŷx(1) = 1 ŷ′
x(1) = 1

ŷx(2) = 1 ŷ′
x(2) = 0

ŷx(3) = 0 ŷ′
x(3) = 0.

Thus, the estimated label set for test instance x given by the DMLkNN method is

Ŷ = {ω1, ω2}, while that given by MLkNN is Ŷ ′ = {ω1}. The true label set for x is

1Using the DMLkNN method, this is done according to steps 7 to 15, as shown in Figure 2.4 and

explained in Section 2.5.
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Y = {ω1, ω2}. In this case, we can see that no error has occurred when estimating the

label set of x using the DMLkNN method, while for the other method, the estimated

label set is not identical to the ground truth label set. Seven training instances in N k
x

have label ω1 in their label sets while only three instances belong to label ω2. In fact,

the existence of label ω1 in the neighborhood of x gives some information about the

existence or not of label ω2 in the label set of x. If we take a look at the training

dataset, we can remark that 14,7% of instances belong to ω1, 15.9% to ω2, and 29.8%

to ω1 and ω2 simultaneously. Thus, the probability that an instance belongs to both

classes ω1 and ω2 is approximately twice the probability that it belongs to only one of

the two classes. DMLkNN is able to capture the relationship between labels ω1 and ω2

in order to improve the estimation of label sets, while MLkNN is not able to capture this

correlation. This example shows that the DMLkNN method, which takes into account

correlation between labels when calculating the assignment or not of a label to the test

instance, may improve classification performance.

2.7 Conclusion

In this chapter, we have presented an original multi-label learning algorithm derived

from the k-NN rule, in which the dependencies between labels are taken into account.

Our method is based on the binary relevance approach, which is often criticized for its

ignorance of correlation between labels. However, here, this disadvantage is overcome.

The classification of an instance is carried out through local statistical information

extracted from the k nearest neighbors of the instance to classify and using Bayesian

inference. This method, called DMLkNN, generalizes the MLkNN algorithm presented

in [129].

The illustrative example using a simulated dataset demonstrates the efficiency and

the usefulness of our approach to represent and explore interdependencies between la-

bels. However, for DMLkNN, as compared to MLkNN, there is one additional parameter

that needs to be optimized, namely the fuzziness parameter δ. Moreover, MLkNN is

faster than DMLkNN. In fact, in the MLkNN method, the likelihoods Pr(Eq
cx(q)|H

q
b),

b ∈ {0, 1}, are calculated from the training set, stored and then just used when pre-

dicting the label set of each query instance. In contrast, using DMLkNN, the number

of likelihoods Pr(Eq
cx(q),

∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈ {0, 1}, is much bigger, and thus, it will
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not be an easy task to calculate these probabilities in advance and store them as in

MLkNN. The probabilities are computed locally for each query instance.
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Chapter 3

Multi-label learning under veristic

variables

Summary

Veristic variables are fuzzy set-valued variables that can assume simultaneously multi-

ple values with different degrees. In multi-label learning, class labels can be considered

as veristic variables since each instance can belong to more than one class at the same

time. Based on the approximate reasoning framework for representing and manipulat-

ing knowledge involving veristic variables, we propose in this chapter a veristic k-nearest

neighbor rule for multi-label classification. The labeling of each instance is represented

by two distributions: a first distribution called Verity which gives positive information

about the labeling of this instance, and a second distribution called Rebuff which rep-

resents negative information about the different possible classes. Given an instance to

classify, each neighbor represents a piece of knowledge about the labeling of this in-

stance. The verity and rebuff distributions of the neighboring examples are discounted

depending on the distance to the instance to classify and are then combined in order

to determine the set of labels of that instance. This method is especially addressed to

handle data with imprecise labels.

Résumé

Les variables véristiques sont des variables multi-valuées floues qui peuvent avoir

plusieurs valeurs simultanément, mais avec différents degrés. Dans l’apprentissage multi-
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label, les étiquettes des différents individus peuvent être considérés comme des variables

véristiques, vu que chaque individu appartient à une ou plusieurs classes simultanément.

Dans ce chapitre, nous proposons une méthode de classification multi-label basée sur

la règle des k-plus proches voisins et utilisant le cadre de raisonnement approximatif

des variables véristiques qui nous permet de représenter et manipuler de connaissances

impliquant de telles variables. L’étiquetage de chaque exemple est représenté par deux

distributions : une distribution appelée Verity qui donne des informations positives sur

l’étiquetage de cet exemple, et une autre distribution appelée Rebuff représentant des

informations négatives sur l’appartenance aux différentes classes possibles. Étant donné

un nouveau individu à classifier, chaque voisin fournit une certaine connaissance sur

l’étiquetage de cet individu. En tenant compte de la distance par rapport à l’individu

à classifier, les distributions représentant l’étiquetage des différents voisins sont consti-

tuées en premier lieu, et sont ensuite combinées afin de déterminer l’ensemble de classes

de cet individu. Cette méthode s’adresse spécialement à la classification de données

étiquetées d’une façon imprécise.
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3.1 Introduction

One may differentiate between two important classes of variables: single-valued and

set-valued variables. Single-valued variables, also called disjunctive variables, are re-

stricted to take one and only value in their universe of discourse. In contrast, set-valued

variables, also called conjunctive ones, are allowed to take more than one value in their

universe [125][32]. For instance, variables such as the current temperature, your day

of birth are single-valued variables while, for example, the languages you speak, the

countries you have visited are set-valued variables. When talking about fuzzy variables,

single-valued ones are called possibilistic variables, while set-valued ones are called veris-

tic variables [115].

In [119], an approximate reasoning framework has been proposed for the representa-

tion and manipulation of knowledge concerning veristic variables. Due to the fact that

knowledge about set-valued variables may be uncertain and imprecise, the developed

theory is based on fuzzy sets rather than crisp sets, in order to make it rich enough to

handle all kinds of information.

As stated in the previous chapters, in multi-label learning problems, each instance

may belong simultaneously to several classes, contrary to standard single-label problems

where objects belong to only one class. Thus, in multi-label learning, the class label

of each instance can be considered as a veristic variable. In this work, we propose

a veristic k-nearest neighbor rule(k-NN) for multi-label learning. This method uses

the approximate reasoning framework based on veristic variables for representing and

combining knowledge about an unseen instance and predicting the corresponding set

of labels. The labeling of each instance is represented by two distributions: a verity

distribution that provides positive information about the labeling of this instance, and

a rebuff distribution that represents negative informations about the possible classes.

Given an unseen instance, each neighbor provides positive and negative information

about the label set of this object according to the distance between the two patterns.

The verity and rebuff distributions induced by each neighboring instance are discounted

depending on the distance and are combined in order to determine the labeling of the

instance to be classified.

This chapter is organized as follow. Section 3.2 presents the background on fuzzy

sets and possibility theory. Elementary definitions and properties of fuzzy set and
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possibility theories will be first recalled. The approximate reasoning framework for

veristic variables will then be presented in Section 3.3. The representation of knowledge

about veristic variables, verity and rebuff distributions, as well as the combination and

discounting of veristic information will be addressed in this section. In Section 3.4,

the task of multi-label learning in the framework of veristic variables will be studied.

We will first discuss the labeling issue of multi-labeled instance in this framework, and

the veristic-based method for multi-label classification will then be introduced. Finally,

Section 3.5 will conclude this chapter.

3.2 Background

3.2.1 Fuzzy sets

In this section, we recall the basics of the theory of fuzzy sets. More details can be

found in [123] and [31].

Let A be a (fuzzy or crisp) subset of the universe of discourse Ω. If A is a crisp set,

each element ω in Ω is either a full member of A or not. In contrast, if A represents a

fuzzy set, full membership is not necessary, and an element ω in Ω can be a member to

some degree.

Given a fuzzy set A defined over Ω, a real value in the interval [0, 1], represented by

A(ω), is associated to each element ω ∈ Ω. A(ω) represents the degree of membership

of ω in A, and the function ω −→ A(ω) (sometimes denoted as µA) is referred to as

the membership function of fuzzy set A. The concept of fuzzy set thus generalizes that

of crisp set. In fact, the degree of membership of each element ω ∈ Ω to a crisp set A

of Ω takes values in {0, 1} instead of the unit interval. Hereafter, we will review some

definitions and properties concerning fuzzy sets.

3.2.1.1 Basic definitions

Two fuzzy subsets A and B are equal, if and only if the degree of membership is the

same for each ω in Ω:

A = B ⇔ A(ω) = B(ω), ∀ ω ∈ Ω.
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A is a subset of B if and only if, for all ω in Ω, the degree of membership of ω in A is

less than the degree of membership of ω in B:

A ⊆ B ⇔ A(ω) ≤ B(ω), ∀ ω ∈ Ω.

The complement of A, denoted by A, is a fuzzy set of Ω for which the degree of mem-

bership of each element ω ∈ Ω is defined as:

A(ω) = 1 − A(ω), ∀ ω ∈ Ω.

The cardinality |.| of a fuzzy set A may be defined as:

|A| =
∑

ω∈Ω

A(ω).

The α-cut of A, denoted by Aα, with α ∈ [0, 1], is defined as follows:

Aα = {ω ∈ Ω|A(ω) ≥ α}

The empty set ∅ can be viewed as a fuzzy set to which the membership degree of each

element in Ω is equal to 0.

The union of two fuzzy sets A and B defined over Ω is a fuzzy set C of Ω written as

C = A ∪ B and its is defined by:

C(ω) = max(A(ω), B(ω)), ∀ ω ∈ Ω.

Let C represent now the intersection of A and B, denoted as C = A ∩ B. C is a fuzzy

set of Ω defined by:

C(ω) = min(A(ω), B(ω)), ∀ ω ∈ Ω.

3.2.1.2 Properties of fuzzy sets

The fuzzy set operations defined above have many properties in common with their crisp

counterparts, such as commutativity, associativity, distributivity, transitivity, idempo-

tency, De Morgan’s laws, etc. More precisely:

• Commutativity:

A ∪ B = B ∪ A,

A ∩ B = B ∩ A.
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• Associativity:

A ∪ (B ∪ C) = (A ∪ B) ∪ C,

A ∩ (B ∩ C) = (A ∩ B) ∩ C.

• Distributivity:

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

• Idempotency:

A ∪ A = A,

A ∩ A = A.

• Identity:

A ∪ ∅ = A,

A ∩ Ω = A.

• Absorption:

A ∪ (A ∩ B) = A,

A ∩ (A ∪ B) = A.

• Involution:

A = A.

• De Morgan’s laws:

A ∪ B = A ∩ B,

A ∩ B = A ∪ B.

3.2.2 Possibility theory

Possibility theory was first introduced by Zadeh based on fuzzy set theory [124]. Before

presenting an overview about this theory, we have to note that it includes two variants:

quantitative (numerical) and qualitative. These two variants mainly differ by the condi-

tioning operation [35]. This section is devoted to a review about quantitative possibility

theory. In the following, it will simply be referred to as possibility theory.
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3.2.2.1 Possibility distribution

Let v denote a possibilistic variable taking one and only one value in Ω. For example,

Ω is a finite set of classes, and v is the class label of an instance to classify. A possibility

distribution π on Ω is a mapping from Ω to the unit interval [0, 1]:

π : Ω −→ [0, 1].

It represents a piece of knowledge about v. The identity π(ω) = 0 means that ω ∈ Ω is

an impossible value of v and it is totally excluded, while π(ω) = 1 just means that v = ω

is normal and unsurprising and is one of the most possible values of v. A possibility

distribution on Ω can be regarded as the membership function of a fuzzy subset of

Ω [124]. π is said to be normalized if π(ω) = 1 for at least one element ω in Ω, in which

case Ω is considered to be exhaustive [33].

Complete knowledge about v is represented by a possibility distribution π such that

π(ω0) = 1 for some element ω0 ∈ Ω, and π(ω) = 0 for ω 6= ω0. The situation of complete

ignorance about the true value of v is represented by a possibility distribution π such

that π(ω) = 1 for each element ω in Ω. Given two possibility distribution π and π′

representing two pieces of knowledge about v, we say that π′ is more informative or

more specific than π if, for each element ω ∈ Ω, π′(ω) ≤ π(ω) [118]. The set of possible

values of v according to π′ is then more restricted than the set of possible values of v

according to π [29]. The possibility distribution π such that π(ω) = 1 for all ω ∈ Ω, is

the greatest element of this partial ordering relation.

3.2.2.2 Possibility and Necessity measures

Two measures on Ω can be derived from π. They are called possibility and necessity

measures and they are denoted by Π and N , respectively. Formally, the possibility

measure is the mapping from the power set of Ω to the interval [0,1], defined by:

Π : 2Ω −→ [0, 1],

Π(A) = sup
ω∈A

π(ω), ∀A ⊆ Ω

The necessity measure is defined as follows:

N : 2Ω −→ [0, 1],
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N(A) = 1 − Π(A) = inf
ω 6∈A

(1 − π(ω)), ∀A ⊆ Ω

The number Π(A) represents the degree of possibility of the proposition (or event)

“v ∈ A ⊆ Ω”, while N(A) represents the degree of necessity (certainty) of that propo-

sition. In other words, Π(A) measures to what extent at least one element in A is

possible, and N(A) measures to what extent no element not belonging to A is possible.

Possibility measures satisfy the “maxitivity” property, i.e, the possibility degree of a

disjunction of events is the maximum of the possibility degrees of these events:

Π

(
n⋃

i=1

Ai

)
= max(Π(Ai), i = 1, . . . , n).

Dually, the necessity degree of a conjunction of events is the minimum of the necessity

degrees of the events:

N

(
n⋂

i=1

Ai

)
= min(N(Ai), i = 1, . . . , n).

3.2.2.3 Combination of possibility distributions

Given different possibility distributions πi, (i = 1, . . . , n) representing knowledge about

the value of v, there exist different combination rules to aggregate these distributions [5].

The basic combination rules are the conjunctive and disjunction ones. Let πconj and

πdisj be the possibility distributions obtained by combining the πi’s, i = 1, . . . , n, con-

junctively and disjunctively, respectively. We have:

πconj(ω) = min(πi(ω), i = 1, . . . , n), ∀ ω ∈ Ω,

and,

πdisj(ω) = max(πi(ω), i = 1, . . . , n), ∀ ω ∈ Ω.

In general, the conjunctive rule is used when all pieces of knowledge are considered to

be reliable, while the disjunctive rule corresponds to a weaker reliability hypothesis. If

for all ω ∈ Ω, πconj(ω) is much smaller than 1, we can infer that at least one of the

combined pieces of knowledge is likely to be wrong, and the disjunctive rule may be

more adequate to that case.
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3.2.2.4 Comparison with Probability Theory

In Probability Theory, probability measures are self-dual in the sense that Pr(A) =

1−Pr(A). In contrast, in possibility theory, necessity measures are the dual of possibility

measures, as we have N(A) = 1−Π(A). Given a possibility measure Π and a probability

measure Pr, Pr is said to be covered by Π if:

Pr(A) ≤ Π(A), ∀A ⊆ Ω.

This relation means that what is possible may not be probable, while what is impossible

is also improbable [36].

Notions of conditioning and independence have been proposed for possibility mea-

sures. By analogy with probability theory, we may define:

Π(A|B) =
Π(A ∩ B)

Π(B)
,

and

N(A|B) = 1 − Π(A|B),

for each A ⊆ Ω and each B ⊆ Ω such that Π(B) 6= 0 [3].

3.2.2.5 Certainty-qualified knowledge

Usually, pieces of knowledge about the true value of v are expressed in a way that

some trust qualification is attached. Certainty-qualified pieces of knowledge about the

true value of v are of the form “v is A is α − certain”, where α ∈ [0, 1] represents the

degree of certainty of the proposition “v is A”. Note that is is a relation to represent

knowledge about possibilistic variables [34]. If A is a crisp subset of Ω, such piece of

certainty-qualified knowledge means that it is certain at least at the degree α that the

value of v is in A, or, equivalently, that any value outside A is at most possible to the

complementary degree 1−α [33]. A possibility distribution π on Ω can be induced from

such piece of knowledge verifying the following constraints:

π(ω) ≤ max(A(ω), 1 − α), for all ω ∈ Ω,

and we have,

N(A) ≥ α.
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The principle of minimum specificity results in attributing possibility 1 to values in A,

and 1 − α to values not in A, and to assign α as certainty degree to the proposition

“v is A”. When α increases from 0 to 1, our knowledge evolves from complete ignorance

about v to complete certainty in “v is A”.

In the general case of fuzzy subsets of Ω, the piece of knowledge “v is A is α−certain”

leads to “v is B” such that, the membership function of B can be defined as [34]:

B(ω) = max(A(ω), 1 − α), for all ω ∈ Ω.

3.3 Veristic variables

In [119], Yager develops a theory for the expression within the language of approximate

reasoning of statements involving veristic variables, i.e., variables taking as values fuzzy

subsets of the universe of discourse.

3.3.1 Veristic statements

Let Ω denote a universe of discourse, and V a variable taking zero, one or several values

in Ω, i.e, V takes a single value in the set IΩ of fuzzy subsets of Ω. Such a variable is

said to be veristic. Let V0 ∈ IΩ denote the unknown true value of V . Giving a fuzzy

set A ∈ IΩ, the following statements can be made to associate variable V with A [119]:

1. V isv A, meaning that A ⊆ V0;

2. V isv(n) A, meaning that V0 ⊆ A;

3. V isv(c) A, meaning that V0 = A;

4. V isv(c, n) A, meaning that V0 = A.

In the above expressions, the relation isv has two parameters: c for closed and n for

negative. The following example gives an illustration of these notations.

Example 1 For a multi-label classification problem, assume that instances are songs

and classes are emotions generated by these songs, as in the emotion dataset used in the

experiments reported in Chapter 5. Upon hearing a song, more than one emotion can

be generated at the same time. Let V be a variable that corresponds to the emotions

evoked by a given song. Let A be the set containing the emotions “sad” and “quiet”.
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• V isv A, means that the song evokes sadness and quietness but it can also generate

other emotions such as anger, calm, surprise, etc. This statement represents an

open positive (or affirmative) information;

• V isv(n) A, means that the song evokes neither sadness nor quietness. We have

no idea about the remaining emotions. This is an open negative information;

• V isv(c) A, means that the song only evokes sadness and quietness, no more

emotions being generated by this song. This is a closed (or exclusive) positive

information;

• V isv(c, n) A, means that the song only does not evoke sadness and quietness.

This is a closed negative information.

As remarked by Yager, any piece of knowledge about a veristic variable V of the

form V isv(.) A, can be interpreted by specifying a crisp or fuzzy set W of fuzzy subsets

of Ω, such that W contains the possible values of V consistent with that knowledge.

For each B ∈ IΩ, W (B) is the degree of membership of B in W . The most simple

representation is to consider W as a crisp subset of IΩ, and thus, for the statement

V isv A, W (B) = 1 if B ⊇ A, and W (B) = 0 if B 6⊇ A [119]. Hereafter, we give the

crisp definition of W for the four types of veristic statement:

1. V isv A → W = {B ∈ IΩ|B ⊇ A};

2. V isv(n) A → W = {B ∈ IΩ|B ⊆ A};

3. V isv(c) A → W = {A};

4. V isv(c, n) A → W = {A}.

3.3.2 Verity and Rebuff distributions

From the veristic statement V isv(.) A, two functions from Ω to [0, 1] associated to

the corresponding set W can be induced, allowing us to provide information about the

different elements of the frame of discourse Ω. These functions, called the verity and

rebuff distributions, are defined as follow:

Ver(ω) = min
B∈IΩ

max(B(ω), W (B)),
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and,

Rebuff(ω) = 1 − max
B∈IΩ

min(B(ω), W (B)),

for each ω ∈ Ω.

In the special case in which W is a crisp subset, the definitions of verity and rebuff

distributions are reduced to:

Ver(ω) = min
B∈W

B(ω),

and,

Rebuff(ω) = 1 − max
B∈W

B(ω) = min
B∈W

B(ω),

for each ω ∈ Ω.

In the following, we will only consider the case where W is a crisp set of fuzzy subsets

of Ω. Ver(ω) is then the minimal membership degree of ω in any subset in W , while

Rebuff(ω) is the minimal membership degree of ω in the complement of any subset in

W . Ver(ω) can thus be viewed as the minimal support for ω being one of the values

taken by V , while, Rebuff(ω) can be interpreted as the minimal support for ω not being

one of the values taken by V .

In [120], a possibility distribution Poss has been also introduced. For each element

ω in Ω, Poss(ω) represents the maximal support for ω being one of the values taken by

V . Poss(ω) is the complement of Rebuff(ω):

Poss(ω) = 1 − Rebuff(ω) = max
B∈W

B(ω), ∀ ω ∈ Ω.

We can remark that Ver(ω) represents a lower bound on the truth of the proposition

“ω is one of the solutions of V ”, while Poss(ω) represents an upper bound on the truth

of that proposition. We can deduce that Ver(ω) ≤ Poss(ω), from which it follows that

Ver(ω) + Rebuff(ω) ≤ 1, ∀ ω ∈ Ω. (3.1)

The state of total ignorance about a veristic variable V is represented by verity and

rebuff distributions such as: Ver(ω) = 0 and Rebuff(ω) = 0, for all ω ∈ Ω. Complete

knowledge about V can be represented as follows: max(Ver(ω), Rebuff(ω)) = 1 and

min(Ver(ω), Rebuff(ω)) = 0, for each element ω.

The verity and rebuff distributions have the following expressions for the different

veristic statement types:
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1. V isv A ⇒ Ver(ω) = A(ω) and Rebuff(ω) = 0, ∀ω ∈ Ω;

2. V isv(n) A ⇒ Ver(ω) = 0 and Rebuff(ω) = A(ω), ∀ω ∈ Ω;

3. V isv(c) A ⇒ Ver(ω) = A(ω) and Rebuff(ω) = 1 − A(ω), ∀ω ∈ Ω;

4. V isv(c, n) A ⇒ Ver(ω) = 1 − A(ω) and Rebuff(ω) = A(ω), ∀ω ∈ Ω.

For instance, giving the open veristic statement V isv A, the set W of fuzzy subsets of

Ω representing the possible solutions of V is W = {B ∈ IΩ|B ⊇ A}. For any subset

B in W , we have B(ω) ≥ A(ω), ∀ ω ∈ Ω. Thus, for each element ω ∈ Ω, the minimal

degree of membership of ω to a fuzzy subset in W is A(ω), and the maximal degree of

membership is 1 because Ω belongs to W as we have Ω ⊇ A and Ω(ω) = 1. Therefore,

the verity measure Ver(ω) of each element ω ∈ Ω is min
B∈W

B(ω) = A(ω), and the rebuff

measure Rebuff(ω) of ω is 1 − max
B∈W

B(ω) = 0.

In comparison with possibility theory, Poss defines a possibility measure, while Ver

and Rebuff define necessity measures. The difference is that Ver and Rebuff are not

defined on subsets of Ω but, individually, on the elements of Ω.

In the following, we will pay special attention to open veristic statements, which

will be more relevant for our purpose.

3.3.3 Combination of veristic information

Given two pieces of knowledge about a veristic variable V , the conjunctive combination

of the corresponding veristic statements is defined as follows:

V isv A1 and V isv A2 ≡ V isv A1 ∪ A2,

V isv(n) A1 and V isv(n) A2 ≡ V isv(n) A1 ∪ A2.

The disjunctive combination of veristic statements is defined by:

V isv A1 or V isv A2 ≡ V isv A1 ∩ A2,

V isv(n) A1 or V isv(n) A2 ≡ V isv(n) A1 ∩ A2.

We notice the unexpected association of union and intersection with the conjunctive

and disjunctive combination, respectively. Usually, as for example the Dempster’s rule

of combination in belief function theory [93], the conjunctive combination of different
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pieces of knowledge is associated with intersection and not with union as it is the case

here.

Example 2 As in Example 1, let V be a variable representing the emotions evoked by a

given song. A first expert tells us that the song evokes emotions amazed and happy. For

a second expert, the evoked emotions are amazed and angry. If we trust both experts,

the conjunctive combination of the two pieces of knowledge leads to the conclusion that

the emotions evoked by the song are amazed, happy and angry. In contrast, if only one

of the two experts is reliable, the disjunctive combination is recommended. Thus, the

emotion that corresponds to the song is amazed.

In this chapter, we are interested in the combination of veristic knowledge modeled

by verity and rebuff distributions. Let Ver1 and Rebuff1 be the verity and rebuff dis-

tributions that correspond to the first source of information about the veristic variable

V , and let Ver2 and Rebuff2 be the corresponding distributions of the second source

of information about V . Let Ver and Rebuff denote the resulted distributions after

combination.

The disjunctive combination of the informations given by the two sources of knowl-

edge is defined as follows:

Ver(ω) = (Ver1 or Ver2)(ω) = min(Ver1(ω), Ver2(ω)),

and,

Rebuff(ω) = (Rebuff1 or Rebuff2)(ω) = min(Rebuff1(ω), Rebuff2(ω)),

for each ω ∈ Ω.

The conjunctive combination of the informations given by the two sources of knowl-

edge is defined as follows:

Ver(ω) = (Ver1 and Ver2)(ω) = max(Ver1(ω), Ver2(ω)),

and,

Rebuff(ω) = (Rebuff1 and Rebuff2)(ω) = max(Rebuff1(ω), Rebuff2(ω)),

for each ω ∈ Ω.
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We have to be careful when using the conjunctive combination, because we risk to

violate the assumption (3.1) if there is a conflict between the two pieces of information

to combine. In fact, if for an element ω ∈ Ω, Ver(ω)+Rebuff(ω) > 1, which means that

the two sources of knowledge are conflicting and cannot be combined. This risk does

not exist when combining the information disjunctively.

Note that the conjunctive (and) and disjunctive (or) combination rules are com-

mutative and associative.

We now propose another combination rule that will be denoted by and/or and that

is defined as:

Ver(ω) = (Ver1 and/or Ver2)(ω)

=

{
(Ver1 or Ver2)(ω) if Ver(ω) + Rebuff(ω) > 1

(Ver1 and Ver2)(ω) otherwise,

and,

Rebuff(ω) = (Rebuff1 and/or Rebuff2)(ω)

=

{
(Rebuff1 or Rebuff2)(ω) if Ver(ω) + Rebuff(ω) > 1

(Rebuff1 and Rebuff2)(ω) otherwise,

for each ω ∈ Ω.

The proposed hybrid rule of combination allows us to combine different informations

conjunctively while avoiding the risk of having conflict. This rule is commutative but

not associative. The hybrid rule is inspired from the Dubois and Prade combination

rule [32] in the framework of belief function theory [95].

3.3.4 Discounting

Let α ∈ [0, 1] be the degree of certainty or reliability associated with the given statement

about a veristic variable V . The equality α = 1 implies that the given information is

fully reliable, while for α = 0, the knowledge will be discarded. We suppose that the

given knowledge is represented by verity and rebuff distributions: Ver and Rebuff. By

taking the parameter α into account, the discounted distributions denoted by Verα and

Rebuffα are defined as:

Verα(ω) = min(Ver(ω), α),
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and,

Rebuffα(ω) = min(Rebuff(ω), α),

for each ω ∈ Ω.

The discounted possibility distribution Possα is:

Possα(ω) = max(1 − Rebuff(ω), 1 − α).

These equations mean that if the source of information is reliable at degree α, the

corresponding verity and rebuff measures are at most equal to α, and the possibility

measures are at least equal to 1 − α. The discounting introduced here is very close to

the discounting of certainty-qualified knowledge for possibilistic variables explained in

Subsection 3.2.2.5.

Example 3 Let V be the label set of a giving song. An expert tell us that this

song certainly evoke happiness and certainly does not evoke sadness. In the frame-

work of veristic variables, this knowledge is represented as follow: Ver(happiness) = 1,

Rebuff(sadness) = 1, and the verity and rebuff values of the remaining emotions are

equal to 0. If we have a 80% (α = 0.8) confidence in the opinion of the expert,

the new verity and rebuff distributions after discounting are: Verα(happiness) = 0.8,

Rebuffα(sadness) = 0.8, and the verity and rebuff values of the remaining emotions

remain equal to 0.

3.4 Multi-label learning based on veristic variable frame-

work

In this section, we propose a k-NN rule for multi-label learning using the theory of

veristic variables presented in Section 3.3. k-NN rules, discussed in Section 2.3, are

widely used in classification problems due to their simplicity and their competitiveness

with other sophisticated learning methods. The proposed algorithm is called VERkNN

for Veristic k-Nearest Neighbor. Two major issues are related to our proposed method.

The first one concerns the influence of the nearest neighbors on the classification of an

unseen instance x. Each neighbor represents a piece of knowledge about the classifica-

tion result of x where instead of giving equal importance to all neighbors as in the voting

k-NN rule, a weight or a degree of certainty is assigned to each neighbor according to

the distance to x [60][133]. The second issue concerns the class membership of training
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data. In the framework of veristic variables, the knowledge about the labeling of each

instance can be represented by a verity distribution representing positive information,

and a rebuff distribution representing negative information.

The issue of the labeling of training instances will be discussed in Section 3.4.1. The

VERkNN algorithm will be then introduced in Section 3.4.2.

3.4.1 Labeling of training data

Let X denote the domain of instances and Y = {ω1, ω2, . . . , ωQ} the finite set of labels.

Usually, the available datasets to train multi-label classifiers are constructed in such a

way that each instance xi is perfectly labeled, i.e., xi is associated with a crisp subset

Yi of Y. However, such situations are not always possible and feasible at a reasonable

cost, and may be especially questioned when training data are labeled by one or several

experts. In practice, due to lack of confidence and absence of ground truth, an expert

may be undecided about the labeling of a given instance. He may then express posi-

tive information about the labels that should be attributed to the given instance, and

negative information about the labels that should not be attributed to that instance.

Thus, the expert will be unable to assign unambiguously a crisp label set to each in-

stance (see Example 4). The veristic variable framework seems adequate to represent

and manipulate such information.

Example 4 Let Y = {ω1, ω2, ω3, ω4, ω5} be the set of classes, and let x be an instance

labeled by an expert. The expert tells us that x certainly belongs to class ω1 and

certainly does not belong to class ω2. He is sure at 60% that x should also be assigned

to class ω3, and with a certainty equal to 75% that x should not be assigned to class ω4.

The expert is totally undecided about the membership of x to class ω5. The labeling

of x can be represented by the following verity and rebuff vectors: Ver = (1, 0, 0.6, 0, 0)

and Rebuff = (0, 1, 0, 0.75, 0).

Let D = {(x1, Y1), . . . , (xn, Yn)} be a perfectly labeled training dataset, where xi ∈ X

and Yi ⊆ Y. We present hereafter two approaches, a direct approach and a fuzzy one,

which allow us to label training instances by verity and rebuff measures instead of crisp

sets of labels.
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3.4.1.1 Direct approach

For each precisely labeled training object (xi, Yi), the corresponding veristic object

(xi, Veri, Rebuffi) can be derived as follows:

Veri(ω) =

{
1 if ω ∈ Yi

0 otherwise

= Yi(ω)

and,

Rebuffi(ω) =

{
1 if ω 6∈ Yi

0 otherwise

= 1 − Yi(ω)

for each ω ∈ Y.

Note that, these definitions extend directly to the case where Yi is a fuzzy subset of

Y.

3.4.1.2 Fuzzy approach

For each training instance xi, verity and rebuff distributions can also be determined

by taking into account the neighborhood of this instance. Let k′ denote the number of

neighbors to be considered in order to determine Veri and Rebuffi. Let N k′

xi
denote the

k′ nearest neighbors of xi in the training dataset D. For a class ω ∈ Y, let pi = (pi
0, p

i
1)

be the probability distribution such as pi
1 (respectively, pi

0) denote the proportion of

instances in N k′

xi
which belong (respectively, do not belong) to class ω. We have:

pi
1 =

|{xj ∈ N k′

xi
| ω ∈ Yj}|

k′
,

pi
0 =

|{xj ∈ N k′

xi
| ω 6∈ Yj}|

k′
,

and,

pi
1 + pi

0 = 1.

In accordance with the possibilistic interpretation of a veristic variable, the probability

distribution pi = (pi
0, p

i
1) can be transformed into a possibility distribution πi = (πi

0, π
i
1)

using a probability-possibility transformation. πi
0 is the possibility of the proposition “xi
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does not belong to ω”, and πi
1 the possibility of “xi belongs to ω”. Several probability-

possibility transformations exist in the literature [61][30]. In this work, the transfor-

mation introduced in [36] will be used. In the following, we recall the principle of this

transformation that will be referred here to as Prob/Poss-transformation.

The Prob/Poss-transformation Let p = (p1, p2, . . . , pn) be a probability distribu-

tion such as p1 ≥ p2 ≥ . . . ≥ pn, and let π = (π1, π2, . . . , πn) the corresponding

possibility distribution. Using the Prob/Poss-transformation, π is the solution that

verifies the following constraints:

• Pr(H) ≤ Π(H), for each hypothesis or proposition H, where Pr (respectively, Π)

is the probability (respectively, possibility) measure derived from p (respectively,

π);

• p and π are order-equivalent, i.e., if pq ≥ pr, then πq ≥ πr;

• π is maximally specific (or informative), i.e. for any other solution π′, we have

πq ≤ π′
q, ∀ q ∈ {1, . . . , n}.

The possibility distribution π satisfying these requirements is unique and it is derived

from p as follows [36]:

π1 = 1,

and,

πq =

{∑n
r=q pr if pq < pq−1,

πq−1 otherwise.

Based on the Prob/Poss-transformation, πi
0 and πi

1 are computed as follow:






If pi
1 > pi

0, πi
1 = 1 and πi

0 = pi
0;

If pi
1 < pi

0, πi
1 = pi

1 and πi
0 = 1;

If pi
1 = pi

0, πi
1 = 1 and πi

0 = 1.

Thus, for the class ω ∈ Y, the verity and rebuff values for the training instance xi are

defined as: {
Veri(ω) = 1 − πi

0,

Rebuffi(ω) = 1 − πi
1.
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We can explain these relations by the fact that, in the context of possibility theory, the

verity and rebuff distributions define necessity measures. As shown in Section 3.2.2, the

necessity N(H) of a proposition H is related to the possibility Π(H) of this proposition

by the following equation:

N(H) = 1 − Π(H).

For the class ω ∈ Y, Veri(ω) represents the necessity of the proposition H1 “xi belongs

to ω”, and Rebuffi(ω) represents the necessity of the proposition H0 “xi does not belong

to ω”. Thus, Veri(ω) is the complement of the possibility πi
0 of H0, and Rebuffi(ω) the

complement of the possibility πi
1 of H1.

3.4.2 Proposed method: VERkNN

The VERkNN method builds a multi-label classifier H : X −→ 2Y and a scoring-

function f : X × Y → R from a training dataset D that is assumed to be of the form

D = {(x1, Ver1, Rebuff1), . . . , (xn, Vern, Rebuffn)}, where xi ∈ X , and the corresponding

labeling is represented by the two distributions Veri and Rebuffi that define mappings

from the set Y to the interval [0, 1].

Let x be an unseen instance for which we search to estimate the set of labels. The

classification of x is performed by exploiting the information of its k nearest neighbors

in D. The proposed method performs as follows:

1. Search for the k nearest neighbors of x in D, represented by N k
x , based on a certain

distance function d(., .), usually the Euclidean one.

2. Each element (xi, Veri, Rebuffi) in N k
x represents a piece of knowledge about the

labeling of x. The influence of xi on the classification of x depends on the distance

between x and xi. If xi is close to x according to the distance function d(., .),

then one will be inclined to believe that both instances have the same labeling.

Let αi represents the degree of certainty associated with the knowledge given by

(xi, Veri, Rebuffi) on the labeling of x. If d(x,xi) decreases and tends to 0, αi

increases and tends to 1. In our method, as in [20], the value of αi is determined

using the following equation:

αi = α0 exp(−γd(x,xi)), (3.2)
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with 0 < α0 < 1 and γ > 0. Parameter α0 is fixed at a value close to 1 such as

α0 = 0.95, whereas γ should depend on the scaling of distances and can be either

fixed heuristically or optimized [20].

3. The verity and rebuff distributions of each element (xi, Veri, Rebuffi) in N k
x are

updated using the corresponding parameter αi. That leads to the discounted piece

of knowledge (xi, Verαi

i , Rebuffαi

i ).

4. Combine the verity distributions and the rebuff distributions of the k nearest

neighbors of x. Let Ver and Rebuff represent the aggregated verity and rebuff

distributions, respectively. We have:

Ver = Verα1

1 ∗ . . . ∗ Verαk

k ,

and

Rebuff = Rebuffα1

1 ∗ . . . ∗ Rebuffαk

k ,

where ∗ denote the combination operator: and, or, or and/or. It seems preferable

to use the hybrid or the disjunctive rules of combination in order to avoid conflict.

Note that, when using the hybrid rule for combination, we have to fix an order

to combine the informations about the labeling of x coming from its different

neighbors, as the hybrid rule is not associative. The combination can be done by

going from the nearest neighbor to the furthest one, by going in the reverse order,

or by using a random order.

5. The output of VERkNN is determined as follow:

H(x) = {ω ∈ Y| Ver(ω) > Rebuff(ω)},

and,

f(x, ω) = Ver(ω).

3.5 Conclusion

In this chapter, we have presented a k-nearest neighbor rule for multi-label learning

using the framework of veristic variables. This framework allows us to represent dif-

ferent pieces of knowledge about a veristic variable by different types of statements
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and distributions, and combine them conjunctively or disjunctively, in order to make

decision about the values taken by this variable. By considering the class label of each

instance as a veristic variable, we have used this theory to build a multi-label classi-

fication method called VERkNN. Each unseen instance is classified on the basis of its

k nearest neighbors. The labeling of each training instance is represented by a verity

distribution representing positive information, and a rebuff distribution representing

negative information. The verity and rebuff distributions are discounted depending on

the distance to the instance to classify, and are then combined in order to determine the

classes to assigned to the unseen instance. This method is proposed to solve multi-label

classification problems where training datasets are labeled by one or several experts in

the absence of ground truth, and the opinions of experts about the class label of training

data are represented by verity and rebuff vectors. It will be evaluated with the other

method proposed in this thesis in Chapter 4.
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Set-valued evidence formalism and

application to multi-label learning

Summary

In this chapter, we propose an evidence formalism for representing and handling partial

knowledge about set-valued variables, based on the Dempster-shafer theory of belief

functions. Set-valued variables are variables that can take more than one value at the

same time, such as the class label of a multi-labeled instance. Given a set-valued variable

defined over a universe Ω, the straightforward approach is to consider it as a single-

valued variable taking one and only one value in 2Ω. To represent uncertainty about

this variable, we have to define mass functions on the frame 22Ω

, which is usually not

feasible because of the double-exponential complexity involved. Our formalism consists

in defining a restricted family of subsets of 2Ω which is closed under intersection and

has a lattice structure. Using recent results about belief functions on lattices, we show

that most notions from Dempster-Shafer theory can be transposed to that particular

lattice, making it possible to express rich knowledge about set-valued variables with

only limited additional complexity as compared to the single-valued case. Based on the

proposed formalism, we introduce an evidential multi-label classification method, where

each instance is classified on the basis of its k nearest neighbors from a given training

set. This method is proposed to solve multi-label classification problems where training

data are imprecisely labeled.

69



Chapter 4 : Set-valued evidence formalism and application to multi-label learning

Résumé

Dans ce chapitre, nous proposons un formalisme de croyance pour la représentation

et la manipulation de connaissances partielles concernant des variables multi-valuées à

l’aide de la théorie des fonctions de croyance de Dempster-Shafer. Les variables multi-

valuées sont des variables qui peuvent avoir plusieurs valeurs en même temps, comme

par exemple, l’étiquette d’un individu dans un problème d’apprentissage multi-label.

Étant donnée une variable multi-valuée définie sur un univers Ω, l’approche directe et

intuitive consiste à considérer cette variable comme étant une variable mono-valuée pre-

nant une et une seule valeur dans l’ensemble 2Ω. Une connaissance partielle à propos

de cette variable sera représentée par une fonction de masse définie sur l’ensemble 22Ω

.

Cette approche directe nous amène à travailler dans un espace de très grande dimen-

sion, ce qui n’est pas toujours faisable vue la double complexité exponentielle impliquée.

L’idée de base du formalisme de croyance que nous proposons est de ne pas considérer

l’ensemble 22Ω

tout entier, mais juste un sous-ensemble clos par intersection et ayant

une structure de treillis. En utilisant des résultats récents concernant la définition des

fonctions de croyance sur des treillis, nous montrons que la plupart des notions de base

de la théorie de Dempster-shafer peuvent être transposées à ce sous-ensemble particu-

lier, permettant d’exprimer suffisamment de connaissances partielles sur des variables

multi-valuées avec seulement une légère augmentation de complexité par rapport au

cas de manipulation de variables mono-valuées. Nous montrons aussi l’application de

ce formalisme conjointement avec l’approche des k plus proches voisins pour l’appren-

tissage multi-label. Cette méthode est destinée pour la classification des individus avec

des étiquettes imprécises.
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4.1 Introduction

In this chapter, we consider the problem of representing partial knowledge about a set-

valued variable V with domain Ω using the Dempster-Shafer theory of belief functions

[93][99]. This theory is one of the principle techniques for representing and handling

uncertainty in decision making.

A straightforward approach to the above problem is, of course, to consider a set-

valued variable V on Ω as a single-valued variable on the power set Θ = 2Ω. However,

this approach often implies working in a space of very high cardinality. If, as done in

this chapter, we assume Ω to be finite, then the size of Θ is 2|Ω|. If we want to express

imprecise information about V , we will have to manipulate subsets of Θ. As there

are 22|Ω|
of these subsets, this approach rapidly becomes intractable as the size of Ω

increases.

Our approach will be based on a simple representation of a class C(Ω) of subsets of

Θ = 2Ω which, endowed with set inclusion, has a lattice structure. Using recent results

about belief functions on lattices [49], we will be able to generalize most concepts of

Dempster-Shafer theory (including the canonical decompositions and the cautious rule

[21]) in this setting. This formalism will be shown to allow the expression of a wide range

of knowledge about set-valued variables, with only a moderate increase of complexity

(from 2|Ω| to 3|Ω|) as compared to the usual single-valued case.

Originally, the motivation behind this work was to build a multi-label classifier using

the evidence theory in order to handle uncertainties and ambiguities when classifying

unseen instances. The class label of a multi-labeled instance is an example of set-valued

variables. An evidential k-NN rule, called EMLkNN, will be presented in this chapter

using the proposed formalism.

This chapter is organized as follows. Background notions on belief functions in the

classical setting and in general lattices will first be recalled in Sections 4.2 and 4.3,

respectively. Our approach will then be introduced in Section 4.4, and some relation-

ships with previous work will be outlined in Section 4.5. An application to multi-label

classification will be presented in Section 4.6, and Section 4.7 will conclude the chapter.
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4.2 Belief Functions

The basic concepts of the Dempster-Shafer theory of belief functions, as introduced in

[93], will first be summarized in Subsection 4.2.1. The canonical decomposition and the

cautious rule will then be recalled in Subsection 4.2.2.

4.2.1 Basic definitions

Let Ω be a finite set. A mass function on Ω is a function m : 2Ω → [0, 1] such that
∑

A⊆Ω

m(A) = 1.

The subsets A of Ω such that m(A) > 0 are called the focal elements of m. The set of

focal elements of m will be denoted F(m). m is said to be normal if ∅ is not a focal

set, and dogmatic if Ω is not a focal set.

A mass function m is often used to model an agent’s beliefs about a variable V

taking a single but ill-known value ω0 in Ω [99]. The quantity m(A) is then interpreted

as the measure of the belief that is committed exactly to the hypothesis ω0 ∈ A. Full

certainty corresponds to the case where m({ωq}) = 1 for some ωq ∈ Ω, while total

ignorance is modelled by the vacuous mass function verifying m(Ω) = 1.

To each mass function m can be associated an implicability function b and a belief

function bel defined as follows:

b(A) =
∑

B⊆A

m(B) (4.1)

bel(A) =
∑

B⊆A,B 6⊆A

m(B) = b(A) − m(∅). (4.2)

These two functions are equal when m is normal. However, they need to be distinguished

when considering non normal mass functions. Function bel has easier interpretation,

as bel(A) corresponds to a degree of belief in the proposition “The true value ω0 of V

belongs to A”. However, function b has simpler mathematical properties. For instance,

m can be recovered from b as

m(A) =
∑

B⊆A

(−1)|A\B|b(B). (4.3)

Function m is said to be the Möbius transform of b. For every function f from 2Ω to

[0, 1] such that f(Ω) = 1, the following conditions are known to be equivalent [93]:
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1. The Möbius transform m of f is positive and verifies
∑

A⊆Ω m(A) = 1.

2. f is totally monotone, i.e., for any q ≥ 2 and for any family A1, . . . , Aq in 2Ω,

f

(
q⋃

i=1

Ai

)
≥

∑

∅6=I⊆{1,...,q}

(−1)|I|+1f

(
⋂

i∈I

Ai

)
.

Hence, b (and bel) are totally mononotone.

Other functions related to m are the plausibility function, defined as

pl(A) =
∑

B∩A 6=∅

m(B) (4.4)

= 1 − b(A) (4.5)

and the commonality function (or co-Möbius transform of b) defined as

q(A) =
∑

B⊇A

m(B). (4.6)

m can be recovered from q using the following relation:

m(A) =
∑

B⊇A

(−1)|B\A|q(B). (4.7)

Functions m, bel, b, pl and q are thus in one-to-one correspondence and can be regarded

as different facets of the same information.

Two special cases of interest have to be mentioned:

1) If all focal elements of a mass function m are singletons, m is equivalent to a

probability distribution on Ω, and corresponds to probabilistic uncertainty.

2) If the focal elements of m are nested, m is then said to be consonant and it is

equivalent to a possibility distribution π on Ω, defined as: π(ω) = pl({ω}) for all

ω ∈ Ω. In fact, in the case of consonant mass functions, we have:

pl(A ∪ B) = max(pl(A), pl(B)), ∀A, B ⊆ Ω.

The plausibility function pl derived from m is thus a possibility measure Π corre-

sponding to π. Conversely, to each possibility distribution corresponds a unique

consonant mass function [93].
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Let us now assume that we receive two mass functions m1 and m2 from two distinct

sources of information assumed to be reliable. Then m1 and m2 can be combined

using the conjunctive sum (or unnormalized Dempster’s rule of combination) defined as

follows:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C). (4.8)

This rule is commutative, associative, and admits the vacuous mass function as neutral

element. It is conjunctive as the product of m1(B) and m2(C) is transferred to the

intersection of B and C. The quantity (m1 ∩©m2)(∅) is referred to as the degree of

conflict between m1 and m2.

Let q1 ∩©2 denote the commonality function corresponding to m1 ∩©m2. It can be

computed from q1 and q2, the commonality functions associated to m1 and m2, as

follows:

q1 ∩©2(A) = q1(A) · q2(A), ∀A ⊆ Ω. (4.9)

The normalized Dempster’s rule ⊕ [93] is defined as the conjunctive sum followed

by a normalization step:

(m1 ⊕ m2)(A) =

{
0 if A = ∅
(m1 ∩©m2)(A)

1−(m1 ∩©m2)(∅) otherwise.
(4.10)

It is clear that m1 ⊕ m2 is defined as long as (m1 ∩©m2)(∅) < 1.

Alternatives to the conjunctive sum can be constructed by replacing ∩ by any binary

set operation in (4.8). For instance, the choice of the union operator results in the

disjunctive sum [97]:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C). (4.11)

It can be shown that

b1 ∪©2(A) = b1(A) · b2(A), ∀A ⊆ Ω, (4.12)

which is the counterpart of (4.9). Dubois and Prade [28] have also proposed a “hybrid”

rule intermediate between the conjunctive and disjunctive sums, in which the product

m1(B)m2(C) is assigned to B ∩ C whenever B ∩ C 6= ∅, and to B ∪ C otherwise. This

rule is not associative, but it usually provides a good summary of partially conflicting

items of evidence.
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In [99], Smets proposed a two-level model in which items of evidence are quantified

by mass functions and combined at the credal level, while decisions are made at the

pignistic level (from the Latin pignus meaning a bet). Once a decision has to be made,

a mass function m is thus transformed into a pignistic probability distribution p. The

pignistic transformation consists in normalizing m (assuming that m(∅) < 1), and then

distributing each normalized mass m(A)/(1−m(∅)) equally between the atoms ωk ∈ A:

p(ωq) =
∑

{A⊆Ω,ωq∈A}

m(A)

(1 − m(∅))|A|
, ∀ωq ∈ Ω. (4.13)

Other authors have suggested the so-called plausibility transformation for transforming

a mass function into a probability distribution, by normalizing the plausibilities of

singletons [14]. In a decision making context, this approach results in selecting the

most plausible single hypothesis.

4.2.2 Canonical Decompositions and Idempotent Rules

According to Shafer [93], a mass function is said to be simple if it has the following form

m(A) = 1 − w0

m(Ω) = w0,

for some A ⊂ Ω and some w0 ∈ [0, 1]. Let us denote such a mass function as Aw0 . The

vacuous mass function may thus be noted A1 for any A ⊂ Ω. It is clear that

Aw0
∩©Aw′

0 = Aw0w′
0 .

A mass function may be called separable if it can be obtained as the result of the

conjunctive sum of simple mass functions. It can then be written:

m = ∩©A⊂ΩAw(A), (4.14)

with w(A) ∈ [0, 1] for all A ⊂ Ω.

Smets [98] showed that any non dogmatic mass function m can be uniquely expressed

using (4.14), with weights w(A) now in (0, +∞). This is referred to as the conjunctive

canonical decomposition of a mass function. Note that, when w(A) > 1, Aw(A) is no

longer a mass function, but the conjunctive sum can be extended to such “generalized

mass functions” in an obvious way.
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Function w is called the conjunctive weight function associated to m [21]. It is a

new equivalent representation of a non dogmatic mass function, which may be computed

directly from q as follows:

w(A) =
∏

B⊇A

q(B)(−1)|B\A|+1

, ∀A ⊂ Ω, (4.15)

or, taking logarithms,

lnw(A) = −
∑

B⊇A

(−1)|B\A| ln q(B), ∀A ⊂ Ω. (4.16)

In [98] and [21], w(A) was defined for all strict subsets A of Ω. However, function w

can be extended to 2Ω by using (4.15) for A = Ω. We then have:

w(Ω) =
1

q(Ω)
=

1

m(Ω)
=

(
∏

A⊂Ω

w(A)

)−1

and
∏

A⊆Ω

w(A) = 1. (4.17)

With this convention, (4.16) can be extended to all A ⊆ Ω. We notice that (4.16) then

has exactly the same form as (4.7), i.e., the formula for computing lnw from − ln q is

the same as the one for computing m from q. Conversely, ln q can thus be computed

from − lnw using a formula similar to (4.6):

ln q(A) = −
∑

B⊇A

lnw(B), ∀A ⊆ Ω.

We note that function w has a simple property with respect to the conjunctive

sum. Let w1 and w2 be two weight functions, and let w1 ∩©2 denote the result of their

∩©-combination. Then the following relation holds:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊆ Ω. (4.18)

In [21], Denœux introduced the cautious rule, noted ∧©, which is obtained by replacing

the product by the minimum in (4.18), for all A ⊂ Ω:

w1 ∧©2(A) = min (w1(A), w2(A)) . (4.19)
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The value of w1 ∧©2(Ω) can then be determined to satisfy the normalization condition

(4.17). This rule is obviously commutative, associative and idempotent. As shown in

[21], it is suitable for combining conjunctively non independent items of evidence. As

the conjunctive sum, the cautious rule has a normalized version defined by

(m1 ∧©
∗m2)(A) =

{
0 if A = ∅
(m1 ∧©m2)(A)

1−(m1 ∧©m2)(∅) otherwise.
(4.20)

As shown in [21], the conjunctive canonical decomposition also has a disjunctive

counterpart. Any mass function m such that m(∅) > 0 can be decomposed disjunctively

as follows:

m = ∪©A⊃∅Av(A), (4.21)

where Av(A) is a generalized mass function assigning a mass v(A) > 0 (possibly greater

than 1) to ∅, and 1 − v(A) to A, for all A ⊆ Ω, A 6= ∅. This defines a new function v,

called the disjunctive weight function, which can be computed from b as follows:

v(A) =
∏

B⊆A

b(B)(−1)|A\B|+1

, ∀A ⊆ Ω, A 6= ∅, (4.22)

or

ln v(A) = −
∑

B⊆A

(−1)|A\B| ln b(B), ∀A ⊆ Ω, A 6= ∅. (4.23)

As before, the above equations can be extended to A = ∅, which leads to

v(∅) =
1

b(∅)
=

1

m(∅)
=




∏

A 6=∅

v(A)




−1

and
∏

A⊆Ω

v(A) = 1. (4.24)

The disjunctive rule (4.11) has a simple expression as a function of disjunctive weights:

v1 ∪©2(A) = v1(A)v2(A), ∀A ⊆ Ω. (4.25)

By replacing the product by the minimum in the above equation, we can define a new

rule, denoted ∨© and called the bold rule in [21]:

v1 ∨©2(A) = min (v1(A), v2(A)) , A ⊆ Ω, A 6= ∅, (4.26)

and v1 ∨©2(∅) =
(∏

A 6=∅ v1 ∨©2(A)
)−1

. This rule is obviously commutative, associative

and idempotent; it is suitable for combining disjunctively non independent items of

evidence.
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4.3 Extension to General Lattices

As shown by Grabisch [49], the theory of belief function can be extended from the

Boolean lattice (2Ω,⊆) to any lattice, not necessarily Boolean. We will first recall some

basic definitions about lattices in Subsection 4.3.1. Grabisch’s results used in this work

will then be summarized in Subsection 4.3.2.

4.3.1 Lattices

A review of lattice theory can be found in [78]. The following presentation follows [49].

Let L be a finite set and ≤ a partial ordering (i.e., a reflexive, antisymmetric and

transitive relation) on L. The structure (L,≤) is called a poset. We say that (L,≤) is

a lattice if, for every x, y ∈ L, there is a unique greatest lower bound (denoted x ∧ y)

and a unique least upper bound (denoted x ∨ y). Operations ∧ and ∨ are called the

meet and join operations, respectively. For finite lattices, the greatest element (denote

⊤) and the least element (denoted ⊥) always exist. We say that x covers y if x > y

and there is no z such that x > z > y. An element x of L is an atom if it covers only

one element and this element is ⊥. It is a co-atom if it is covered by a single element

and this element is ⊤.

Two lattices L and L′ are isomorphic if there exists a bijective mapping f from L to

L′ such that x ≤ y ⇔ f(x) ≤ f(y). For any poset (L,≤), we can define its dual (L,≥)

by inverting the order relation. A lattice is autodual if it is isomorphic to its dual.

A lattice is distributive if (x∨y)∧z = (x∧z)∨(y∧z) holds for all x, y, z ∈ L. For any

x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such that x∧ x′ = ⊥

and x∨x′ = ⊤. L is said to be complemented if any element has a complement. Boolean

lattices are distributive and complemented lattices. Every Boolean lattice is isomorphic

to (2Ω,⊆) for some set Ω. For the lattice (2Ω,⊆), we have ∧ = ∩, ∨ = ∪, ⊥ = ∅ and

⊤ = Ω.

A closure system C on a set Θ is a family of subsets of Θ satisfying the following

properties:

1. Θ ∈ C.

2. C1, C2 ∈ C ⇒ C1 ∩ C2 ∈ C.
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As shown in [78], any closure system (C,⊆) is a lattice with the following meet and join

operations

C1 ∧ C2 = C1 ∩ C2 (4.27)

C1 ∨ C2 =
⋂

{C ∈ C|C1 ∪ C2 ⊆ C}. (4.28)

4.3.2 Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and let f be a function from L to R.

The Möbius transform of f is the function m : L → R defined as the unique solution of

the equation:

f(x) =
∑

y≤x

m(y), ∀x ∈ L. (4.29)

Function m can be expressed as:

m(x) =
∑

y≤x

µ(y, x)f(y), (4.30)

where µ(x, y) : L2 → R is the Möbius function defined inductively by:

µ(x, y) =






1 if x = y,

−
∑

x≤t<y

µ(x, t) if x < y,

0, otherwise.

(4.31)

The co-Möbius transform of f is defined as:

q(x) =
∑

y≥x

m(y), (4.32)

and m can be recovered from q as:

m(x) =
∑

y≥x

µ(x, y)q(y). (4.33)

Let us now assume that (L,≤) is a lattice. Following Grabisch [49], a function

b : L → [0, 1] will be called an implicability function on L if b(⊤) = 1, and its Möbius

transform is non negative. The corresponding belief function bel can then be defined

as:

bel(x) = b(x) − m(⊥), ∀x ∈ L.
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Note that Grabisch [49] considered only normal belief functions, in which case b = bel.

As shown in [49], any implicability function on (L,≤) is totally monotone, i.e., for any

k ≥ 2 and for any family x1, . . . , xk in L,

b

(
k∨

i=1

xi

)
≥

∑

∅6=I⊆{1,...,k}

(−1)|I|+1b

(
∧

i∈I

xi

)
.

Note, however, that the converse does not hold in general: a totally monotone function

may not have a non negative Möbius transform.

As shown in [49], most results of Dempster-Shafer theory can be transposed in the

general setting of lattices. For instance, the conjunctive sum (4.8) becomes:

(m1 ∩©m2)(x) =
∑

y∧z=x

m1(y)m2(z), ∀x ∈ L, (4.34)

and the following relation between commonality functions still holds:

q1 ∩©2(x) = q1(x) · q2(x), ∀x ∈ L. (4.35)

The normalized Dempster’s rule ⊕ can still be defined, as in the classical case, by

dividing each number (m1 ∩©m2)(x) with x 6= ⊥ by 1 − (m1 ∩©m2)(⊥), provided that

(m1 ∩©m2)(⊥) < 1.

Using a similar line of reasoning as that followed in [49], we can also extend the

disjunctive rule (4.11) as:

(m1 ∪©m2)(x) =
∑

y∨z=x

m1(y)m2(z), ∀x ∈ L, (4.36)

and (4.12) becomes:

b1 ∪©2(x) = b1(x) · b2(x), ∀x ∈ L. (4.37)

Grabisch [49] also extended the conjunctive canonical decomposition of belief func-

tions in the general lattice setting. He showed that any mass function m on L such that

m(⊤) > 0 can be decomposed as

m = ∩©x<⊤xw(x), (4.38)

where xw(x) is a simple mass function assigning 1 − w(x) to V and w(x) to ⊤, with

w(x) ∈ (0, +∞). Clearly, (4.38) generalizes (4.14). As in the classical case, function

w : L \ {⊤} → (0, +∞) can be computed from q using the following equation:

w(x) =
∏

y≥x

q(y)−µ(x,y), ∀x ∈ L, x 6= ⊤, (4.39)
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which generalizes (4.15). Obviously, we still have

w1 ∩©2(x) = w1(x)w2(x), ∀x ∈ L, x 6= ⊤. (4.40)

The existence of the w function also allows us to define the cautious rule in the general

lattice setting as

w1 ∧©2(x) = min (w1(x), w2(x)) , ∀x ∈ L, x 6= ⊤. (4.41)

The normalized cautious rule ∧©∗ is defined as in the classical case, by dividing each

w1 ∧©2(x) for x 6= ⊥ by 1 − w1 ∧©2(⊥), provided that w1 ∧©2(⊥) < 1.

Although Grabisch did not consider the disjunctive canonical decomposition, it can

also be extended in the general lattice setting. The proof parallels that given in [49]

for the conjunctive case. We will only state the main result here. Let xv(x) be a mass

function on L assigning 1 − v(x) to V and v(x) to ⊥, with v(x) ∈ (0, +∞). Any mass

function m on L such that m(⊥) > 0 can be decomposed as

m = ∪©x>⊥xv(x). (4.42)

The function v : L \ {⊥} → (0, +∞) can be computed from b using the following

equation:

v(x) =
∏

y≤x

b(y)−µ(y,x), ∀x ∈ L, x 6= ⊥, (4.43)

which generalizes (4.22). We still have

v1 ∪©2(x) = v1(x)v2(x), ∀x ∈ L, x 6= ⊥, (4.44)

and the existence of the v function allows us to define the bold rule as

v1 ∨©2(x) = min (v1(x), v2(x)) , ∀x ∈ L, x 6= ⊥. (4.45)

The extension of other notions from classical Dempster-Shafer theory may require

additional assumptions on (L,≤). For instance, the definition of the plausibility function

pl as the dual of b using (4.5) can only be extended to autodual lattices [49]. The

definition of pl from (4.4) remains possible in the other cases, but the relationship

between pl and b (or bel) is lost. Also, probability measures cannot be defined on

arbitrary lattices. Consequently, the pignistic probability (4.13) can only be extended

in restricted settings.
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Remark 1 Although our approach relies essentially on Grabisch’s work, we may note

the existence of another line of research that aims at extending results of Probability

Theory to some classes of residuated lattices, which are more general than Boolean

algebra. In particular, there have been many developments about probability measures

on MV-algebra (also called states), see, e.g., [12][63][64][80] as well as in Gödel algebras

[1]. In addition, a recent work on defining belief functions on MV-algebras is introduced

in [65].

4.4 Belief Functions on Set-valued Variables

In this section, the main concepts of Dempster-Shafer theory recalled in Section 4.2

will be extended to the case where we want to describe the uncertainty regarding a set-

valued variable V on a finite domain Ω. The key to this extension will be the definition

of a closure system C(Ω) of Θ = 2Ω, i.e., a set of subsets of Θ that is closed under

intersection. Each element of C(Ω) will be shown to have a simple description as a pair

of disjoint subsets of Ω. Belief functions and associated notions will then be defined

on the lattice (C(Ω),⊆), resulting in a simple framework for uncertain reasoning about

set-valued variables.

4.4.1 The Lattice (C(Ω),⊆)

Let V denote a set-valued variable on a finite domain Ω, and let A0 ⊆ Ω be the unknown

true value of V . We want to describe partial knowledge about that value in the belief

function framework.

As explained in the introduction, the formalism recalled in Section 4.2 could be ap-

plied without modification to this case, by defining a mass function mΘ on Θ. However,

such a brute force approach would require the storage of up to 2|Θ| = 22|Ω|
numbers for

each mass function. Basic operations such as the conjunctive or disjunctive sums would

have double-exponential complexity, making the approach inapplicable except for sets

Ω with very small cardinality.

As an alternative, we propose to define mass functions and associated functions on

a subset of 2Θ that forms a lattice when equipped with the inclusion relation. The

intuitive idea underlying our approach is the fact that, when expressing knowledge

about a set-valued variable V , it is often convenient to specify sets of values that are
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A B

Figure 4.1: Two subsets of Ω (broken lines) containing A and not intersecting B. The

set of all such subsets is denoted by ϕ(A,B).

certainly taken by V , and sets of values that are certainly not taken by V . This can be

illustrated by the following example.

Example 5 Let V denote the languages spoken by John, defined on the (very large)

set Ω of existing languages. If we know for sure that John can speak English and

French (because he was brought up in the US and he stayed in France for a long time),

and that he can speak neither Japanese nor Chinese (because he never traveled to

Asia), then all subsets of Ω containing A = {English, French} and not intersecting

B = {Japanese, Chinese} are possible values of V .

As shown by this example, some families of subsets of Ω or, equivalently, some

subsets of Θ = 2Ω can be conveniently described by two subsets A and B of Ω such

that A ∩ B = ∅ (Figure 4.1).

More generally, let Q(Ω) = {(A, B) ∈ 2Ω×2Ω|A∩B = ∅Ω} be the set of ordered pairs

of disjoint subsets of Ω, where ∅Ω denotes the empty set of Ω. For any (A, B) ∈ Q(Ω),

let ϕ(A, B) denote the following subset of Θ = 2Ω:

ϕ(A, B) = {C ⊆ Ω|C ⊇ A, C ∩ B = ∅Ω}. (4.46)

ϕ(A, B) is thus the subset of Θ composed of all subsets of Ω including A and non

intersecting B. Equivalently, it is the set of all subsets of Ω that include A and are

included in B:

ϕ(A, B) = {C ⊆ Ω|A ⊆ C ⊆ B}. (4.47)
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It is thus the interval [A, B] in the lattice (Ω,⊆).

Let C(Ω) denote the set of all subsets of Θ of the form ϕ(A, B), completed by the

empty set of Θ, noted ∅Θ:

C(Ω) = {ϕ(A, B)|A ⊆ Ω, B ⊆ Ω, A ∩ B = ∅Ω} ∪ {∅Θ}.

C(Ω) is thus a subset of 2Θ. For a reason that will become evident later, we will also

use ϕ(Ω, Ω) as an alternative notation for ∅Θ. Function ϕ is thus a bijective mapping

from Q∗(Ω) = Q(Ω) ∪ {(Ω, Ω)} to C(Ω). The following proposition states that C(Ω) is

a closure system and, consequently, has a lattice structure.

Proposition 1 C(Ω) is a closure system of Θ, and

ϕ(A, B) ∩ ϕ(A′, B′) =





ϕ(A ∪ A′, B ∪ B′) if (A ∪ A′) ∩ (B ∪ B′) = ∅Ω

∅Θ otherwise,

for all (A, B) and (A′, B′) in Q∗(Ω).

Proof: It is obvious that Θ = ϕ(∅Ω, ∅Ω) ∈ C(Ω). Now,

ϕ(A, B) ∩ ϕ(A′, B′) = {C ⊆ Ω|C ⊇ A, C ⊇ A′, C ∩ B = ∅Ω, C ∩ B′ = ∅Ω}

= {C ⊆ Ω|C ⊇ (A ∪ A′), C ∩ (B ∪ B′) = ∅Ω}.

If (A∪A′)∩ (B ∪B′) = ∅Ω then ϕ(A, B)∩ϕ(A′, B′) is thus equal to ϕ(A∪A′, B ∪B′).

Otherwise, no subset C of Ω can include A ∪ A′ and have an empty intersection with

B ∪ B′; consequently, ϕ(A, B) ∩ ϕ(A′, B′) = ∅Θ. �

As recalled in Section 4.3.1, any closure system endowed with the inclusion relation

has a lattice structure with ∧ = ∩ and ∨ defined by (4.28). Here, the inclusion relation

has the following simple expression using the ϕ(A, B) representation:

ϕ(A, B) ⊆ ϕ(A′, B′) ⇔ A ⊇ A′ and B ⊇ B′. (4.48)

The least element is ⊥ = ϕ(Ω, Ω) = ∅Θ. We note that (4.48) remains valid when

A = B = Ω, which explains the interest of the notation ϕ(Ω, Ω) = ∅Θ. The greatest

element is ⊤ = ϕ(∅Ω, ∅Ω) = Θ. The atoms are of the form ϕ(A, A) for A ⊆ Ω, and

the co-atoms are of the form ϕ({ω}, ∅Ω) or ϕ(∅Ω, {ω}) for ω ∈ Ω. We can see that the

number of atoms is not equal to the number of co-atoms, which shows that (C,⊆) is

not autodual. This lattice is also not complemented; consequently, it is not Boolean.
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As a consequence of (4.48), it is easy to see that the meet operation ∨ is the following

operation, hereafter denoted ⊔:

ϕ(A, B) ⊔ ϕ(A′, B′) = ϕ(A ∩ A′, B ∩ B′).

It must be noted that ⊔ is not identical to set union. The following proposition states

the relation between these two operators.

Proposition 2 For all (A, B) and (A′, B′) in Q∗(Ω),

ϕ(A, B) ∪ ϕ(A′, B′) ⊆ ϕ(A, B) ⊔ ϕ(A′, B′).

Proof: For every C in ϕ(A, B) ∪ ϕ(A′, B′), we have

C ⊇ A and C ⊇ A′ ⇒ C ⊇ A ∩ A′ (4.49)

and

C ∩ B = ∅Ω and C ∩ B′ = ∅Ω ⇒ C ∩ (B ∩ B′) = ∅Ω, (4.50)

hence C ∈ ϕ(A ∩ A′, B ∩ B′). �

One can notice that the implications in (4.49) and (4.50) are strict. Consequently,

ϕ(A, B) ∪ ϕ(A′, B′) is usually a strict subset of ϕ(A, B) ⊔ ϕ(A′, B′). As the lattices

(C(Ω),⊆) and (2Θ,⊆) do not have the same join operator, (C(Ω),⊆) is not a sublattice

of (2Θ,⊆), although it is a subposet.

As noticed in [50], any ordered pair (A, B) of disjoint subsets of Ω = {ω1, . . . , ωQ}

can be represented by a vector (y1, . . . , yQ) ∈ {−1, 0, 1}Q, with

yi =






1 if ωi ∈ A,

−1 if ωi ∈ B,

0 otherwise.

Consequently, any ϕ(A, B) ∈ C(Ω) such that (A, B) 6= (Ω, Ω) can be represented in the

same way. For ϕ(Ω, Ω) = ∅Θ, a special representation can be adopted, e.g., (∗, . . . , ∗).

This encoding makes it possible to implement the ∩ and ⊔ operations in a simple way

using generalized truth tables. It also makes it clear that the cardinality of C(Ω) is

equal to 3|Ω| + 1.
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4.4.2 Belief Functions on C(Ω)

The general theory recalled in Section 4.3.2 can be applied directly to the lattice (C(Ω),⊆

).

Let m : C(Ω) → [0, 1] be a mass function on C(Ω). The notation m(ϕ(A, B)) will be

simplified to m(A, B). For this reason, m will be called a two-place mass function. We

assume that
∑

(A,B)∈Q∗(Ω)

m(A, B) = 1.

The implicability, belief and commonality functions can be computed from m using the

following formula:

b(A, B) =
∑

ϕ(C,D)⊆ϕ(A,B)

m(C, D) =
∑

C⊇A,D⊇B

m(C, D), (4.51)

bel(A, B) = b(A, B) − m(Ω, Ω), (4.52)

q(A, B) =
∑

ϕ(C,D)⊇ϕ(A,B)

m(C, D) =
∑

C⊆A,D⊆B

m(C, D), (4.53)

where all pairs (A, B) and (C, D) are understood to belong to Q∗(Ω) (the same conven-

tion will be adopted throughout this chapter). The conjunctive sum operation in C(Ω)

is defined as follows:

(m1 ∩©m2)(A, B) =
∑

ϕ(C,D)∩ϕ(E,F )=ϕ(A,B)

m1(C, D)m2(E, F ) (4.54)

=






∑

C∪E=A,D∪F=B

m1(C, D)m2(E, F ) if A ∩ B = ∅Ω,

∑

(C∪E)∩(D∪F ) 6=∅Ω

m1(C, D)m2(E, F ) if A = B = Ω.
(4.55)

It can be computed using the commonality functions as:

q1 ∩©2(A, B) = q1(A, B) · q2(A, B), ∀(A, B) ∈ Q∗(Ω). (4.56)

Similarly, the disjunctive sum can be computed as:

(m1 ∪©m2)(A, B) =
∑

ϕ(C,D)⊔ϕ(E,F )=ϕ(A,B)

m1(C, D)m2(E, F ) (4.57)

=
∑

C∩E=A,D∩F=B

m1(C, D)m2(E, F ), (4.58)
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or using implicability functions:

b1 ∪©2(A, B) = b1(A, B) · b2(A, B), ∀(A, B) ∈ Q∗(Ω).

It is also possible to define a rule expressing a consensus among items of evidence,

somehow in the same spirit as the Dubois-Prade rule recalled in Section 4.2.1. Assume

that we learn from two sources that the value of V is in ϕ(C, D) and in ϕ(E, F ), but

that ϕ(C, D) ∩ ϕ(E, F ) = ∅Θ, i.e., (C ∪ E) ∩ (D ∪ F ) 6= ∅Ω, so that the two pieces of

information are in conflict. It may still be safe to keep (C ∪ E) \ (D ∪ F ) as positive

information, and (D∪F )\(C∪E) as negative information. Denoting by ⊓ the following

operation on C(Ω):

ϕ(C, D) ⊓ ϕ(E, F ) = ϕ ((C ∪ E) \ (D ∪ F ), (D ∪ F ) \ (C ∪ E)) ,

we may define a new combination rule as

(m1 ⊡ m2)(A, B) =
∑

ϕ(C,D)⊓ϕ(E,F )=ϕ(A,B)

m1(C, D)m2(E, F ). (4.59)

This rule will be referred to as the consensus rule. We note that operations ⊓ and ⊡ are

not associative. However, they are quasi-associative, as it is possible to define a n-ary

version of ⊓ as:

ϕ(C1, D1) ⊓ . . . ⊓ ϕ(Cn, Dn) = ϕ

(
n⋃

i=1

Ci \
n⋃

i=1

Di,
n⋃

i=1

Di \
n⋃

i=1

Ci

)
.

To compute functions m, w and v from q or b using (4.30), (4.33), (4.39) and (4.43),

we need the expression of the Möbius function µ. It is given in the following proposition.

Proposition 3 The Möbius function on (C(Ω),⊆) is given, for any (A, B) and (A′, B′)

in Q∗(Ω) by

µ(ϕ(A, B), ϕ(A′, B′)) =





(−1)|A\A′|+|B\B′| if ϕ(A, B) ⊆ ϕ(A′, B′),

0 otherwise.

Proof: The proof is similar to that of Theorem 2 in [50] with simple adaptations, due to

the similarity between two-place belief functions on C(Ω) and bi-capacities (see Section

4.5 below). �
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This result allows us to compute m from b as:

m(A, B) =
∑

C⊇A,D⊇B

(−1)|C\A|+|D\B|b(C, D), (4.60)

and from q as

m(A, B) =
∑

C⊆A,D⊆B

(−1)|A\C|+|B\D|q(C, D). (4.61)

The conjunctive and disjunctive weight functions may be computed, respectively, as:

w(A, B) =
∏

C⊆A,D⊆B

q(C, D)(−1)|A\C|+|B\D|+1

, ∀(A, B) 6= (∅Ω, ∅Ω), (4.62)

and

v(A, B) =
∏

C⊇A,D⊇B

b(C, D)(−1)|C\A|+|D\B|+1

, ∀(A, B) 6= (Ω, Ω), (4.63)

which makes it possible to use the cautious and bold rules in this context.

Example 6 Let V now denote the set of languages spoken by Bernard. Assume that

we are 100 % sure that Bernard speaks no other language than Dutch (d), English (e)

and French (f), so that we can restrict the domain of V to Ω = {d, e, f}. Suppose that

we have the following items of evidence:

1. Bernard is Belgian. Approximately 60 % of Belgians are Dutch-speaking, and 40

% of Belgians are French-speaking (we neglect here the small German-speaking

community for simplicity). According to a recent survey, approximately 20 %

of French-speaking Belgians declare to have good knowledge of Dutch, whereas

around 50 % of members of the Dutch speaking community claim to have good

knowledge of French.

2. Bernard studied three years in Canada, where most universities are English-

speaking, and some are French speaking. Based on available evidence, we have a

0.7 degree of belief that Bernard studied in an English-speaking university, and a

0.15 degree of belief that he studied in a French-speaking one.

Each of these two items of evidence can be represented by a mass function on C(Ω).

According to the first item of evidence, approximately (0.6×0.5)×100 = 30% of Belgians

speak Dutch and no French, approximately (0.4 × 0.8) × 100 = 32% speak French and

no Dutch, and the rest speak both languages. Knowing that Bernard belongs to this
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population (and nothing else), and assuming these figures to be accurate, this would

lead to the following mass function:

m1({d}, {f}) = 0.3, m1({f}, {d}) = 0.32, m1({f, d}, ∅) = 0.38.

To account for inaccuracy of these figures, we may discount this mass function [93]

by transferring a fraction of the mass (say, 10%) to the greatest element of C(Ω), i.e.,

ϕ(∅, ∅). We thus have

m1({d}, {f}) = 0.3 × 0.9 = 0.27, m1({f}, {d}) = 0.32 × 0.9 ≈ 0.29,

m1({f, d}, ∅) = 0.38 × 0.9 ≈ 0.34, m1(∅, ∅) = 0.1.

The second item of evidence can be represented by a mass function m2 defined as:

m2({e}, ∅) = 0.7, m2({f}, ∅) = 0.15, m2(∅, ∅) = 0.15.

Assuming these two items of evidence to be distinct, they should be combined using

the conjunctive sum operation ∩©. This may be achieved in two ways:

1. We may compute the intersection between each focal element of m1 and each focal

element of m2 and apply formula (4.54). The computations may be presented as

in Table 4.1.

2. Alternatively, we may compute the commonality functions q1 and q2 using (4.53),

multiply them, and convert the result into a mass function using (4.61). The

intermediate and final results are shown in Table 4.2.

We may check that both approaches yield the same result. In particular, we can see

that the empty set ∅Θ receives a mass equal to 0.15 × 0.27 = 0.0405, which can be

interpreted as a degree of conflict between m1 and m2. Using the consensus rule ⊡

(4.59), the mass 0.15 × 0.27 would be transferred to

ϕ({f}, ∅) ⊓ ϕ({d}, {f}) = ϕ({d}, ∅),

resulting in a normal, conflict-free mass function.

Table 4.2 also shows the normal mass function computed using the normalized

Dempster’s rule ⊕, and Table 4.3 displays the intermediate steps and final results for

computing the combinations of m1 and m2 using the unnormalized and normalized

cautious rules.
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Table 4.1: Computation of the conjunctive sum of m1 and m2 in Example 6. The

columns and the lines correspond to the focal elements of m1, and m2, respectively. Each

cell contains the intersection of a focal element of m1 and a focal element of m2. The mass

of each focal element is indicated below it.

({d}, {f}) ({f}, {d}) ({f, d}, ∅) (∅, ∅)

0.27 0.29 0.34 0.1

({e}, ∅) ({d, e}, f) ({e, f}, {d}) ({e, f, d}, ∅) ({e}, ∅)

0.7 0.7 × 0.27 0.7 × 0.29 0.7 × 0.34 0.7 × 0.1

({f}, ∅) ∅Θ ({f}, {d}) ({f, d}, ∅) ({f}, ∅)

0.15 0.15 × 0.27 0.15 × 0.29 0.15 × 0.34 0.15 × 0.1

(∅, ∅) ({d}, {f}) ({f}, {d}) ({f, d}, ∅) (∅, ∅)

0.15 0.15 × 0.27 0.15 × 0.29 0.15 × 0.34 0.15 × 0.1

Remark 2 We may remark here that the concept of two-place mass and belief func-

tions defined here bears some similarity with bi-capacities introduced by Grabisch and

Labreuche [50]. A bi-capacity as defined in [50] is an increasing function defined on the

lattice (Q(Ω),⊑), where ⊑ is the partial ordering on Q(Ω) defined by (A, B) ⊑ (C, D) if

A ⊆ B and C ⊇ D. In [50], Grabisch and Labreuche introduce various concepts related

to bi-capacities, with application to cooperative game theory. In [66], they introduce

the concept of bi-belief function, defined as a totally monotone bi-capacity from Q(Ω)

to [0, 1]. They suggest an interpretation in terms of bipolar representation of uncer-

tainty for the case of a single-valued variable. Bi-belief functions and two-place belief

functions as introduced here are thus two distinct classes of belief functions built on

different lattices, with different interpretations.

Remark 3 Another remark concerns decision making. As noted in the previous sec-

tion, the lattice (C(Ω),⊆) is not Boolean, so that the notion of pignistic probability

cannot be defined in that lattice. In the classical setting, a common alternative to the

rule of maximum pignistic probability for decision making is that of maximum plausibil-

ity: it consists in selecting the element of Ω with the greatest plausibility or, equivalent,

with the greatest commonality (as these two functions coincide on singletons). In C(Ω),

we may propose as a reasonable decision rule to select the atom ϕ(A, A) with the highest

commonality. Table 4.4 shows the commonalities of the atoms computing from m1⊕m2,

m1 ⊡m2 and m1 ∧©∗m2 in Example 6. In that particular case, we can see that the three

rules lead to the same conclusion, which is that Bernard speaks all three languages.

The second most likely hypothesis is that Bernard speaks English and French, but no
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Table 4.2: Computation of m1 ∩©m2 and m1 ⊕ m2 in Example 6.

A B m1 q1 m2 q2 q1 ∩©2 m1 ∩©m2 m1 ⊕ m2

{def} {def} 0 1 0 1 1 0.0405 0

∅ {def} 0 0.1 0 0.15 0.015 0 0

∅ {de} 0 0.1 0 0.15 0.015 0 0

{f} {de} 0 0.39 0 0.3 0.117 0 0

∅ {df} 0 0.1 0 0.15 0.015 0 0

∅ {d} 0 0.1 0 0.15 0.015 0 0

{f} {d} 0.29 0.39 0 0.3 0.117 0.087 0.091

{e} {df} 0 0.1 0 0.85 0.085 0 0

{e} {d} 0 0.1 0 0.85 0.085 0 0

{ef} {d} 0 0.39 0 1 0.39 0.203 0.212

∅ {ef} 0 0.1 0 0.15 0.015 0 0

∅ {e} 0 0.1 0 0.15 0.015 0 0

{f} {e} 0 0.1 0 0.3 0.03 0 0

∅ {f} 0 0.1 0 0.15 0.015 0 0

∅ ∅ 0.1 0.1 0.15 0.15 0.015 0.015 0.016

{f} ∅ 0 0.1 0.15 0.3 0.03 0.015 0.016

{e} {f} 0 0.1 0 0.85 0.085 0 0

{e} ∅ 0 0.1 0.7 0.85 0.085 0.07 0.07

{ef} ∅ 0 0.1 0 1 0.1 0 0

{d} {ef} 0 0.37 0 0.15 0.0555 0 0

{d} {e} 0 0.1 0 0.15 0.015 0 0

{df} {e} 0 0.44 0 0.3 0.132 0 0

{d} {f} 0.27 0.37 0 0.15 0.0555 0.0405 0.0422

{d} ∅ 0 0.1 0 0.15 0.015 0 0

{df} ∅ 0.34 0.44 0 0.3 0.132 0.102 0.106

{de} {f} 0 0.37 0 0.85 0.3145 0.189 0.197

{de} ∅ 0 0.1 0 0.85 0.085 0 0

{def} ∅ 0 0.44 0 1 0.44 0.238 0.248
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Table 4.3: Computation of m1 ∧©m2 and m1 ∧©∗m2 in Example 6.

A B m1 w1 m2 w2 w1∧2 m1 ∧©m2 m1 ∧©∗m2

{def} {def} 0 6.349 0 1 1 0.864 0

∅ {def} 0 1 0 1 1 0 0

∅ {de} 0 1 0 1 1 0 0

{f} {de} 0 1 0 1 1 0 0

∅ {df} 0 1 0 1 1 0 0

∅ {d} 0 1 0 1 1 0 0

{f} {d} 0.29 0.256 0 1 0.256 0.00806 0.0591

{e} {df} 0 1 0 1 1 0 0

{e} {d} 0 1 0 1 1 0 0

{ef} {d} 0 1 0 1 1 0.0376 0.276

∅ {ef} 0 1 0 1 1 0 0

∅ {e} 0 1 0 1 1 0 0

{f} {e} 0 1 0 1 1 0 0

∅ {f} 0 1 0 1 1 0 0

∅ ∅ 0.1 10 0.15 6.67 719.6 0.00139 0.0102

{f} ∅ 0 1 0.15 0.5 0.5 0.00139 0.0102

{e} {f} 0 1 0 1 1 0 0

{e} ∅ 0 1 0.7 0.176 0.176 0.00649 0.0477

{ef} ∅ 0 1 0 1.7 1 0.00649 0.0477

{d} {ef} 0 1 0 1 1 0 0

{d} {e} 0 1 0 1 1 0 0

{df} {e} 0 1 0 1 1 0 0

{d} {f} 0.27 0.270 0 1 0.270 0.00375 0.0275

{d} ∅ 0 1 0 1 1 0 0

{df} ∅ 0.34 0.227 0 1 0.227 0.00945 0.0694

{de} {f} 0 1 0 1 1 0.0175 0.129

{de} ∅ 0 1 0 1 1 0 0

{def} ∅ 0 1 0 1 1 0.0441 0.324
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Table 4.4: Commonalities of atoms according to m1 ⊕ m2, m1 ⊡ m2 and m1 ∧©∗m2 in

Example 6.

(A, A) q1⊕2(A, A) q1⊡2(A, A) q1∧∗2(A, A)

(∅, {def}) 0.0156 0.015 0.0102

({f}, {de}) 0.122 0.117 0.0796

({e}, {df}) 0.0889 0.085 0.0578

({ef}, {d}) 0.406 0.39 0.451

({d}, {ef}) 0.0578 0.096 0.0377

({df}, {e}) 0.138 0.173 0.0898

({de}, {f}) 0.328 0.355 0.214

({def}, ∅) 0.459 0.481 0.509

Dutch. However, it is clear that different combination rules may, in general, result in

different decisions.

The following section will be devoted to a review of previous work on uncertainty

representation for set-valued variables.
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4.5 Relation to Previous Work

This section discusses the relation between the notions introduced above and related

concepts or other formalisms already proposed for handling set-valued variables.

4.5.1 Disjunctive vs. Conjunctive Bodies of Evidence

Yager [115][116] was among the first authors to emphasize the fundamental difference

between single-valued and set-values variables, and to develop specific formalisms for

reasoning with the latter. In [116], a distinction is made between disjunctive and con-

junctive information using set-based representations. Given a variable V taking a single

value in Ω, a statement “V is A” with A ⊆ Ω means that V takes some value in A, but

we do not know which one. In contrast, if V is multiple-valued, the same statement is

understood to mean that V takes all values in A (and possibly other values outside A).

The corresponding piece of information is called “disjunctive” in the former case, and

“conjunctive” in the latter. Yager then proceeds by observing that there is some kind

of duality between disjunctive and conjunctive knowledge. For instance, the statement

P1 : “V is A” implies P2 : “V is B” whenever B ⊇ A in the disjunctive case, whereas P2

can be deduced from P1 whenever B ⊆ A in the conjunctive case. If we know that P1

and P2 both hold, then we can deduce “V is A ∩ B” in the disjunctive case, and “V is

A ∪ B” in the conjunctive case, etc.

Viewing mass functions as generalized sets, Dubois and Prade [32] remarked that the

same distinction holds in the belief function framework. They pointed out that, when

a mass function m represents a body of evidence pertaining to a set-valued variable

(referred to as a conjunctive body of evidence), the commonality function q is more

appropriate than b for representing degrees of belief, and the disjunctive sum (4.11)

should be used for combining information conjunctively.

The formalism developed in Section 4.4 sheds new light on this duality between

conjunctive and disjunctive knowledge. The conjunctive statement “V is A” corresponds

to the proposition ϕ(A, ∅). Let m be a mass function on C(Ω) whose focal elements are

all of the form ϕ(B, ∅) for some B ⊆ Ω. We can note m′(A) = m(A, ∅) for all A. Using

(4.51), we then have, for all A ⊆ Ω:

b(A, ∅) =
∑

B⊇A

m(B, ∅) =
∑

B⊇A

m′(B) = q′(A),

94



Chapter 4: Set-valued evidence formalism and application to multi-label learning

where q′ is the commonality function corresponding to m′. Conversely,

q(A, ∅) =
∑

B⊆A

m(B, ∅) =
∑

B⊆A

m′(B) = b′(A).

As a consequence, let m1 and m2 be two mass functions on C(Ω) with focal elements

of the form described above, and assume that we want to combine them conjunctively

using (4.56). We get

q1 ∩©2(A, ∅) = q1(A, ∅)q2(A, ∅) = b′1(A)b′2(A) = b′1 ∪©2(A)

for all A ⊆ Ω, which explains why the disjunctive sum seems to be used when combining

conjunctive bodies of evidence in a conjunctive manner.

4.5.2 Random sets

Random sets are defined as random elements taking values as subsets of some space

[73][82]. In the finite case, a random set is thus defined by a probability function m on

2Ω such that
∑

A⊆Ω m(A) = 1, which is mathematically equivalent to a Dempster-Shafer

mass function on Ω [81]. However, as noted by Smets [96], the semantics of random sets

and (standard) belief functions are different, as random sets model random experiments

with set-valued outcomes, whereas standard belief functions quantify beliefs regarding

a variable taking a single, but unknown value.

In contrast, random sets are recovered as a special class of belief functions on set-

valued variables introduced in this chapter. Let m be a mass function on C(Ω), and

assume that the focal elements of m are atoms of C(Ω), i.e., if they are of the form

(A, A). In that case, the function m′ from 2Ω to [0, 1] such that m′(A) = m(A, A) for

all A ⊆ Ω is a random set. Random sets are thus equivalent to mass functions on C(Ω)

with atomic focal elements, just as probability distributions on Ω are equivalent to mass

functions on 2Ω with singleton focal elements.

4.5.3 Veristic Variables

In Chapter 3 we have presented the theory of veristic variables proposed by Yager

in [119][117]. As we have already mentioned, a veristic variable can be viewed as a

fuzzy set-valued variables. Let V denote such variable defined over Ω. Clearly, a major

difference between Yager’s approach and ours is the fact that Yager represents each piece
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of knowledge about V as a set of fuzzy subsets of Ω, whereas we use a set of crisp subsets

of Ω. However, the kinds of statements considered by Yager as well as the associated

verity and rebuff distributions have very close representations in our approach.

To begin with, let us provisionally assume that A is a crisp subset of Ω. Then, each

of the four types of statements, already introduced in Section 3.3, can be expressed by

categorical mass functions on C(Ω) as follows:

V isv A −→ m(A, ∅) = 1
V isv(n) A −→ m(∅, A) = 1

V isv(c) A −→ m(A, A) = 1.

V isv(c, n) A −→ m(A, A) = 1.

It is easy to see that, in each of these four cases:

b({ω}, ∅) = Ver(ω) (4.64)

b(∅, {ω}) = Rebuff(ω) (4.65)

for all ω ∈ Ω. The verity of ω is thus the belief that ω is one of the values taken

by V , whereas the rebuff of ω is the belief that ω is not a value taken by V . This

interpretation can be shown to remain true when A is a fuzzy subset of Ω. In that case,

the function ω → A(ω) can be seen as a possibility distribution, which is known to be

equivalent to a consonant mass function m′ on Ω with focal elements A1 ⊆ . . . ⊆ An.

The corresponding plausibility function pl′ verifies

pl′({ω}) =
∑

Ai∋ω

m′(Ai) = A(ω), ∀ω ∈ Ω.

For instance, let us consider the statement V isv A, and let us translate it as the

following two-place mass function:

m(Ai, ∅) = m′(Ai), i = 1, . . . , n.

We have

b({ω}, ∅) =
∑

Ai∋ω

m(Ai, ∅) =
∑

Ai∋ω

m′(Ai) = A(ω) = Ver(ω)

and

b(∅, {ω}) = 0 = Rebuff(ω).

By handling the three other cases similarly, it can be verified that Equations (4.64) and

(4.65) hold in all cases.
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We may thus conclude that, although based on a slightly different interpretation,

Yager’s framework can be easily translated into the formalism of two-place belief func-

tions, which is more general. However, this is only true at the static level, i.e., as long

as we do not combine different pieces of information. For instance, as shown by Yager,

the conjunctive combination of two statements V isv A and V isv B in the veristic

framework results in a new statement V isv A ∪ B, where ∪ denotes fuzzy set union.

This is consistent with our approach only as long as A and B are crisp sets. If A and

B are fuzzy, then translating the two statements as two-place mass functions and com-

bining them using either the conjunctive sum or the cautious rule does not, in general,

yield a consonant mass function corresponding to a veristic constraint on V . The two

formalisms thus differ when combining statements involving fuzzy subsets.

4.5.4 Two-fold fuzzy sets

To complete this review of previous work on uncertainty representation for set-valued

variables, we need to mention the representation of incomplete conjunctive information

using a pair of fuzzy sets introduced in [27].

In this work, Dubois and Prade proposed to represent partial knowledge about a

set-valued variable as a possibility distribution π on 2Ω. This is equivalent to defining

a fuzzy set of crisp subsets of Ω, which contrasts with Yager’s approach who defines a

crisp set W of fuzzy subsets of Ω. To make such a representation more easily tractable,

Dubois and Prade then proposed to approximate π by a pair of fuzzy sets (A−, A+) as

follows. Let Ai, i ∈ I be the family of subsets of Ω such that π(Ai) > 0. Let

A−(ω) = 1 − sup
i:ω 6∈Ai

π(Ai)

and

A+(x) = sup
i:ω∈Ai

π(Ai).

The degree of membership of V to A− is thus the extent to which is impossible to

find an Ai not containing V , while A+(x) corresponds to the possibility of finding an

Ai containing V . The pair (A−, A+), referred to as a two-fold fuzzy set, constitutes

an approximation of π in the sense that it is a simpler, but incomplete representation:

several possibility distributions π correspond to the same two-fold fuzzy set. However,

Dubois and Prade showed that the least specific possibility distribution π∗ induced by
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a two-fold fuzzy set (A−, A+) can be expressed as π∗(∅) = 1− sup A−, π∗(Ω) = inf A+,

and

π∗(B) = min

[
inf
x∈B

A+(ω), inf
ω 6∈B

(1 − A−(ω))

]
, ∀B ∈ 2Ω \ {∅, Ω}.

To each two-fold fuzzy set (A−, A+) can thus be associated a fuzzy subset A of 2Ω, with

membership function equal to π∗.

We note that this approach has some similarity with ours, since it is based on the

representation of a subset of 2Ω by a pair of subsets of Ω. Actually, if A− and A+

are crisp, then the corresponding crisp subset A of 2Ω is exactly equal to ϕ(A−, A+).

However, in the general case, the two-fold fuzzy set representation is based on a pair of

possibility distributions, i.e., consonant belief functions on Ω, whereas our approach is

based on a single two-place belief function on C(Ω).

What can be seen as a limitation of the two-fold fuzzy set approach arises when

combining information from several sources. Given two pairs (A−, A+) and (B−, B+)

representing knowledge about two set-valued variables V1 and V2, Dubois and Prade

showed that the knowledge of V1∩V2 can be represented by (A−∩B−, A+∩B+), while

the knowledge of V1∪V2 can be represented by (A−∪B−, A+∪B+). Applications of this

kind of reasoning to database query evaluation is discussed in [27]. However, a different

and maybe more common problem in uncertain reasoning is the situation where we have

two items of evidence about a single set-valued variable V , and we want to combine

these two items of evidence. If (A−, A+) and (B−, B+) correspond, respectively, to

fuzzy subsets A and B of 2Ω, the result of the combination should ideally correspond to

A∩B or to A∪B, depending on the choice of a conjunctive or disjunctive combination

mechanism. However, none of these two fuzzy subsets of 2Ω generally admits a two-fold

fuzzy set representation, which restricts the use of this formalism for reasoning with

set-valued variables.

We have shown that the formalism of two-place belief functions introduced in this

chapter seems to compare favorably in terms of expressive power with existing for-

malisms for representing and reasoning with uncertain conjunctive information. In the

next section, we will demonstrate the usefulness of this formalism for multi-label clas-

sification problems.
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4.6 Application to Multi-label Classification

In this section, we present an application of the proposed two-place belief functions

framework to multi-label classification.

The class label of each instance may be considered as a set-valued variable. As

remarked in Section 3.4.1, in order to construct a multi-label classifier, we generally

assume the existence of a labeled training set where each instance xi is assigned a single

subset Yi of the set Y of classes. In practice, however, gathering such high quality

information is not always possible, especially, when the instances have been labeled

subjectively by one or several experts. Uncertainty may be introduced in the labeling

process, and thus, it will be very difficult to precisely label each instance.

For example, assume that instances are songs and classes are emotions generated by

these songs, as in the emotion dataset that will be used later in the experiments. Upon

hearing a song, an expert may decide that this song certainly evokes happiness and

certainly does not evoke sadness, but may be undecided regarding the other emotions

(such as quietness, anger, surprise, etc.). In that case, the song cannot be assigned a

single label set, but we can associate to it the set of all label sets containing “happiness”

and not containing “sadness”, which has the form suggested above.

The formalism developed in this may can easily be used to handle such situations.

In the most general setting, the opinions of one or several experts regarding the set

of classes that pertain to a particular instance xi may be modeled by a mass function

mi on C(Ω). A less general, but arguably more workable option is to restrict mi to

be categorical, i.e., to have a single focal element ϕ(Ai, Bi), with Ai, Bi ⊆ Ω and

Ai ∩ Bi = ∅. The set Ai is then the set of classes that certainly apply to xi, while Bi

the set of classes that certainly do not apply. When data are labeled by several experts,

Ai might represent the set of classes indicated by all (or most) experts as relevant to

describe instance xi, while Bi would be the set of classes mentioned by none of the

experts (or only a few of them). The usual situation of precise labeling is recovered in

the special case where Bi = Ai.

In [20][132], we introduced a single-label k-nearest neighbor (NN) classifier based on

Dempster-Shafer theory. This method will be briefly recalled in Subsection 4.6.1, and

will be extended to multi-label classification tasks in Subsection 4.6.2. The proposed

method is called EMLkNN, for Evidential Multi-Label k-NN.
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4.6.1 Single-label Evidential k-NN Classification

The evidential k-NN method introduced in [20] for single-label classification problems

can be summarized as follows. Let D = {(x1, A1), . . . , (xn, An)} be a learning set of n

instances, where xi belongs to the domain of instances X and Ai ⊆ Y is a set of possible

classes for this instance. We emphasize the fact that, in the context considered here,

each instance xi actually belongs to one and only class, but this class is only known to

lie somewhere in Ai.

Let x be an new instance that we search to estimate its class y. We want to guess

the value of y based on evidence provided by the learning set D. For that purpose,

we consider the set N k
x of the k nearest neighbors of x, according to some distance

measure d. Each learning object (xi, Ai) with xi ∈ N k
x can then be regarded as a piece

of evidence regarding the unknown value of y, represented as the following simple mass

function on Y:

mi(Ai) = α0 exp (−γd(x,xi)) , (4.66)

mi(Ω) = 1 − α0 exp (−γd(x,xi)) , (4.67)

with 0 < α0 < 1 and γ > 0. Parameter α0 is usually fixed at a value close to 1 such as

α0 = 0.95, whereas γ should depend on the scaling of distances and can be either fixed

heuristically or optimized [132]. We recall that the same function α0 exp(−γd(x,xi)

was used for knowledge discounting in the VERkNN method. The evidence of the k

NNs is then pooled using the conjunctive sum:

m = ∩©i:xi∈N k
x

mi, (4.68)

and the class with highest plausibility or pignistic probability is selected. As remarked

in [23] and [22], this method can be easily extended to the case where each learning

instance in D is labeled by a general mass function on Y.

4.6.2 Multi-label Evidential k-NN Classification

Let us now come back to the multi-label classification problem, in which objects may

belong simultaneously to several classes. Let D = {(x1, A1, B1), . . . , (xn, An, Bn)} be

the learning set, where Ai ⊆ Y denotes a set of classes that surely apply to the instance

xi, and Bi ⊆ Ω a set of classes that surely do not apply to the same instance. If Yi ⊆ Y
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denotes the true label set of xi, we thus only know that Yi ∈ ϕ(Ai, Bi). The EMLkNN

method builds a multi-label classifier H and a scoring function f as it will be explained

in the following.

As before, let N k
x denote the set of k nearest neighbors of a new instance x, and xi

an element of that set with label (Ai, Bi). This item of evidence can be described by

the following simple two-valued mass function:

mi(Ai, Bi) = α exp (−γd(x,xi)) , (4.69)

mi(∅, ∅) = 1 − α exp (−γd(x,xi)) , (4.70)

with, as before, 0 < α0 < 1 and γ > 0. These k mass functions are then combined using

a combination rule (the conjunctive sum, the consensus or the cautious rules).

For decision making, different procedures can be used. The following simple and

computationally efficient rule was implemented. To decide whether to assign each class

ω ∈ Y or not to instance x, we compute the degree of belief bel({ω}, ∅) that the true

label set Y contains ω, and the degree of belief bel(∅, {ω}) that it does not contain ω.

We then define the multi-label classifier H as

H(x) = {ω ∈ Y | bel({ω}, ∅) ≥ bel(∅, {ω})},

and the corresponding scoring function f as

f(x, ω) = bel({ω}, ∅).

4.7 Conclusion

We have presented a formalism for quantifying uncertainty on a set-valued variable V

defined on a domain Ω in the belief function framework. This approach relies on the

definition of a family C(Ω) of subsets of 2Ω that is closed under intersection and has

a lattice structure. Each element in C(Ω) is indexed by two subsets A and B, and is

defined as the set of subsets of Ω containing A and not intersecting B. The number

of such elements (including the empty set of 2Ω) is equal to 3|Ω| + 1: it is thus much

smaller than the size of 22Ω

, while being rich enough to express evidence about set-valued

variables in many realistic situations.
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Most notions from Dempster-Shafer theory of belief functions can be defined on

C(Ω). The proposed formalism has been shown to be somewhat similar to, but ar-

guably more general and flexible than other approaches introduced in the possibilistic

framework.

Finally, based on the proposed two-place belief functions framework formalism, we

have proposed a multi-label classification method, called EMLkNN, where each unseen

instance is classified on the basis of its k nearest neighbors. In particular, the EMLkNN

method allows us to handle multi-label learning problems with imprecise labels.
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Summary

In this chapter, we show a comparison between the proposed methods and with other

state-of-the-art multi-label learning algorithms on several benchmark datasets and using

different evaluation criteria. We report experimental results on both precisely and

imperfectly labeled data. The latter case occurs when, for example, the data have been

labeled subjectively by one or many experts in the absence of ground truth. Due to lack

of confidence and conflits between experts, noisy and imprecise labels will inevitably be

introduced in the labeling process.

Résumé

Dans ce chapitre, nous montrons une comparaison, sur plusieurs jeux de données

et en utilisant différents critères d’évaluation, entre les méthodes proposées et avec

d’autres algorithmes de l’état de l’art de l’apprentissage multi-label. Nous présentons

des résultats expérimentaux sur des données étiquetées d’une façon précise en premier

lieu, et d’une façon imparfaite en deuxième lieu. En fait, il n’est pas toujours possible

de disposer de données qui sont parfaitement étiquetées. En effet, dans de nombreuses

applications réelles, il n’existe pas de vérité terrain pour l’étiquetage des différents in-

dividus sans aucune ambiguïté, et plusieurs experts doivent être consultés. En raison

de conflits entre les experts et de manque d’informations, des imprécisions et des bruits

seront introduits durant l’étiquetage des données.
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5.1 Introduction

Three methods for multi-label learning have been proposed in this thesis: DMLkNN,

VERkNN and EMLkNN. We present in this chapter a comparative study between the

proposed methods and with some state-of-the-art algorithms using several benchmark

datasets and different multi-label evaluation measures.

In order to construct a multi-label classifier, we generally assume the existence of a

labeled training set in which each instance is assigned a precise set of labels. In practice,

however, gathering such high quality information is not always feasible at a reasonable

cost. In many problems, there is no ground truth for assigning unambiguously a label set

to each instance, and the opinions of one or several expert have to be elicited. Typically,

an expert will sometimes express lack of confidence for assigning a well-known label set.

If several experts are consulted, some conflict will inevitably arise, which again will

introduce some uncertainty in the labeling process, and lead to imperfect labeled data.

The experimental study presented below address both cases of precise and imperfect

labeled data.

This chapter is organized as follow. Section 5.2 will present the evaluation metrics

used for the comparison of the different methods. The benchmark datasets used in our

experiments will be reported in Section 5.3. Experimental results on precise data will

be detailed in Section 5.4, and Section 5.5 will present a comparative study on imperfect

labeled data. Finally,some concluding remarks will be made in Section 5.6.

5.2 Evaluation metrics

The evaluation of multi-label learning systems is more complex from that of single-label

learning systems. A result can be fully correct, partially correct or fully wrong. Let

H : X −→ 2Y be a multi-label classifier that assigns a subset of Y = {ω1, . . . , ωQ} for

each instance x ∈ X, and let f : X × Y −→ [0, 1] be the corresponding scoring function

that attributes a score to each class ωq ∈ Y interpreted as the probability that x belongs

to ωq. There exist a number of evaluation criteria that evaluate the performance of a

multi-label learning system, given a set D = {(x1, Y1), . . . , (xn, Yn)} of test examples.

We give hereafter some of the main evaluation criteria used in the literature to evaluate

a multi-label learning system [91][102]. The evaluation metrics can be divided into two

groups: prediction-based and ranking-based metrics. Prediction-based metrics assess
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the correctness of the label sets predicted by the multi-label classifier H, while ranking-

based metrics evaluate the label ranking quality depending on the scoring function f .

As a scoring function is not computed by all multi-label classification methods, the

former category of metrics is of more general use.

5.2.1 Prediction-based metrics

Accuracy The accuracy metric is an average degree of similarity between the pre-

dicted and the ground truth label sets of all test examples:

Acc(H,S) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi ∪ Ŷi|
.

where Ŷi = H(xi) denotes the predicted label set of instance xi.

F1-measure The F1-measure is defined as the harmonic mean of two other metrics

called Precision (Prec) and Recall (Rec) [121]. The former computes the proportion of

correct positive predictions while the latter calculates the proportion of true labels that

have been predicted as positives. These metrics are defined as follow:

Prec(H,S) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Ŷi|
,

Rec(H,S) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi|
,

and,

F1(H,S) =
2 · Prec · Rec

Prec + Rec
=

1

n

n∑

i=1

2|Yi ∩ Ŷi|

|Yi| + |Ŷi|
.

Hamming loss This metric counts prediction errors (an incorrect label is predicted)

and missing errors (a true label is not predicted):

HLoss(H,S) =
1

n

n∑

i=1

1

Q
|Yi∆Ŷi|,

where ∆ stands for the symmetric difference between two sets.

Note that the values of the prediction-based evaluation criteria are in the interval

[0, 1]. Larger values of the first four metrics correspond to higher classification qual-

ity, while for the Hamming loss metric, the smaller the symmetric difference between

predicted and true label sets, the better the performance [102][121].
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5.2.2 Ranking-based metrics

As stated before, this group of criteria is based on the scoring function f(., .) and

evaluates the ranking quality of the different possible labels [39][129]. Let rankf (., .) be

the ranking function derived from f and taking values in {1, . . . ,Q}. For each instance

xi, the label with the highest scoring value has rank 1, and if f(xi, ωq) > f(xi, ωr), then

rankf (xi, ωq) < rankf (xi, ωr).

One-error The one-error metric evaluates how many times the top-ranked label, i.e.

the label with the highest score, is not in the true set of labels of the instance:

OErr(f,S) =
1

n

n∑

i=1

〈[arg max
ω∈Y

f(xi, ω)] /∈ Yi〉,

where for any proposition H, 〈H〉 equals to 1 if H holds and 0 otherwise. Note that, for

single-label classification problems, the one-error is identical to ordinary classification

error.

Coverage The coverage measure is defined as the average number of steps needed

to move down the ranked label list in order to cover all the labels assigned to a test

instance:

Cov(f,S) =
1

n

n∑

i=1

max
ω∈Yi

rankf (xi, ω) − 1.

Ranking loss This metric calculates the average fraction of label pairs that are re-

versely ordered for an instance:

RLoss(f,S) =
1

n

n∑

i=1

1

|Yi||Y i|
|{(ωq, ωr) ∈ Yi × Y i | f(xi, ωq) ≤ f(xi, ωr)}|

where Y i denotes the complement of Yi in Y .

Average precision This criteria was first used in information retrieval and was then

adapted to multi-label learning problems in order to evaluate the effectiveness of label

ranking. This metric measures the average fraction of labels ranked above a particular

label y ∈ Yi which actually are in Yi:

AvPrec(f,S) =
1

n

n∑

i=1

1

|Yi|

∑

ωq∈Yi

|{ωr ∈ Yi | rankf (xi, ωr) ≤ rankf (xi, ωq)}|

rankf (xi, ωq)
.
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For the ranking-based metrics, smaller values of the first three metrics correspond to

better label ranking quality, while AvPrec(f,S) = 1 means that the labels are perfectly

ranked for all test examples [39].

5.3 Multi-labeled datasets

5.3.1 Multi-label Statistics

Given a multi-labeled dataset D = {(xi, Yi), i = 1, . . . ,n} with xi ∈ X and Yi ⊆ Y,

the following measures give some statistics about the “label multiplicity” of the dataset

D [102].

• The label cardinality of D, denoted by LCard(D), indicates the average number

of labels per instance:

LCard(D) =
1

n

n∑

i=1

|Yi|

• The label density of D, denoted by LDen(D), is defined as the average number of

labels per instance divided by the number of possible labels Q:

LDen(D) =
LCard(D)

Q

• DL(D) counts the number of distinct label sets appeared in the dataset D:

DL(D) = |{Yi ⊆ Y|∃ xi ∈ X : (xi, Yi) ∈ D}|

5.3.2 Benchmark datasets

Several real datasets1 were used in our experiments. The used datasets come from

different domains of application: text categorization, bioinformatics, and multimedia

applications (music and image).

• The emotion dataset, presented in [101], consists of 593 songs annotated by experts

according to the emotions they generate. The emotions are: amazed-surprise,

happy-pleased, relaxing-calm, quiet-still, sad-lonely and angry-fearful. Each emo-

tion corresponds to a class. There are thus 6 classes, and each song was labeled as

1These datasets can be downloaded from http://mlkd.csd.auth.gr/multilabel.html.
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belonging to one or several classes. Each song was also described by 8 rhythmic

features and 64 timbre features, resulting in a total of 72 features. The number

of distinct label sets is equal to 27, the label cardinality is 1.868, and the label

density is 0.311.

• The scene dataset consists of 2407 natural scene images. For each image, spatial

color moments are used as features. Images are divided into 49 blocks using a 7×7

grid. The mean and variance of each band are computed corresponding to a low-

resolution image and to computationally inexpensive texture features, respectively

[8]. Each image is then transformed into a 49 × 3 × 2 = 294-dimensional feature

vector. A label set is manually assigned to each image. There are 6 different

semantic scenes: sea, sunset, trees, desert and mountains. The average number of

labels per instance is 1.074, thus the label density is 0.179 (only 7.35% of training

instances are labeled by more than one class). The number of distinct sets of

labels is equal to 15.

• The yeast dataset contains data regarding the gene functional classes of the yeast

Saccharomyces cerevisiae [39]. It includes 2417 genes each represented by 103

features. Each gene is described by the concatenation of micro-array expression

data and phylogenetic profile and is associated with a set of functional classes.

There are 14 possible classes and there exist 198 distinct label combinations. The

label cardinality is 4.237, and the label density is 0.303.

• The medical dataset consists of 978 examples each one represented by 1449 fea-

tures. It is issued from the Computational Medicine Center concerning a challenge

task on the automated processing of clinical free text. This dataset has been used

in [89]. The average cardinality is 1.245, and the label density is 0.028 with 94

distinct label sets.

• The Enron email dataset consists of 1702 examples each one represented by 1001

features. It corresponds to messages belonging to users, mostly senior manage-

ment of the Enron Corp. This dataset has been used in [89]. 753 distinct label

combinations exist in the dataset. The label cardinality is 3.378 and the label

density is 0.064.
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Table 5.1: Characteristics of datasets

Dataset Domain Number of Feature vector Number of Label Label Distinct

instances dimension labels cardinality density label sets

emotion music 593 72 6 1.868 0.311 27

scene image 2407 294 6 1.074 0.179 15

yeast biology 2417 103 14 4.237 0.303 198

medical text 978 1449 45 1.245 0.028 94

enron text 1702 1001 53 3.378 0.064 753

Table 5.2: Characteristics of the webpage categorization dataset

Number of Feature vector Number of Label Label Distinct

instances dimension labels cardinality density label sets

Arts&Humanities 5000 462 26 1.636 0.063 462

Business&Economy 5000 438 30 1.588 0.053 161

Computers&Internet 5000 681 33 1.508 0.046 253

Education 5000 550 33 1.461 0.044 308

Entertainment 5000 640 21 1.420 0.068 232

Health 5000 612 32 1.662 0.052 257

Recreation&Sports 5000 606 22 1.423 0.065 322

Reference 5000 793 33 1.169 0.035 217

Science 5000 743 40 1.451 0.036 398

Social&Science 5000 1047 39 1.283 0.033 226

Society&Culture 5000 636 27 1.692 0.063 582

Table 5.1 summarizes the characteristics of the emotion, scene, yeast, medical

and Enron datasets. We can remark that, for the medical and Enron datasets,

the dimensions of feature vectors are very large as compared to the number of

training instances. We applied the χ2 statistic approach for feature selection on

these two datasets, and we retained 20% of the most relevant features [122].

• The webpage categorization dataset has been investigated in [105][129]. The data

were collected from the “yahoo.com” domain. Eleven different webpage categoriza-

tion subproblems are considered, corresponding to 11 different categories: Arts

and Humanities, Business and Economy, Computers and Internet, Education,

Entertainment, Health, Recreation and Sports, Reference, Science, Social and

Science, and Society and Culture. Each subproblem consists of 5000 documents.

Over the 11 subproblems, the number of categories varies from 21 to 40 and the

instance dimensionality varies from 438 to 1,047. Table 5.2 shows the statistics of

the different subproblems within the webpage dataset.
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5.4 Experiments on precise data

Before presenting the results, we explain hereafter the procedures used for parameter

tuning and configuration of the proposed methods.

5.4.1 Parameter tuning

5.4.1.1 Parameter selection

DMLkNN, VERkNN and EMLkNN have one parameter in common that needs to be

optimized: the number of neighbors k. In addition, DMLkNN has the fuzziness param-

eter δ, VERkNN and DMLkNN have the discounting parameter γ that also have to

be fixed. We fixed these parameters using grid search and by focusing on the accuracy

measure. k was varied from 1 to 30, δ from 0 to k, and γ from 0 to 3 with 0.05 step.

k = 10 with δ = 2 for DMLkNN and with γ = 0.1 for VERkNN and EMLkNN seem to

be a good tuning for the proposed methods.

After five-fold cross-validation, Figure 5.1 shows the accuracy measure on the emo-

tion and yeast dataset as a function of δ for k = 10. The maximum of the accuracy

measure is achieved for δ = 2 on the both datasets. As we can see, δ = 3 can also be a

candidate.

Figures 5.2 and 5.3 show the accuracy measure on the emotion dataset as a function

of γ for k = 10, and as a function of k for γ = 0.1, using the VERkNN and EMLkNN

methods, respectively. It is clear that k = 10 and γ = 0.1 is a good parametrization

for the both methods. For VERkNN, the hybrid rule of combination was used, and

for EMLkNN, we used the conjunctive rule. We will justify this choice in the next two

sections.

5.4.1.2 Configuration of VERkNN

For VERkNN, two rules of combination can be used: the hybrid rule and/or, and

the disjunctive rule or,. There also exist two approaches to generate verity and rebuff

measures from precise labeled data: the direct and fuzzy approaches (see Section 3.4).

When using the fuzzy approach, we need to fix the number of neighbors k′ to be taken

into account in order to determine the appropriate labeling for each training instance.

Figure 5.4 shows the Accuracy measure on the emotion dataset for different values

of k′. We can remark that, for values larger than 5, parameter k′ has no significant
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Figure 5.1: The accuracy measure of DMLkNN as a function of δ for k = 10, on the

emotion dataset (top), and on the yeast dataset (bottom).

influence on the results when using the hybrid and disjunctive rules of combination.

In the following, when using the fuzzy approach to determine the verity and rebuff

distributions, the number of neighbors k′ will be fixed to 8.

Tables 5.3 and 5.4 show a comparison on the emotion and yeast datasets respectively,

between the hybrid and disjunctive rules of combination using the direct and fuzzy

labeling approaches. The conclusion that can be drawn from these results is that the

fuzzy labeling approach improves the performance of the VERkNN method, and for
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Figure 5.2: The accuracy measure of VERkNN on the emotion dataset as a function of

γ for k = 10 (top), and as function of k for γ = 0.1 (bottom).

k = 10 and γ = 0.1, the hybrid rule of combination provide the best results on the two

datasets.

5.4.1.3 Configuration of EMLkNN

For the EMLkNN method, a precisely labeled training instance (xi, Yi), is represented

by (xi, Ai, Bi), where Ai = yi, and Bi = Y i (see Section 4.6).

Tables 5.5 and 5.6 show a comparison on the emotion and yeast datasets respectively,
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Figure 5.3: The accuracy measure of EMLkNN on the emotion dataset as a function of

γ for k = 10 (top), and as function of k for γ = 0.1 (bottom).

between the consensus, conjunctive and cautious rules of combination. We can remark

that, on both datasets, the results obtained by using the consensus and the conjunctive

rules are very close, with a slight advantage to the conjunctive rule, and are better

than the results obtained when using the cautious rule. In further experiments, the

conjunctive rule of combination will be used because it is computationally faster than

the consensus rule due to its associativity propriety.
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Figure 5.4: The accuracy measure on the emotion dataset for the VERkNN algorithm as

a function of k′, using the hybrid rule (*) and disjunctive rule (o) of combination.

Table 5.3: VERkNN on the emotion dataset

VERkNN and/or VERkNN and/or VERkNN or VERkNN or

(direct approach) (fuzzy approach) (direct approach) (fuzzy approach)

Accuracy+ 0.511 0.554 0.429 0.503

Precision+ 0.605 0.666 0.433 0.539

Recall+ 0.677 0.626 0.969 0.855

F1+ 0.639 0.645 0.598 0.661

Hamming Loss− 0.249 0.222 0.447 0.313

One-Error− 0.382 0.368 0.645 0.549

Coverage− 2.314 2.296 3.214 2.988

Ranking Loss− 0.397 0.388 0.953 0.827

Average Precision+ 0.723 0.745 0.555 0.608

+(-): “the higher (smaller) the value the better the performance”.

5.4.2 Results and discussion

We compared the proposed methods with three existing multi-label classification meth-

ods that were shown to have good performances and that were reported in Chapter 1:

MLkNN [129] that is the closest to our methods, MLRBF [126] derived from radial

basis function neural networks, and Rank-SVM [39] that is based on the traditional

support vector machine. For each compared algorithm, the parameter tuning suggested
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Table 5.4: VERkNN on the yeast dataset

VERkNN and/or VERkNN and/or VERkNN or VERkNN or

(direct approach) (fuzzy approach) (direct approach) (fuzzy approach)

Accuracy+ 0.477 0.512 0.402 0.495

Precision+ 0.599 0.665 0.409 0.536

Recall+ 0.602 0.595 0.955 0.839

F1+ 0.601 0.627 0.573 0.654

Hamming Loss− 0.244 0.213 0.472 0.300

One-Error− 0.438 0.285 0.544 0.349

Coverage− 6.844 6.829 10.318 10.212

Ranking Loss− 0.284 0.285 0.885 0.721

Average Precision+ 0.705 0.724 0.476 0.546

+(-): the higher (smaller) the value, the better the performance.

Table 5.5: EMLkNN on emotion dataset

EMLkNN EMLkNN EMLkNN

(consensus rule) (conjunctive rule) (cautious rule)

Accuracy+ 0.544 0.561 0.470

Precision+
0.678 0.676 0.645

Recall+ 0.626 0.660 0.532

F1+ 0.652 0.667 0.583

Hamming Loss− 0.194 0.196 0.212

One-Error− 0.262 0.267 0.278

Coverage− 1.784 1.783 1.845

Ranking Loss− 0.165 0.166 0.175

Average Precision+
0.804 0.800 0.791

Table 5.6: EMLkNN on yeast dataset

EMLkNN EMLkNN EMLkNN

(consensus rule) (conjunctive rule) (cautious rule)

Accuracy+ 0.520 0.525 0.488

Precision+
0.692 0.688 0.682

Recall+ 0.608 0.613 0.579

F1+ 0.647 0.648 0.623

Hamming Loss− 0.197 0.198 0.206

One-Error− 0.236 0.238 0.243

Coverage− 6.522 6.486 6.614

Ranking Loss− 0.186 0.185 0.189

Average Precision+ 0.758 0.759 0.751

in the literature were used: for ML-kNN, k was set to 10 [129]; for MLRBF, the fraction

parameter was set to 0.01 and the scaling factor to 1 [126]; finally, a polynomial kernel

was used for RankSVM [39].

For all k-NN based algorithms, the Euclidean distance was used. Laplace smoothing
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was used for MLkNN and DMLkNN.

Five repetitions of ten-fold cross-validation were performed on each dataset. Tables

5.7 to 5.11 report the detailed results in terms of the different evaluation metrics for

the emotion, scene, yeast, medical and Enron datasets, respectively. On the webpage

dataset, ten-fold cross validation was performed on each subproblem, and Table 5.12

reports the average results.

For each method, the mean values of the different evaluation criteria as well as the

standard deviations (std) are mentioned in the tables. A two-tailed paired t-test at

5% significance level was performed in order to determine the statistical significance of

these results in comparison with the best performances indicated in bold. In addition,

for each dataset, the methods were ranked in decreasing order of performance. The

average ranks over the different evaluation criteria are reported in the tables.

On the emotion, scene and yeast datasets, the DMLkNN method had the best aver-

age performance, followed by EMLkNN and MLRBF. On the medical, Enron and web-

page datasets, MLRBF performed better than the other methods, followed by DMLkNN

and MLkNN.

From the presented experimental results, the following observations can be induced:

• VERkNN and EMLkNN perform better in terms of predicted-based metrics than

in terms of ranking-based metrics. These methods work by combining information

about the labeling of the nearest neighbors of each instance to classify, thus, they

address mainly the pertinence of the predicted sets of labels instead of the ranking

of all labels.

• DMLkNN performs better than MLkNN in terms of all ranking-based metrics and

on all datasets. MLkNN gives better predicted-based measures on datasets from

text categorization domain: the medical and Enron datasets.

• The proposed methods have a good performance and are more competitive with

the other algorithms on datasets with high label density, such on the emotion

and yeast datasets. In fact, the DMLkNN method takes into account label cor-

relation. Moreover, the EMLkNN and VERkNN methods handling multi-labeled

data directly, are intrinsically able to also capture relations between labels. In-

deed, these methods will perform better on datasets with high label multiplicity,

in which labels may be potentially more correlated.
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Table 5.7: Experimental results (mean±std) on the emotion dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.562±0.029◦ 0.538±0.029• 0.564±0.032 0.536±0.032• 0.548±0.029• 0.403±0.027•

Prec+ 0.691±0.032 0.647±0.028• 0.676±0.034• 0.674±0.033• 0.686±0.037◦ 0.511±0.033•

Rec+ 0.653±0.030• 0.626±0.031• 0.664±0.033 0.622±0.041• 0.639±0.032• 0.538±0.032•

F1+
0.671±0.028 0.645±0.027• 0.669±0.031◦ 0.648±0.033• 0.662±0.031• 0.524±0.029•

HLoss− 0.189±0.015 0.222±0.014• 0.196±0.017• 0.197±0.015• 0.191±0.015◦ 0.288±0.016•

OErr− 0.266±0.033• 0.368±0.043• 0.270±0.035• 0.285±0.035• 0.255±0.045 0.427±0.046•

Cov−
1.762±0.111 2.281±0.147• 1.784±0.110• 1.803±0.115• 1.765±0.120◦ 2.425±0.129•

RLoss− 0.161±0.019• 0.386±0.034• 0.168±0.021• 0.167±0.021• 0.159±0.021 0.278±0.020•

AvPrec+ 0.804±0.019◦ 0.745±0.027• 0.801±0.020◦ 0.794±0.022• 0.809±0.024 0.692±0.021•

Av Rank 1.5 4.6 2.5 3.8 2.1 5.8

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

Table 5.8: Experimental results (mean±std) on the scene dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.676±0.015• 0.639±0.017• 0.706±0.015 0.668±0.020• 0.631±0.016• 0.436±0.015•

Prec+ 0.704±0.017• 0.659±0.019• 0.735±0.016 0.695±0.021• 0.652±0.017• 0.452±0.018•

Rec+ 0.677±0.015• 0.772±0.017 0.707±0.015• 0.687±0.024• 0.644±0.017• 0.661±0.017•

F1+ 0.690±0.016• 0.687±0.018• 0.716±0.016 0.683±0.023• 0.649±0.017• 0.508±0.017•

HLoss− 0.084±0.004 0.120±0.004• 0.092±0.004• 0.087±0.003◦ 0.086±0.003◦ 0.163±0.004•

OErr− 0.219±0.017• 0.319±0.016• 0.246±0.015• 0.228±0.016• 0.206±0.015 0.298±0.016•

Cov− 0.461±0.035◦ 0.725±0.040• 0.527±0.030• 0.476±0.035• 0.451±0.041 1.187±0.043•

RLoss− 0.071±0.007 0.160±0.009• 0.098±0.007• 0.077±0.009◦ 0.072±0.008◦ 0.120±0.010•

AvPrec+ 0.869±0.010◦ 0.804±0.010• 0.853±0.009• 0.865±0.009• 0.876±0.009 0.798±0.011•

Av Rank 2.1 4.3 2.7 3.1 2.8 5.7

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

5.5 Experiments on imperfect data

Each of these datasets was constructed in such a way that each instance xi is assigned

a well-known set of labels Yi. This choice may sometimes be questioned since in some

cases, as with the emotion and scene datasets, there is no ground truth and the data

have been labeled subjectively by one or several experts. In such a situation, uncertainty

in class labels will inevitably exist due to conflicts between experts or lack of confidence

that an expert may express. The veristic variable framework and the proposed evidential

set-valued formalism allow us to represent and exploit expert knowledge. To assess the
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Table 5.9: Experimental results (mean±std) on the yeast dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.511±0.011• 0.512±0.010• 0.525±0.012 0.508±0.014• 0.510±0.011• 0.474±0.019•

Prec+ 0.726±0.014 0.665±0.010• 0.692±0.013• 0.724±0.015• 0.703±0.013• 0.481±0.085•

Rec+ 0.577±0.012• 0.595±0.012• 0.613±0.012 0.578±0.017• 0.594±0.012• 0.541±0.066•

F1+ 0.613±0.011• 0.627±0.010• 0.648±0.011 0.612±0.014• 0.616±0.011• 0.502±0.052•

HLoss− 0.192±0.005 0.229±0.005• 0.198±0.005• 0.194±0.005◦ 0.197±0.005• 0.204±0.010•

OErr− 0.226±0.021 0.285±0.015• 0.238±0.016• 0.230±0.017◦ 0.239±0.019• 0.241±0.029•

Cov−
6.240±0.104 6.829±0.132• 6.486±0.124• 6.275±0.100• 6.489±0.136• 7.027±0.489•

RLoss− 0.165±0.007 0.284±0.011• 0.185±0.007• 0.167±0.006◦ 0.175±0.008• 0.189±0.015•

AvPrec+ 0.770±0.010 0.724±0.009• 0.759±0.008• 0.765±0.010• 0.758±0.011• 0.752±0.022•

Av Rank 2 4.3 2.6 2.9 3.4 5.6

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

Table 5.10: Experimental results (mean±std) on the medical dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.548±0.031• 0.546±0.023• 0.628±0.035• 0.598±0.038• 0.689±0.029 0.462±0.042•

Prec+ 0.607±0.035• 0.596±0.025• 0.694±0.037• 0.657±0.041• 0.713±0.031 0.502±0.039•

Rec+ 0.558±0.030• 0.723±0.029 0.644±0.036• 0.623±0.038• 0.702±0.025◦ 0.549±0.037•

F1+ 0.571±0.032• 0.638±0.024• 0.656±0.036• 0.629±0.039• 0.709±0.027 0.520±0.037•

HLoss− 0.015±0.001• 0.028±0.002• 0.017±0.002• 0.016±0.001• 0.011±0.001 0.204±0.004•

OErr− 0.251±0.029• 0.474±0.037• 0.266±0.036• 0.252±0.026• 0.141±0.024 0.241±0.039•

Cov− 2.664±0.447• 9.927±0.982• 3.261±0.451• 2.719±0.482• 1.458±0.296 4.027±0.786•

RLoss− 0.040±0.009• 0.551±0.031• 0.101±0.016• 0.041±0.008• 0.020±0.004 0.189±0.021•

AvPrec+ 0.806±0.023• 0.522±0.029• 0.797±0.021• 0.802±0.019• 0.896±0.014 0.752±0.032•

Av Rank 3.1 4.8 3.2 3.1 1.1 5.5

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

performances of the proposed methods in such situations, we randomly simulated an

imperfect labeling process in order to generate imperfectly labeled data from precisely

labeled ones.

5.5.1 Labeling process

Let Yi ⊆ Y be the true label set of an instance xi, and let yi = (yi1, . . . , yiQ) be the

vector of {−1, 1}Q such that yiq = 1 if ωq ∈ Yi and yiq = −1 otherwise. For each

instance xi and each class ωq, we generated a probability of error piq = p′iq/2, where

p′iq was taken from a beta distribution with parameters a = b = 0.5 (this is a bimodal

distribution with modes at 0 and 1), and we changed yiq to −yiq with probability piq,
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Table 5.11: Experimental results (mean±std) on the Enron dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.341±0.037• 0.319±0.018• 0.361±0.016• 0.352±0.029• 0.408±0.021 0.269±0.044•

Prec+ 0.621±0.048• 0.529±0.030• 0.568±0.025• 0.615±0.030• 0.643±0.025 0.491±0.083•

Rec+ 0.349±0.037• 0.363±0.023• 0.401±0.019• 0.393±0.032• 0.486±0.016 0.341±0.061•

F1+ 0.427±0.037• 0.414±0.019• 0.444±0.018• 0.439±0.030• 0.553±0.018 0.398±0.064•

HLoss− 0.052±0.001• 0.058±0.001• 0.055±0.002• 0.053±0.001• 0.047±0.001 0.085±0.012•

OErr− 0.308±0.024• 0.438±0.053• 0.341±0.028• 0.310±0.029• 0.278±0.018 0.850±0.269•

Cov−
13.134±0.586 29.265±1.011• 20.293±0.916• 13.199±0.588◦ 14.206±0.713• 26.804±2.712•

RLoss− 0.091±0.006 0.486±0.027• 0.258±0.022• 0.092±0.006◦ 0.095±0.005◦ 0.273±0.070•

AvPrec+ 0.630±0.016• 0.365±0.024• 0.594±0.015• 0.629±0.017• 0.688±0.014 0.264±0.104•

Av Rank 2.5 4.8 3.3 2.7 1.4 6

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

Table 5.12: Experimental results (mean±std) on the webpage dataset

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM

Acc+ 0.296±0.204• 0.323±0.168• 0.339±0.168◦ 0.285±0.184• 0.398±0.146 0.234±0.171•

Prec+ 0.351±0.257• 0.358±0.206• 0.399±0.193◦ 0.340±0.227• 0.462±0.171 0.228±0.212•

Rec+ 0.308±0.205• 0.315±0.173• 0.353±0.188◦ 0.291±0.189• 0.407±0.153 0.276±0.186•

F1+ 0.319±0.219• 0.322±0.181• 0.362±0.182◦ 0.304±0.198• 0.421±0.156 0.249±0.195•

HLoss− 0.041±0.014• 0.054±0.022• 0.056±0.023• 0.043±0.015• 0.039±0.013 0.043±0.014•

OErr− 0.466±0.165• 0.066±0.213• 0.797±0.262• 0.474±0.157• 0.375±0.120 0.440±0.143•

Cov− 4.069±1.255◦ 9.021±3.662• 12.217±4.985• 4.097±1.237◦ 4.689±1.403 7.508±2.396•

RLoss− 0.099±0.046 0.653±0.185• 0.761±0.196• 0.102±0.045◦ 0.107±0.039◦ 0.193±0.065•

AvPrec+ 0.630±0.120◦ 0.423±0.159• 0.358±0.162• 0.625±0.116◦ 0.688±0.092 0.601±0.117•

Av Rank 2.8 4.1 4.2 3.8 1.2 4.5

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

resulting in a noisy label vector y′
i = (y′i1, . . . , y

′
iQ). Each number piq represents the

probability that the membership of instance xi to class ωq has been wrongly assessed

by the expert. This number may be turned into a degree of confidence ciq by the

transformation:

ciq = 1 − 2piq,

where ciq = 1 means that the expert is totally sure about the membership (y′iq = 1)

or non membership (y′iq = −1) of instance xi to class ωq, while ciq = 0 means that

he is totally undecided about this membership. We assume that these numbers can

be provided by the expert, which allows us to label each instance xi by a pair of sets

(Ai, Bi), or by a pair of verity and rebuff distributions (Veri, Rebuffi), as explained
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below.

Labeling xi by (Ai, Bi) Using the degrees of confidence, we derive the imprecise label

vector y′′
i = (y′′i1, . . . , y

′′
iQ) from y′

i as follows:

y′′iq =

{
y′iq if ciq ≥ 0.6,

0 otherwise.

Such a vector of {−1, 0, 1}Q encodes an ordered pair (Ai, Bi) of disjoint subsets of Y

such that: {
Ai = {ωq ∈ Ω | y′′iq = 1},

Bi = {ωq ∈ Ω | y′′iq = −1}.

The set Ai then contains the classes ωq that can be definitely assigned to the instance

xi with a high degree of confidence (ciq ≥ 0.6), while Bi is the set of classes which are

definitely not assigned to xi. The remaining set Y \ (Ai ∪ Bi) contains those classes

about which the expert is undecided (ciq < 0.6).

Labeling xi by (Veri,Rebuffi) The verity and rebuff distributions of each instance

xi are generated as follows:

Veri(ωq) =

{
ciq if y′iq = 1

0 otherwise.

Rebuffi(ωq) =

{
ciq if y′iq = −1

0 otherwise.

Veri(ωq) represents the degree of confidence of the expert on assigning class ωq to

instance xi, while Rebuffi(ωq) is the degree of confidence of the expert on not assigning

ωq to xi.

5.5.2 Results and discussions

As in the previous experiments, the proposed methods were compared to MLkNN,

MLRBF and RankSVM. Each method was parameterized as in the case of precise data.

After simulated the labeling process as explained in Subsection 5.5.1, noisy data,

where each instance xi is labeled by y′
i, and imprecise data, where each instance xi

is labeled by (Ai, Bi) for EMLkNN or by (Veri, Rebuffi) for VERkNN, were generated

from each benchmark dataset.
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Table 5.13 shows a comparative study between the different methods on noisy and

imprecise data generated from the emotion dataset over ten trials. EMLkNN and

VERkNN were applied on both noisy and imprecise data, while DMLkNN, MLkNN,

MLRBF and RankSVM were only applied on the noisy data as it is not clear how im-

precisely labeled data could be handled using these methods. It is clear that, in terms

of the different evaluation metrics, VERkNN and EMLkNN perform better than the

other methods with a significant advantage to the EMLkNN algorithm. We can also

remark that the performances of EMLkNN and VERkNN were clearly improved when

applied on the imprecise data instead of the noisy data. For example, in terms of the

accuracy measure, the improvement was about 61% for EMLkNN, and about 23% for

VERkNN. Similar results were obtained on the other datasets.

Figures 5.5 to 5.10 show the accuracy measure on the emotion, scene, yeast, med-

ical, Enron and webpage datasets, respectively. For the webpage dataset, noisy and

imprecise data were generated from each subproblem and the average performance out

of the 11 different categorization problems was reported. For the other datasets, the

performances for 10 different generations of noisy and imprecise data were mentioned.

EML-kNN obviously dominates DMLkNN, MLkNN, MLRBF and RankSVM. VERkNN

also performs better than the classical methods on the different datasets, but is always

outperformed by EMLkNN.

These results demonstrate the ability of the proposed evidence formalism for set-

valued variables to handle imprecisely labeled data in multi-label classification tasks.

In fact, when the available learning data have been labeled subjectively by a pool of

experts, noisy labels will be inevitably assigned to some instances due to conflicts or lack

of knowledge. If an expert gives a degree of confidence about each assigned label, by

using the EMLkNN method we are able to avoid risks of assigning wrongly some labels

to an instance xi when the degrees of confidence are not high. That explains the good

performances of EMLkNN. In a similar manner, the VERkNN algorithm is also able to

represent the knowledge given by the expert about the labeling of each instance in a

proper manner close to the human language. This knowledge is represented by a verity

distribution of positive information, and a rebuff distribution of negative information.

However, the veristic formalism has not allowed us to reach the same level of performance

as the set-valued evidence formalism.
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Table 5.13: Experimental results on the imperfectly labeled emotion dataset

Noisy data Imprecise data

DMLkNN VERkNN EMLkNN MLkNN MLRBF RankSVM VERkNN EMLkNN

Acc+ 0.282• 0.277• 0.271• 0.291• 0.271• 0.288• 0.339• 0.438

Prec+ 0.341• 0.331• 0.334• 0.342• 0.332• 0.333• 0.427• 0.560

Rec+ 0.523• 0.519• 0.524• 0.516• 0.515• 0.518• 0.558◦ 0.575

F1+ 0.424• 0.421• 0.408• 0.428• 0.404• 0.431• 0.484• 0.567

HLoss− 0.503• 0.522• 0.498• 0.508• 0.501• 0.535• 0.402• 0.284

OErr− 0.665• 0.705• 0.669• 0.692• 0.665• 0.677• 0.563• 0.352

Cov− 3.429• 3.522• 3.479• 3.444• 3.488• 3.525• 3.089• 2.479

RLoss− 0.481• 0.667• 0.489• 0.492• 0.493• 0.495• 0.472• 0.314

AvPrec+ 0.534• 0.529• 0.528• 0.523• 0.529• 0.518• 0.608• 0.728

+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance as compared to the best result in bold,

based on two-tailed paired t-test at 5% significance.

5.6 Conclusion

In this chapter, we have presented a comparison between the proposed multi-label classi-

fication methods and with some state-of-the-art methods. Different benchmark datasets

and several evaluation criteria were used in the experiments. In our study, we investi-

gated the cases of precise and impefect (noisy and imprecise) data.

In the case of precise data, the proposed methods are competitive with the other

compared algorithms. We have focused out that the VERkNN and EMLkNN algorithms

perform better in terms of predicted-based metrics than in terms of ranking-based met-

rics, and that they are more competitive on datasets with high label density. By taking

into account the interdependencies between labels, the experiments demonstrate that

DMLkNN improves the performance of the probabilistic k-NN rule for multi-label learn-

ing. DMLkNN performs better than MLkNN in terms of all ranking-based metrics and

on all datasets.

In the case of noisy and imprecisely labeled data, VERkNN and EMLkNN perform

significantly better than the other methods and on the different datasets, with a clear

advantage to EMLkNN. These two methods seem to be able to handle practical sit-

uations where data have been labeled by experts, and allow us to model and exploit

expert knowledge.
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Figure 5.5: Box plots of the accuracy measure on the imperfectly labeled emotion dataset.
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Figure 5.6: Box plots of the accuracy measure on the imperfectly labeled scene dataset.
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Figure 5.7: Box plots of the accuracy measure on the imperfectly labeled yeast dataset.
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Figure 5.8: Box plots of the accuracy measure on the imperfectly labeled medical dataset.
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Figure 5.9: Box plots of the accuracy measure on the imperfectly labeled Enron dataset.
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Figure 5.10: Box plots of the accuracy measure on the imperfectly labeled webpage

dataset.

125

noisy_enron_2.eps
noisy_webpage_2.eps


Chapter 5: Experiments

126



Conclusion and Perspectives

In this thesis, we addressed the problem of multi-label learning that become increas-

ingly required by many real-world applications such as, text categorization, semantic

scene analysis, bioinformatics, and music classification, where it is very frequent that

instances belong to several classes at the same time. We have shown that there exist

three main approaches for multi-label learning: Binary Relevance, Label Ranking, and

Label Powerset. The basic idea of theses approaches consists in transforming a multi-

label learning problem into one or more single-label learning problems. Taking label

correlation into account has been shown to be a key challenge in multi-label learning,

and it may improve the performance of multi-label classifiers.

A first method called DMLkNN has been introduced, based on a Bayesian learning.

This method generalizes the state-of-the-art MLkNN algorithm by using a maximum a

posteriori principle that models the relations between labels through statistical infor-

mation extracted from the neighborhoods of instances to classify. An application on

a simulated dataset asserted the ability of our method to capture correlation among

labels, and experimental results on several benchmark datasets demonstrated the ef-

fectiveness of our method as compared to MLkNN and to other multi-label classifiers

according to different evaluation metrics.

By the fact that class labels of multi-labeled data can be considered as veristic

variables defined as fuzzy set-valued variables assuming multiple values simultaneously,

the VERkNN method based on the theory of veristic variables has been proposed.

In this method, the class label of each instance is represented by a verity distribution

representing positive information about the membership of that instance to the different

possible classes, and a rebuff distribution representing negative information.

The problem of multi-label learning has also been studied in the framework of the

Dempster-Shafer theory. An evidence formalism to quantity uncertainty about set-
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valued variables in general has been proposed, and has been applied in this thesis

to build the EMLkNN method for multi-label classification. The basic idea of this

formalism relies on the definition of the special lattice (C(Ω),⊆) on which, most notions

from Dempster-Shafer theory have been expressed with only a moderate increase of

complexity as compared to the case of handling single-valued variables. This formalism

has been shown to be more general than previous attempts to apply the Dempster-

Shafer framework to represent uncertainty about set-valued variables. It has also been

shown to be somewhat similar to, but arguably more general and flexible than other

approaches introduced in the possibilistic framework; the veristic variable theory is one

of them.

We have addressed the problem of learning from data with imprecise labels. Such

problems occur in practical situations where data have been labeled by experts in the

absence of ground truth. Due to conflits between experts and lack of confidence that

they may expressed, it will be quite difficult to assign a precise set of labels to each

instance. It has been shown that the VERkNN and EMLkNN methods allow us to

model expert knowledge and represent imprecise labeling. The experimental results

demonstrated the effectiveness of these methods in such kind of problems. VERkNN

and EMLkNN perform significantly better than the other compared methods on all

datasets, with a clear advantage to EMLkNN.

Perspectives

Some ideas proposed in this thesis may be improved and additional work in some re-

search directions remains to be done. In the following paragraphs, we sketch a few of

them.

As stated before, the experimental results proved that VERkNN and EMLkNN

based on the veristic variable theory and the proposed set-valued evidence formal-

ism respectively, are efficient methods to answer the problem of multi-label learning

where data are labeled in an imprecise manner. It will be interesting to demonstrate

theoretically the pertinence of these approaches, and to find real-world applications

where applying these methods is specially adequate. Similarly, it remains to demon-

strate mathematically the improvement in the performance of DMLkNN as compared

to MLkNN in several datasets.
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In this thesis, we addressed the problem of supervised multi-label learning with

both precise and imprecise labeled data. This work may be pursued by investigating

the problem of semi-supervised multi-label learning to manipulate both labeled and

unlabeled instances at the same time. The problem of unsupervised multi-label learning

seems also to be an important problem to resolve in order to handle totally unlabeled

data including the special case where we have no prior knowledge about the target

classes, i.e. multi-label clustering.

The k-nearest neighbor rule was used in this thesis to build multi-label classifiers

based on the veristic variable and set-valued evidence frameworks. It will be interesting

to develop other multi-label classification methods based on more sophisticated base

classifiers, such as neural networks, support vector machines and linear discriminant

analysis, conjunctively with these frameworks. In addition, we can also study the case

of using an ensemble of multi-label classifiers and aggregating them in a probabilistic,

possibilistic or evidential framework. It will be also interesting to study the problems of

hierarchical and multi-instance multi-label learning under the frameworks cited above.

Finally, in Chapter 4, we have shown that most basic notions from the theory of

belief functions can be defined on the special frame C(Ω), such as plausibility and belief

measures, canonical decomposition, combination of pieces of knowledge, etc. Other no-

tions still not being investigated in order to show the possibility of extending them to the

special frame, such as, conditioning and deconditioning, expressing partial knowledge

on several set-valued variables taking values in different domains and generalizing the

notions of marginalization and vacuous extension, studying informational comparisons

of belief functions on set-valued variable as the plausibility ordering, specialization and

generalization, etc [99]. It will be also interesting to find applications of the proposed

set-valued evidence formalism other than multi-label classification. Querying databases

and constructing a question-answering system may be a potential application [120].
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