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Neural networks

A class of learning methods that was developed separately in
different fields – statistics and artificial intelligence – based on
essentially identical models
The central idea is to extract linear combinations of the inputs as
derived features, and then model the target as a nonlinear function
of these features
The result is a powerful learning method, with widespread
applications in many fields
There exist many neural network models. Here we describe the most
widely used “vanilla” neural net, sometimes called the single hidden
layer back-propagation network, or single layer perceptron
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Multi-layer architecture

A neural network is a two-stage regression or classification model,
typically represented by a network diagram as in the next slide
It is composed of three layers: input , hidden and output
This network applies both to regression or classification

For regression, typically K = 1 and there is only one output unit Y1
at the top. However, these networks can handle multiple quantitative
responses in a seamless fashion, so we will deal with the general case
For K -class classification, there are K units at the top, with the kth
unit modeling the probability of class k . There are K target values
Yk , k = 1, . . . ,K , each being coded as a 0− 1 variable for the kth
class
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Graphical representation
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Propagation equations

Derived features Zm are created from linear combinations of the
inputs, and then the target Yk is modeled as a function of linear
combinations of the Zm:

Zm = σ(α0m + αT
mX ), m = 1, . . . ,M,

Tk = β0k + βTk Z , k = 1, . . . ,K ,
fk(X ) = gk(T ), k = 1, . . . ,K

where Z = (Z1,Z2, . . . ,ZM), and T = (T1,T2, . . . ,TK )

Terminology
αmj : connection weight between input unit j and hidden unit m
βkm: connection weight between hidden unit m and output unit k
α0m, β0k : bias terms
σ: hidden unit activation function
gk : output activation functions



Neural network model Learning Practical issues Examples

Activation function

The activation function σ(v) is usually chosen to be the sigmoid

σ(v) =
1

1+ e−v

(see next slide)
Variant: sometimes the output of hidden unit m is defined using a
Gaussian radial basis function as

Zm = exp(−γm‖X − αm‖2)

We then have a radial basis function network
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Sigmoid activation function

Plot of σ(sv) as a function of v for s = 0.5 (blue curve), s = 1 (red
curve) and s = 10 (purple curve). The scale parameter s controls the
“activation rate”
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Output function

The output function gk(T ) allows a final transformation of the
vector of outputs T
For regression we typically choose the identity function

gk(T ) = Tk

Early work in K -class classification also used the identity function,
but this was later abandoned in favor of the softmax function

gk(T ) =
exp(Tk)∑K
`=1 exp(T`)

This is exactly the transformation used in the multi-class logistic
regression model; it produces positive estimates that sum to one
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Why “neural” networks?

The name “neural networks” derives from the fact that they were
first developed as models for the human brain
Each unit represents a neuron, and the connections represent
synapses
In early models, the neurons fired when the total signal passed to
that unit exceeded a certain threshold
In the model above, this corresponds to use of a step function for
σ(Z ) and gk(T )

Later the neural network was recognized as a useful tool for nonlinear
statistical modeling, and for this purpose the step function is not
smooth enough for optimization. Hence, the step function was
replaced by the smoother sigmoid function
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Learning problem

The neural network model has unknown parameters, often called
weights, and we seek values for them that make the model fit the
training data well
We denote the complete set of weights by θ, which consists of

M(p + 1) hidden layer weights {α0m, αm;m = 1, 2, . . . ,M}
K (M + 1) output layer weights {β0k , βk ; k = 1, 2, . . . ,K}

To train a neural network, we need a measure of fit, or error function
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Error functions

For regression, we use sum-of-squared errors

R(θ) =
n∑

i=1

K∑
k=1

(yik − fk(xi ))
2

For classification we use either squared error or cross-entropy
(deviance)

R(θ) = −
n∑

i=1

K∑
k=1

yik log fk(xi )

and the corresponding classifier is G (x) = argmaxk fk(x)
With the softmax activation function and the cross-entropy error
function, the neural network model is exactly a linear logistic
regression model in the hidden units, and all the parameters are
estimated by maximum likelihood



Neural network model Learning Practical issues Examples

Back-propagation algorithm
Principle

The generic approach to minimizing R(θ) is by gradient descent,
called back-propagation in this setting
Because of the compositional form of the model, the gradient can be
easily derived using the chain rule for differentiation
This can be computed by a forward and backward sweep over the
network, keeping track only of quantities local to each unit
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Back-propagation algorithm
Gradient calculation

Let zmi = σ(α0m + αT
mxi ) and let zi = (z1i , z2i , . . . , zMi )

Then we have R(θ) =
∑n

i=1 Ri with Ri =
∑K

k=1(yik − fk(xi ))
2

Derivatives

∂Ri

∂βkm
=

∂Ri

∂fk(xi )

∂fk(xi )

∂βkm

= −2(yik − fk(xi ))g
′
k(β

T
k zi )zmi

∂Ri

∂αmj
= −

K∑
k=1

∂Ri

∂fk(xi )

∂fk(xi )

∂zmi

∂zmi

∂αmj

= −
K∑

k=1

2(yik − fk(xi ))g
′
k(β

T
k zi )βkmσ

′(αT
mxi )xij
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Back-propagation algorithm
Weight updates

Given these derivatives, a gradient descent update at the t + 1st
iteration has the form

β
(t+1)
km = β

(t)
km − ηt

n∑
i=1

∂Ri

∂β
(t)
km

α
(t+1)
mj = α

(t)
mj − ηt

n∑
i=1

∂Ri

∂α
(t)
mj

where ηt is the learning rate, discussed below
How to compute the gradient efficiently?
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Back-propagation algorithm
Back-propagation equations

We can write
∂Ri

∂βkm
= δkizmi ,

∂Ri

∂αmj
= smixij

The quantities δki and smi are “errors” from the current model at the
output and hidden layer units, respectively. They satisfy

smi = σ′(αT
mxi )

K∑
k=1

βkmδki

Using this, the weight updates can be implemented with a two-pass
algorithm:

1 In the forward pass, the current weights are fixed and the predicted
values fk(xi ) are computed

2 In the backward pass, the errors δki are computed, and then
back-propagated to give the errors smi

Both sets of errors are then used to compute the gradients for the
weight updates
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Advantages of back-propagation

The advantages of back-propagation are its simple, local nature
In the back propagation algorithm, each hidden unit passes and
receives information only to and from units that share a connection
Hence it can be implemented efficiently on a parallel architecture
computer
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Batch vs. online training

The previous update equations are a kind of batch learning, with the
parameter updates being a sum over all of the training cases
Learning can also be carried out online – processing each observation
one at a time, updating the gradient after each training case, and
cycling through the training cases many times
In this case, the update equations become

β
(t+1)
km = β

(t)
km − ηt

∂Rt

∂β
(t)
km

α
(t+1)
mj = α

(t)
mj − ηt

∂Rt

∂α
(t)
mj

A training epoch refers to one sweep through the entire training set
Online training allows the network to handle very large training sets,
and also to update the weights as new observations come in
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Learning rate tuning and optimization algorithms

The learning rate ηt for batch learning was originally taken to be a
constant; it can also be optimized by a line search that minimizes the
error function at each update
With online learning ηt should decrease to zero as the iteration
t →∞ to ensure convergence (e.g., ηt = 1/t)
Back-propagation can be very slow, and for that reason is usually not
the method of choice

Second-order techniques such as Newton’s method are not attractive,
because the second derivative matrix of R (the Hessian) can be very
large
Better approaches to fitting include conjugate gradients and variable
metric methods, which avoid explicit computation of the second
derivative matrix while still providing faster convergence
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The “art” of neural network training

There is quite an art in training neural networks
The model is generally overparametrized, and the optimization
problem is nonconvex and unstable, unless certain guidelines are
followed
Here, we summarize some of the important issues
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Starting Values

If the weights are near zero, then the operative part of the sigmoid is
roughly linear, and hence the neural network collapses into an
approximately linear model
Usually starting values for weights are chosen to be random values
near zero. Hence the model starts out nearly linear, and becomes
nonlinear as the weights increase
Use of exact zero weights leads to zero derivatives and perfect
symmetry, and the algorithm never moves
Starting instead with large weights often leads to poor solutions



Neural network model Learning Practical issues Examples

Overfitting
Early stopping

Often neural networks have too many weights and will overfit the
data at the global minimum of R
In early developments of neural networks, an early stopping rule was
used to avoid overfitting: we train the model only for a while, and
stop well before we approach the global minimum
Since the weights start at a highly regularized (linear) solution, this
has the effect of shrinking the final model toward a linear model
A validation dataset is useful for determining when to stop, since we
expect the validation error to start increasing
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Overfitting
Weight decay

A more explicit method for regularization is weight decay, which is
analogous to ridge regression used for linear models
We add a penalty to the error function R(θ) + λJ(θ), with

J(θ) =
∑
k,m

β2
km +

∑
m,j

α2
mj

The hyper-parameter λ is usually determined by cross-validation
Other forms for the penalty have been proposed, for example,

J(θ) =
∑
k,m

β2
km

1+ β2
km

+
∑
m,j

α2
mj

1+ α2
mj

known as the weight elimination penalty. This has the effect of
shrinking smaller weights more than weight decay does
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Example
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Heat maps of estimated weights
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Scaling of the Inputs

Since the scaling of the inputs determines the effective scaling of the
weights in the bottom layer, it can have a large effect on the quality
of the final solution
It is best to standardize all inputs to have mean zero and standard
deviation one
This ensures all inputs are treated equally in the regularization
process, and allows one to choose a meaningful range for the random
starting weights
With standardized inputs, it is typical to take random uniform
weights over the range [−0.7,+0.7]
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Simulated data

Model Y = f (X ) + ε with

f (X ) = σ(aT1 X ) + σ(aT2 X ),

X = (X1,X2), a1 = (3, 3), a2 = (3,−3), Var(f (X ))/Var(ε) = 4
Training sample of size 100, a test sample of size 10,000
Neural networks with weight decay and various numbers of hidden
units
Average test error for each of 10 random starting weights
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Results without and with weight decay
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Influence of the weight decay hyper-parameter
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Example with the nnet package

library(’MASS’)
mcycle.data<-data.frame(mcycle,x=scale(mcycle$times))
test.data<-data.frame(x=seq(-2,3,0.01))

library(’nnet’)

nn1<- nnet(accel ˜ x, data=mcycle.data, size=2, linout = TRUE, decay=0)
pred1<- predict(nn1,newdata=test.data)

nn2<- nnet(accel ˜ x, data=mcycle.data, size=10, linout = TRUE, decay=0)
pred2<- predict(nn2,newdata=test.data)

nn3<- nnet(accel ˜ x, data=mcycle.data, size=10, linout = TRUE, decay=1)
pred3<- predict(nn3,newdata=test.data)
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Results
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Selection of λ by 10-fold cross-validation
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Conclusions

Powerful and very general approach for regression and classification
Training a neural network implies solving a non-convex optimization
problem with a large number of parameter: computer-intensive
approach
Neural networks are especially effective in settings where prediction
without interpretation is the goal
They are less effective for problems where the goal is to describe the
physical process that generated the data and the roles of individual
inputs. The difficulty of interpreting these models has limited their
use in fields like medicine, where interpretation of the model is very
important
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