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Abstract

The transferable belief model is a subjectivist model of uncertainty in which an agent’s beliefs at a
given time are modeled using the formalism of belief functions. Belief functions that enter the model
are usually either elicited from experts, or must be constructed from observation data. There are,
however, few simple and operational methods available for building belief functions from data. Such
a method is proposed in this paper. More precisely, we tackle the problem of quantifying beliefs held
by an agent about the realization of a discrete random variable X with unknown probability distri-
bution PX , having observed a realization of an independent, identically distributed random sample
with the same distribution. The solution is obtained using simultaneous confidence intervals for mul-
tinomial proportions, several of which have been proposed in the statistical literature. The proposed
solution verifies two ‘‘reasonable’’ properties with respect to PX : it is less committed than PX with
some user-defined probability, and it converges towards PX in probability as the size of the sample
tends to infinity. A general formulation is given, and a useful approximation with a simple analytical
expression is presented, in the important special case where the domain of X is ordered.
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1. Introduction

Since its foundation in the late 1960s and in the 1970s [6,23,29], the Dempster–Shafer
theory of belief functions has been widely used as a conceptual framework for modeling
partial knowledge and reasoning under uncertainty. Solving a real-world problem in this
framework typically involves two steps: modeling each piece of information using a belief
function on a suitable domain, and manipulating the resulting belief functions using such
operations as marginalization, vacuous extension, and Dempster’s rule of combination.
Whereas many tools have been developed for the latter step (including, e.g., algorithms
for propagation of evidence in belief function networks [26,27], and the generalized Bayes-
ian theorem (GBT) for inverting conditional beliefs [31]), modeling initial information
using belief functions is still a challenge in many applications.

In practice, the two main sources of partial knowledge are human experts and observa-
tion data. Methods for the elicitation of belief functions from experts have been proposed
by Wong and Lingras [41], Bryson and Mobolurin [4] and Dubois et al. [11], among oth-
ers. In essence, these methods elicit weak information from the experts (such as preference
relations [41], belief ratio intervals [4], or pignistic probabilities [32,11]), and build a belief
function that is consistent with this information.

In most applications, however, a significant part of the available information comes
from statistical data, and it is crucial to be able to model such information in the belief
functions framework. The first application of belief functions was indeed statistical infer-
ence about parametric models [6–8]. Shafer [24] describes several distinct approaches to
this problem, among which the approach initially proposed by Dempster, based on pivotal
quantities, the likelihood-based approach exposed in Shafer’s book [23] (see also the dis-
cussions in [37,40]), and Smets’ method based on the GBT. Principles of statistical infer-
ence within the theory of Hints, an interpretation of Dempster–Shafer theory closely
related to Dempster’s model, are exposed in [19, Chapter 9].

The specific problem addressed in this paper is the following. We consider a population
X, each element x of which is described by a discrete observable characteristic
x 2 X ¼ fn1; . . . ; nKg. Individuals are randomly sampled from X according to some prob-
ability measure l. The mapping X : x! x is thus a random variable, with unknown prob-
ability distribution1 PX defined by PX ðAÞ ¼ lðX�1ðAÞÞ for all A � X. Having drawn n

elements with replacement (or without replacement in the case of an infinite population),
we have observed a realization x1, . . . ,xn of an independent, identically distributed (iid)
random sample X1, . . . ,Xn with parent distribution PX . We want to assess our degrees
of belief concerning the realization of X that will be observed when we shortly draw an
additional individual from X. A classical paradigm for this problem is that of an urn con-
taining balls of different colors. Having observed the colors of n balls randomly taken from
the urn with replacement, we want to assess our beliefs concerning the color of the next
ball.

The conceptual framework adopted in this paper will be based on the transferable belief
model (TBM), a nonprobabilistic, subjectivist interpretation of the Dempster–Shafer
theory of belief functions [35]. We shall thus assume the beliefs of a rational agent to be
1 In this paper, the symbol P will be used to denote probability distributions of random variables and, more
generally, probabilities interpreted as long-term frequencies of events in repeatable random experiments.
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representable by a belief function, independently from any underlying probabilistic model
(a major difference with Dempster’s original model [30]). In particular, we shall not regard
a belief function as the lower envelope of a family of probability distributions, a view that
is known to be incompatible with Dempster’s rule of combination and, consequently, with
the TBM [25,30]. We shall, however, for the particular problem at hand, define a certain
form of consistency between the belief function of interest and a lower probability mea-
sure, as will be shown below. Basic knowledge of the mathematics of belief functions
and their interpretation in the TBM will be assumed in this paper. The reader is referred
to Shafer’s book [23] and to recent presentations of the TBM [33] for complete coverings
of these topics.

The problem of inference from binomial and, more generally, multinomial data was
originally addressed in the belief function framework by Dempster [6,9,8]. Dempster’s
solution was later recovered by Kohlas and Monney [19, p. 261] in the Hint Theory frame-
work (an interpretation of Dempster–Shafer theory close to Dempster’s model), and in the
TBM framework [32]. This solution will first be briefly recalled in Section 2, together with
an alternative approach, the imprecise Dirichlet model, introduced by Walley [38] in the
imprecise probability framework (Walley’s solution happens to be a belief function).
Our method will then be introduced in Section 3, and an approximate analytical solution
for the case of ordered data will be presented in Section 4. Finally, Section 5 will conclude
the paper.

2. Review of previous work

2.1. Dempster’s approach

2.1.1. Binomial case

Belief functions were introduced by Dempster as part of a statistical inference frame-
work proposed as an alternative to Bayesian methods and to Fisher’s fiducial method
[6]. One of the first applications of this new approach concerned binomial sampling with
a continuous parameter p, and general multinomial sampling with a finite number of con-
templated hypotheses [6]. The case of trinomial sampling was treated in a later paper [8],
and some mathematical problems arising in the context of the general multinomial sam-
pling model were studied in [10].

The main results concerning the binomial sampling model will first be summarized. Our
presentation will be inspired from [1, Chapter 9]. Let X1, . . . ,Xn be an iid sample with
parent variable X 2 X ¼ f0; 1g following a Bernoulli distribution BðpÞ with parameter
p 2 P ¼ ½0; 1�. A random variable Wi uniformly distributed on W ¼ ½0; 1� is supposed
to underlie each observation Xi, with

X i ¼ 1() W i 6 p. ð1Þ
The uniform distribution of Wi can be thought of as modeling random sampling from an
infinite population assimilated to the interval [0,1]. Note also that this ‘‘trick’’ is com-
monly used to simulate binomial sampling using computer random number generators.

Eq. (1) defines a multivalued mapping from W to X�P, which maps any w 2W to
{1} · [w, 1] [ {0} · [0, w]. This mapping constrains the possible values of the triplet
(Xi,Wi,p), and can alternatively be represented by a logical belief function (i.e., a belief
function with a single focal set) mH

i on the joint space H ¼ X�W�P. Now, the uniform



Fig. 1. Graphical model for binomial inference in Dempster’s approach.
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probability distribution of Wi defines a Bayesian belief function mW
i . Belief functions mH

i

and mW
i , i = 1, . . . ,n are the components of the graphical model shown in Fig. 1. In this

graph, variables are represented by circular nodes, belief functions on a single variable
are represented by rectangular nodes, and belief functions on a product space are repre-
sented by diamond-shaped nodes; each belief function node is connected by an undirected
edge to each variable node in its domain (see, e.g., [27]).

Having observed a realization xi of each Xi, a belief function on P can be obtained by
combining each belief function in the model using Dempster’s rule, conditioning by Xi = xi

for each i = 1, . . . ,n, and marginalizing on p. The result is a continuous belief function2 on
P with the following mass density function:

mPða; bÞ ¼ n!

ðN � 1Þ!ðn� N � 1Þ! aN�1ð1� bÞn�N�1 0 < N < n;

mPð0; bÞ ¼ nð1� bÞn�1 N ¼ 0;

mPða; 1Þ ¼ nan�1 N ¼ n

ð2Þ

for all a 6 b, with N ¼
Pn

i¼1xi.
The prediction problem can now be handled by defining a new variable X following a

Bernoulli distribution BðpÞ, with associated uniform random variable W. This defines the
graphical model of Fig. 2. The marginal bba induced about X may be shown [6] to be:

mXðf1gÞ ¼ N
nþ 1

¼ p̂
1þ 1=n

; ð3Þ

mXðf0gÞ ¼ n� N
nþ 1

¼ 1� p̂
1þ 1=n

; ð4Þ

mXðXÞ ¼ 1

nþ 1
; ð5Þ

where p̂ ¼ N=n.
2 For a recent account of continuous belief functions, see [34].



Fig. 2. Graphical model for binomial inference in Dempster’s approach, with one additional variable X to be
predicted.

232 T. Denœux / Internat. J. Approx. Reason. 42 (2006) 228–252
2.1.2. Multinomial case

The above approach can be extended to the general multinomial case as follows. Let us
now assume that X is discrete variable with (unordered) values in X ¼ fn1; . . . ; nkg, and let
pk ¼ PðX ¼ nkÞ. We observe a realization of an iid sample X1, . . . ,Xn from X, and we want
to make inference statements regarding the parameter vector p = (p1, . . . ,pK). In that case,
the underlying population from which random sampling takes place cannot be ordered as
in the binomial case, because the modalities of X are no longer ordered: we have a ‘‘struc-
ture of the second kind’’ using the terminology introduced in [6]. The approach proposed
by Dempster is then to assume uniform sampling from a K � 1 dimensional simplex SK.
Using barycentric coordinates, the general point of such a simplex can be represented

by a K-tuple of real numbers (a1, . . . ,aK) where ak P 0 for k = 1, . . . ,K and
PK

k¼1ak ¼ 1.
A random drawing of X may be created by drawing a random vector W = (W1, . . . ,WK)
from a uniform distribution over SK, and declaring that X = nk for some k 2 {1, . . . ,K} if

pk

W k
P

p‘
W ‘

; 8‘ 6¼ k.

Coming back to the iid sample X1, . . . ,Xn, we can proceed exactly as above, and associate a
random vector Wi to each Xi. Marginal belief functions about p and a new observation X

may then theoretically be obtained as in the binomial case. However, the calculations are
now much more complex. Dempster studied the trinomial case in [8] (without providing
the equivalent of (3)–(5)), and he presented some results pertaining to the general case
in [10]. However, the application of these results to compute the marginal belief function
of X has proved, so far and to our knowledge, mathematically intractable.
2.1.3. Justification in the TBM

The introduction of the pivotal variables Wi may be argued to be artificial and some-
what arbitrary (see, e.g., the discussion in [8,1, p. 252]). In [32], Smets attempted to solve
the multinomial probability estimation problem by deducing the form of the belief func-
tion mX�P on X�P from first principles, without resorting to pivotal quantities.
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The main requirement imposed by Smets is the Hacking frequency principle [15], which
equates the degree of belief of an event to its probability (long run frequency), when the
latter is known. As shown in [32], this principle entails that the focal sets of mX�P are of the
form

SK
k¼1fnkg � Ak, where A1, . . . ,AK is a partition of P.

In the binomial case, the focal sets of mX�P are thus of the form f0g � A [ f1g � A for
some A � [0,1]. Using a simple argument, Smets showed that, for any focal set, A is of the
form [0,a) for some a 2 [0, 1]. By applying once again the Hacking’s principle, he then
deduced directly the form of the belief density function mP in (2), and the marginal belief
function mX in (3)–(5).

Using a similar line of reasoning, the form of the focal sets in the trinomial case (K = 3)
could be obtained. However, the problem again quickly proved to be analytically intrac-
table, and no formula such as (2) and (3)–(5) were given, even for the case K = 3.

2.2. The imprecise Dirichlet model

In this review of previous work, it is worth mentioning the imprecise Dirichlet model
(IDM) introduced by Walley [38,3]. This model was proposed in the imprecise probability
framework [39], which is distinct from the TBM [30]. However, it turns out to yield a belief
function on X when applied to our problem, which is the reason why it is mentioned here.

In short, the IDM extends Bayesian inference as follows. In the Bayesian setting, the
conjugate prior probability distribution of parameter p = (p1, . . . ,pK) in the multinomial
model is the Dirichlet (s, t) distribution, where t = (t1, . . . , tK) is an element of the interior
of the unit simplex S(1, K), and s > 0 is a hyperparameter determining the influence of the
prior distribution on posterior probabilities. The predictive probability distribution on X,
based on an iid random sample X1, . . . ,Xn and a prior Dirichlet (s, t) distribution is

pðnkjN; t; sÞ ¼
N k þ stk

nþ s
;

where Nk ¼
Pn

i¼11nk ðX iÞ denote the number of observations in category nk, and
N = (N1, . . . ,NK). Assume now that we no longer take a single prior Dirichlet distribution,
but the set of all Dirichlet (s, t) distributions with t 2 S(1, K). The family of all correspond-
ing predictive distributions on X is then characterized by the following lower probability
measure:

P ðAjN; sÞ ¼ NðAÞ
nþ s

8A � X;

with NðAÞ ¼
P

nk2ANk. It happens that P(ÆjN, s) is a belief function, with corresponding
bba:

mXðfnkgjN; sÞ ¼
N k

nþ s
¼ p̂k

1þ s=n
; k ¼ 1; . . . ;K;

mXðXjN; sÞ ¼ s
sþ n

with p̂k ¼ N k=n. We observe that, with s = 1, this solution is identical to Dempster’s solu-
tion (3)–(5) in the binomial case.

This approach was extended by Utkin [36] to the case of imprecise observations.
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2.3. Discussion

Dempster’s approach outlined in Section 2.1 seems well founded theoretically. It pro-
vides a usable solution at least in the binomial case, and maybe for K = 3 (although this
solution does not seem to have been fully worked out in that case). However, this
approach seems to become quickly analytically intractable for larger K, essentially because
of the difficulty to manipulate belief functions over continuous multidimensional spaces.

The IDM approach does lead to a simple belief function in the general multinomial
case. However, whereas this approach is well founded in the imprecise probability setting,
its justification in the TBM framework is unclear. It is based on the assumption that one’s
prior knowledge on the probability distribution of X is represented by a family of Dirichlet
distributions, an assumption which can hardly be justified in the TBM, where each piece of
knowledge is assumed to be represented by a belief function.

The approach proposed in this paper, which was also applied in a possibilistic frame-
work [20], is fundamentally different. First of all, our objective will be more limited, in that
we shall only attempt to build a belief function regarding a future observation X, given
past observations X1, . . . ,Xn, without expliciting our beliefs on P. Hence, belief functions
will not be used as a tool for parametric inference (for which frequentist confidence regions
will be employed), but as a tool for prediction.

As mentioned above, another feature of our approach is that it will be essentially based
on frequentist analysis. Given an iid random sample Xn = (X1, . . . ,Xn) with parent prob-
ability distribution PX , we want to produce a belief function on X, noted belX½Xn�, in such
a way that the inequality belX½Xn� 6 PX will hold in the long run at least in 100(1 � a)%
of cases (i.e., for a fraction 100(1 � a) of the samples). For a given realization xn =
(x1, . . . ,xn), we shall thus obtain a belief function belX½xn�, which will be guaranteed to
have been obtained by a method yielding a belief function less committed than the prob-
ability measure PX in 100(1 � a)% of cases. As will be shown below, such a belief function
can easily be computed from multinomial confidence regions, and it has a simple
interpretation.

This method will be presented in detail in the rest of this paper.
3. Exploiting multinomial confidence regions

3.1. Basic principles

Let us assume that we have an urn with balls of different colors, noted X ¼ fn1; . . . ; nKg.
The set X is given, but neither the number of balls, nor the proportions of balls of different
colors are known. Let X denote the color of a ball taken randomly from the urn. As before,
the probability distribution of X is noted PX . For each A � X, PX ðAÞ represents the long
run frequency of the event X 2 A, which is simply equal in this example to the proportion
of balls with color in A contained in the urn. This quantity is constant (it depends only on
the experimental setting), but unknown.

Assume that we will shortly draw a ball from this urn, and we want to model our beliefs
regarding its color by a belief function belX. If we know the composition of the urn, and
hence the underlying long run frequency distribution PX , it is reasonable to postulate
belX ¼ PX . As remarked by Hacking [15], this ‘‘frequency principle’’ seems very natural.
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Let us now assume that we do not know the composition of the urn, but we have drawn
n balls with replacement. We have thus observed a realization of an iid random sample
Xn = (X1, . . . ,Xn), with parent distribution PX . Let belX½Xn� denote a belief function con-
structed using Xn. Which properties should be satisfied by belX½Xn�?

First, it seems natural to impose that belX½Xn� become closer to PX as n!1, which can
be seen as a weak form of Hacking’s frequency principle. Loosely speaking, a sample of
infinite size is equivalent to knowledge of the distribution of X, hence the belief function
should asymptotically become identical to PX . This translates to the following
requirement:

Requirement R1:

8A � X; belX½Xn�ðAÞ!
P

PX ðAÞ as n!1; ð6Þ

where !P denotes convergence in probability.
For finite n, what kind of relationship should be imposed between belX½Xn� and PX ?

Since we have less information than in the asymptotic case, it seems natural to impose that
belX½Xn� be less committed than PX , as a consequence of the Least Commitment Principle,
which plays a central role in the TBM [31]. We should then have belX½Xn� 6 PX . This
requirement, however, appears to be much too stringent. Having observed a positive count
nk for a certain value nk of X, we can rule out 0 as a possible value for pk. However, neither
the total number of balls, nor an upper bound of it, are given. Consequently, any arbi-
trarily small value � remains possible, unlikely as it may be. The above requirement would
then lead to belX½Xn�ðAÞ ¼ 0, for any strict subset A of X, i.e., to the vacuous belief
function.

As a less stringent requirement, we propose to impose that the inequality belX½Xn� 6 PX

be satisfied only ‘‘in most cases’’. Assuming that the random experiment that consists of
drawing n balls from the urn is repeated indefinitely, we would like belX½Xn� to be less com-
mitted than P ‘‘most of the time’’, i.e. with at least some prescribed long run frequency
1 � a, where a 2 (0,1) is an arbitrarily small positive number. More formally, this can
be expressed by the following second requirement:

Requirement R2:
PðbelX½Xn� 6 PX ÞP 1� a. ð7Þ
Eq. (7) can alternatively be written:
PðbelX½Xn�ðAÞ 6 PX ðAÞ 8A � XÞP 1� a.
It should be quite clear that, in this expression, as in (6), PX denotes the parent probability
distribution of X, which is constant but unknown. The quantity belX½Xn�ðAÞ is random, as
it is a function of the random sample Xn.

A belief function satisfying requirements R1 and R2 will be called a predictive belief
function at confidence level 1 � a.

In the following, we shall examine methods for deriving such belief functions from
multinomial confidence regions. Some definitions and results regarding these confidence
regions will first be recalled in the following section.
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3.2. Multinomial confidence regions

The main building block of our approach to constructing belief functions is composed
of methods for building confidence regions on multinomial parameters. Given an iid sam-
ple X1, . . . ,Xn of a discrete random variable X taking values in X ¼ fn1; . . . ; nKg, let
Nk ¼

Pn
i¼11nk ðX iÞ denote the number of observations in category nk. The random vector

N = (N1, . . . ,NK) has a multinomial distribution with parameters n and p = (p1, . . . ,pK),
with pk ¼ PX ðfnkgÞ.

Let S(N) be a random subset of the parameter space P ¼ fp ¼ ðp1; . . . ; pKÞ 2
½0; 1�K j

PK
k¼1pk ¼ 1g. S(N) is said to be a confidence region for p at confidence level

1 � a, if

PðSðNÞ 3 pÞP 1� a;

i.e., the random region S(N) contains the constant parameter vector p with probability
(long-run frequency) 1 � a. It is an asymptotic confidence region if the above inequality
only holds in the limit as n!1.

The problem of finding confidence regions for multinomial proportions has received
considerable attention in the statistical literature from the 1960s [22,14] up to these days
[12,28,21,13,17]. Of particular interest are simultaneous confidence intervals, i.e., regions
defined as a Cartesian product of intervals:

SðNÞ ¼ ½P�1 ; Pþ1 � � � � � � ½P�K ; PþK �;
which have easy interpretation. Such asymptotic confidence regions were proposed by
Quesenberry and Hurst [22] and Goodman [14]. The first solution is defined as

P�k ¼
aþ 2N k �

ffiffiffiffiffi
Dk
p

2ðnþ aÞ ; ð8Þ

Pþk ¼
aþ 2N k þ

ffiffiffiffiffi
Dk
p

2ðnþ aÞ ; ð9Þ

where a is the quantile of order 1 � a of the chi-square distribution with one degree of free-
dom, and

Dk ¼ a aþ 4Nkðn� NkÞ
n

� �
.

It can easily be checked that the classical confidence interval on binomial p is recovered as
a special case when K = 2. For K > 2, Goodman remarked that the above confidence re-
gion is too conservative, and showed that a could be replaced by b, the quantile of order
1 � a/K of the chi-square distribution with one degree of freedom. Note that we have
P�k !

P
pk and Pþk !

P
pk as n! +1, for k = 1, . . . ,K.

Other simple analytical expressions were suggested in [12], while more complex com-
puter procedures were proposed in [28,17], and bootstrap methods were presented in
[13,18]. The quality of a confidence region may be measured by its volume and its coverage
probability Pðp 2 SðNÞÞ. An asymptotic confidence region is conservative if its coverage
probability for finite n is greater than the prescribed confidence level. Among conservative
confidence regions, it is desirable to find one with as small a volume as possible. Although
bootstrap methods may yield smaller regions, particularly for small sample sizes, Good-
man’s intervals have been found to be good enough in most practical applications [21].



Table 1
Goodman simultaneous confidence intervals for Example 1, at confidence level 1 � a = 0.95

Diagnosis Nk/n P�k Pþk

Neurotic 0.41 0.33 0.50
Depressed 0.22 0.16 0.30
Schizophrenic 0.17 0.11 0.24
Personality disorder 0.20 0.14 0.27
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Example 1. The following example is taken from [21]. A sample of 220 psychiatric
patients were categorized as either neurotic, depressed, schizophrenic or having a
personality disorder. The observed counts were n = (91, 49,37,43). The Goodman
confidence intervals at confidence level 1 � a = 0.95 are given in Table 1.
3.3. From multinomial confidence regions to lower probabilities

A confidence region S(N) for multinomial proportions such as reviewed in Section 3.2 is
usually interpreted as defining a set of plausible values for the vector parameter p. How-
ever, since each value of p specifies a unique probability measure of X, it is clear that S(N)
can equivalently be seen as defining a family of probability measures.3 Such a family,
obtained by bounding the probability of each singleton, is called a set of probability inter-
vals in [5]. Note that we have [14]:

Pþk 6 1�
X
‘6¼k

P�k ð10Þ

and

P�k P 1�
X
‘ 6¼k

Pþk . ð11Þ

Consequently, this set of probability intervals is reachable, using the terminology intro-
duced in [5].

Let P� and P+ denote, respectively, the lower and upper envelopes of S(N), defined as
P�(A) = minP2S(N)P(A) and P+(A) = maxP2S(N)P(A). For all strict nonempty subset A of
X, we have [5]:

P�ðAÞ ¼ max
X
nk2A

P�k ; 1�
X
nk 62A

Pþk

 !
; ð12Þ

PþðAÞ ¼ min
X
nk2A

Pþk ; 1�
X
nk 62A

P�k

 !
. ð13Þ

Note that we have, as a direct consequence of the above formula:

PþðAÞ ¼ 1� P�ðAÞ 8A � X.
3 To keep the notation as simple as possible, the same symbol S(N) will be used to denote both the set of
parameter values p and the set of probability measures.
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Hence, the lower probability measure P� is sufficient to characterize S(N):

SðNÞ ¼ fP jP� 6 Pg.

By construction, we have

PðPX 2 SðNÞÞ ¼ PðP� 6 PX ÞP 1� a ð14Þ

and it is clear that P�ðAÞ!P PX ðAÞ as n!1, for all A � X. Hence, P� verifies our two
requirements R1 and R2. Unfortunately, P� is not, in general, a belief function, except
for the cases K = 2 and K = 3 (see Section 3.4 below). This can be shown by the following
counterexample.

Example 2. Let us return to the confidence region computed in Example 1. The
corresponding lower probabilities are shown in Table 2. As shown by Shafer [23], a
mapping f : 2X ! ½0; 1� is a belief function iff its Möbius inverse, defined as

mðAÞ ¼
X
B�A

ð�1ÞjAnBjf ðBÞ 8A � X

is a basic belief assignment (bba), i.e., if m(A) P 0 for all A, and
P

A�XmðAÞ ¼ 1. The
Möbius inverse of P�, shown in Table 2, assigns a negative value to X. Consequently,
P� is not a belief function.

Before proposing in the next section a way to construct a belief function from P�, we
shall conclude this section by noticing that P�, although not a belief function, possesses a
weaker property: as shown by Campos et al. [5], sets of probability intervals are Choquet
capacities of order two, i.e., we have

P�ðA [ BÞP P�ðAÞ þ P�ðBÞ � P�ðA \ BÞ 8A;B � X. ð15Þ
Table 2
Lower probabilities induced by the confidence intervals of Table 1, and corresponding Möbius inverse

A P�(A) m�(A)

{n1} 0.33 0.33
{n2} 0.16 0.16
{n1,n2} 0.50 0
{n3} 0.11 0.11
{n1,n3} 0.45 0
{n2,n3} 0.28 0
{n1,n2,n3} 0.73 0.12
{n4} 0.14 0.14
{n1,n4} 0.47 0
{n2,n4} 0.30 0
{n1,n2,n4} 0.76 0.13
{n3,n4} 0.25 0
{n1,n3,n4} 0.70 0.11
{n2,n3,n4} 0.50 0.090
X 1 �0.20

The nk are the four mental diseases, in the order in which they appear in Table 1.
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3.4. From lower probabilities to predictive belief functions

3.4.1. The case K = 2

When K = 2, the lower probability measure P� defined above is actually a belief func-
tion. Its bba is simply equal to

mXðfn1gÞ ¼ P�1 ;

mXðfn2gÞ ¼ P�2 ;

mXðXÞ ¼ 1� P�1 � P�2

with P�1 and P�2 defined by (8). If we note N = N1, we have the expressions:

mXðfn1gÞ ¼
aþ 2N �

ffiffiffiffi
D
p

2ðnþ aÞ ;

mXðfn2gÞ ¼
aþ 2ðn� NÞ �

ffiffiffiffi
D
p

2ðnþ aÞ ;

mXðXÞ ¼ 2
ffiffiffiffi
D
p

2ðnþ aÞ ;

where a is the quantile of order 1 � a of the chi-square distribution with one degree of free-
dom (which is also equal to u2

1�a=2, the square of the normal quantile of order 1 � a/2), and

D ¼ a aþ 4Nðn� NÞ
n

� �
.

Using the classical approximation of binomial confidence intervals, it is easy to show that

mXðfn1gÞ � p̂ � u1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
; ð16Þ

mXðfn2gÞ � 1� p̂ � u1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
; ð17Þ

mXðXÞ � 2u1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
; ð18Þ

where, as before, p̂ ¼ N=n, and � denotes asymptotic equivalence. It is interesting to com-
pare these expressions with (3)–(5). We can see that the mass mXðXÞ tends towards 0 as
n�1/2 in our approach, whereas it has the higher convergence rate of n�1 in Dempster’s
solution. Our solution is thus more conservative (even for small n), which seems to be
the price to pay to satisfy requirement R2.

Example 3. To illustrate the nature of these two solutions, we generated 100 realizations
of a binomial random variable with p = 0.3 and n = 30. This simulates 100 repetitions of
the random experiment consisting in drawing 30 balls, with replacement, from an urn
containing 30% of white balls. We thus obtained 100 predictive belief functions at
confidence level 1 � a = 0.95, and 100 belief functions using Dempster’s approach. These
belief functions are plotted in Fig. 3 in the three-dimensional probability simplex. Each
belief function is represented as a point in an equilateral triangle using barycentric
coordinates, with the lower left corner corresponding to {n1} (say, the elementary event



(1,0,0) (0,1,0)

(0,0,1)

PX

Fig. 3. Results of the experiment of Example 3 with n = 30: predictive belief functions at confidence level
1 � a = 0.95 (·), and belief functions computed using Dempster’s method (+). Each belief function is represented
as a point in barycentric coordinates, with the lower left corner corresponding to {n1}, the lower right corner
corresponding to {n2}, and the upper corner corresponding to X. Some random noise was added to avoid the
superposition of points corresponding to the same value of X.
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consisting in drawing a white ball), the lower right corner corresponding to {n2}, and the
upper corner corresponding to X. The orthogonal distance to the lower side of the triangle
is thus proportional to mXðXÞ, while the distances to the right-hand and left-hand sides are
proportional to mXðfn1gÞ and mXðfn2gÞ, respectively. The grey region corresponds to the
set of belief functions belX less committed that PX , i.e., such that belXðfn1gÞ 6 Pðfn1gÞ ¼
0:3 and belXðfn2gÞ 6 Pðfn2gÞ ¼ 0:7. We can verify that, out of the 100 predictive belief
functions mX	, about 95% satisfy this property, which is an experimental verification of
requirement R2. Dempster’s belief functions are more specific (they are closer to the lower
side of the rectangle in the graphical representation), but most of them are more
committed than PX : requirement R2 is not satisfied in this approach. Fig. 4 shows the
result of a similar numerical experiment repeated with n = 100. As expected, the belief
functions computed by each of the two methods get closer to PX as n increases, which is a
consequence of requirement R1 being satisfied by the two approaches.
3.4.2. The case K = 3

When K = 3, P� is again a belief function. To prove this assertion, let us consider the
Möbius inverse of P� in this case. We have

mXðfnkgÞ ¼ P�k ; k ¼ 1; 2; 3;

mXðfn1; n2gÞ ¼ P�ðfn1; n2gÞ � P�ðfn1gÞ � P�ðfn2gÞ ¼ 1� Pþ3 � P�1 � P�2 ;



(1,0,0) (0,1,0)

(0,0,1)

PX

Fig. 4. Results of the experiment of Example 3 with n = 100: predictive belief functions at confidence level
1 � a = 0.95 (·), and belief functions computed using Dempster’s method (+). Each belief function is represented
as a point in barycentric coordinates, with the lower left corner corresponding to {n1}, the lower right corner
corresponding to {n2}, and the upper corner corresponding to X. Some random noise was added to avoid the
superposition of points corresponding to the same value of X.
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mXðfn1; n3gÞ ¼ P�ðfn1; n3gÞ � P�ðfn1gÞ � P�ðfn3gÞ ¼ 1� Pþ2 � P�1 � P�3 ;

mXðfn2; n3gÞ ¼ P�ðfn2; n3gÞ � P�ðfn2gÞ � P�ðfn3gÞ ¼ 1� Pþ1 � P�2 � P�3 ;

mXðXÞ ¼ 1�
X3

k¼1

mðfnkgÞ �
X
k 6¼‘

mðfnk; n‘gÞ

¼ 1�
X3

k¼1

P�k � ð1� Pþ3 � P�1 � P�2 Þ � ð1� Pþ2 � P�1 � P�3 Þ

� ð1� Pþ1 � P�2 � P�3 Þ ¼
X3

k¼1

ðPþk þ P�k Þ � 2 ¼
X3

k¼1

bþ 2N k

nþ b
� 2 ¼ b

nþ b
;

where b is, as before, the quantile of order 1 � a/3 of the chi-square distribution with one
degree of freedom. The masses assigned to pairs {nk,n‘} are positive because of (10), and
all other masses are obviously positive. Consequently, P� is a belief function.

Example 4. Let us consider an urn containing ball of three different colors, denoted n1, n2

and n3 (say, black, white and red). We have drawn 100 balls with replacement, of which 20
were black, 30 were white and 50 were red. Let X denote the color of the next ball to be
drawn from the urn. What is our belief regarding the value of X ?

We have the counts N1 = 20, N2 = 30 and N3 = 50. The bounds of the Goodman
confidence intervals, at confidence level 99 % are
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P�1 ¼ 0:1087 Pþ1 ¼ 0:3389;

P�2 ¼ 0:1858 Pþ2 ¼ 0:4459;

P�3 ¼ 0:3592 Pþ3 ¼ 0:6408

and we have b ¼ v2
1;1�0:01=3 ¼ 8:6154. We thus obtain the following bba:

mXðfn1gÞ ¼ 0:1087; mXðfn2gÞ ¼ 0:1858; mXðfn3gÞ ¼ 0:3592;

mXðfn1; n2gÞ ¼ 1� 0:6408� 0:1087� 0:1858 ¼ 0:0647;

mXðfn1; n3gÞ ¼ 1� 0:4459� 0:1087� 0:3592 ¼ 0:0862;

mXðfn2; n3gÞ ¼ 1� 0:3389� 0:1858� 0:3592 ¼ 0:1161;

mXðXÞ ¼ 8:6154

100þ 8:6154
¼ 0:0793.
3.4.3. The case K > 3

When K > 3, P� is no longer guaranteed to be a belief function, as shown by Example 2
above. We thus have to approximate P� by a belief function satisfying requirements R1

and R2.
Let BXðP�Þ denote the set of belief functions belX on X verifying belX 6 P�. As a con-

sequence of (14), we have, for any belX 2 BXðP�Þ:

PðbelX 6 PX ÞP PðP� 6 PX ÞP 1� a.

Every element of B thus complies with requirement R2 expressed by (7). However, most
elements of BXðP�Þ (such as, e.g., the vacuous belief function) will generally not be very
informative, and it seems natural to concentrate on the most committed elements of
BXðP�Þ. Since there is not a single most specific element in BXðP�Þ, a good solution
can be found by maximizing a specificity criterion such as the sum of belief degrees4

belXðAÞ for all A � X, under the constraints belXðAÞ 6 PX ðAÞ, for all A � X. Let JðmXÞ
denote this criterion. We have

JðmXÞ ¼
X
A�X

belXðAÞ ð19Þ

¼
X
A�X

X
B�A

mXðBÞ ð20Þ

¼
X
B�X

mXðBÞjfA � X;B � Agj ð21Þ

¼ 2K
X
B�X

2�jBjmXðBÞ; ð22Þ

where jÆj denotes cardinality. We then have to solve the following linear program:

max
mX

JðmXÞ ð23Þ
4 A similar criterion was proposed by Baroni and Vicig [2] and by Hall and Lawry [16] for approximating a
lower probability measure by a belief function.
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under the constraints:X
B�A

mXðBÞ 6 P�ðAÞ 8A � X; ð24ÞX
A�X

mXðAÞ ¼ 1; ð25Þ

mXðAÞP 0 8A � X. ð26Þ
Any belief function belX	n solution to the above linear programming problem obviously

satisfies requirement R2. The following proposition states that it also satisfies R1.

Proposition 1. Let belX	n ; n ¼ 1; . . . ;1 be a sequence of solutions of linear program (23)–
(26). We have

belX	n !
P

PX as n!1.
Proof. See Appendix A. h

Solving linear program (23)–(26) is thus a way to construct a predictive belief function, as
illustrated by the next example. Note that the uniqueness of the solution is not guaranteed,
which is not important in practice, since all the solutions may be regarded as equivalent.

Example 5. Table 3 shows optimal belief and mass functions, at confidence level 0.95,
obtained for the data of Example 1 using a standard linear programming algorithm (we
used the Matlab Optimization Toolbox). The value of the objective function for this
solution is JðmX	Þ ¼ 6:4825.

Note that the applicability of the method is obviously limited to moderate values of K

(up to 10�15), since both the number of variables and the number of constraints grow
exponentially with K. For large K or when computation speed is an issue, however, it
may be sufficient to compute suboptimal solutions.

This can be done, for instance, using the iterative rescaling method (IRM) described in
[16], which heuristically transforms the Möbius inversion of P� into a bba, by replacing
each negative mass m(A) < 0 by zero, and rescaling masses assigned to relevant subsets
of A. The result of this algorithm for the psychiatric data are shown in the last two col-
umns of Table 3. In that particular case, the obtained solution happens to be optimal,
since the value of J for this solution is the same as the one computed in Example 5. How-
ever, the IRM provides only an approximation to the optimum in the general case.

Although the IRM algorithm may allow to find good approximations for moderate val-
ues of K, its time and space complexity is still exponential as a function of K (it involves a
loop over the subsets of X). Much more drastic approximations may be obtained by lim-
iting the search to a restricted parametrized family of belief functions BX

0 ðP�Þ � BXðP�Þ.
The simplest such family is perhaps the set of belief functions whose focal elements are
taken among the singletons and X: in that case, the optimal solution is mX


n introduced
in Appendix A, defined by

mX

n ðfnkgÞ ¼ P�k ; k ¼ 1; . . . ;K; ð27Þ

mX

n ðXÞ ¼ 1�

XK

k¼1

P�k ; ð28Þ

which can easily be shown to satisfy requirements R1 and R2.



Table 3
Belief and mass functions, at confidence level 0.95, for the data of Example 1

A P�(A) belX	ðAÞ mX	ðAÞ belXyðAÞ mXyðAÞ
{n1} 0.33 0.33 0.33 0.33 0.33
{n2} 0.16 0.14 0.14 0.16 0.16
{n1,n2} 0.50 0.50 0.021 0.50 0
{n3} 0.11 0.097 0.097 0.11 0.11
{n1,n3} 0.45 0.45 0.020 0.45 0
{n2,n3} 0.28 0.28 0.036 0.28 0
{n1,n2,n3} 0.73 0.69 0.040 0.68 0.067
{n4} 0.14 0.12 0.12 0.14 0.14
{n1,n4} 0.47 0.47 0.02 0.47 0
{n2,n4} 0.30 0.30 0.035 0.30 0
{n1,n2,n4} 0.76 0.72 0.045 0.70 0.072
{n3,n4} 0.25 0.25 0.035 0.25 0
{n1,n3,n4} 0.70 0.66 0.038 0.65 0.064
{n2,n3,n4} 0.50 0.48 0.019 0.46 0.050
X 1 1 0 1 0

The solution ðmX	ðAÞ; belX	ðAÞÞ was obtained using a linear program solver. The solution ðmXyðAÞ;belXyðAÞÞ was
computed using the IRM algorithm.
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Example 6. For the psychiatric data of Example 1, we have mX

n ðfn1gÞ ¼ 0:33,

mX

n ðfn2gÞ ¼ 0:16, mX


n ðfn3gÞ ¼ 0:11, mX

n ðfn4gÞ ¼ 0:14, and mX


n ðXÞ ¼ 0:26. The value
of the objective function is JðmX


n Þ ¼ 6:2296. This solution is thus not optimal, but it can
be considered as an approximation of mX	.

In general, richer families of belief functions could be considered (e.g., by constraining
the size of the focal sets). When the elements of X are ordered, it is quite natural to con-
sider belief functions whose focal elements are intervals, since the corresponding basic
belief masses can easily be represented and interpreted. In that case, the optimal solution
has a simple analytical expression, as will be shown in the next section.

4. Approximation in the case of ordered data

4.1. Definitions

We assume in this section that a meaningful ordering5 has been defined among the ele-
ments of X. By convention, we shall assume that n1 < � � � < nK.

Let Ak,r denote the subset {nk, . . . ,nr}, for 1 6 k 6 r 6 K and let I denote the set of
intervals of X: I ¼ fAk;r; 1 6 k 6 r 6 Kg. These intervals may be represented graphically
as in Fig. 5, in which each interval Ak,r appears at the intersection of row k and column r of
a two-dimensional table. In this representation, the singletons are located on the main
diagonal, the intervals of length 2 on the second diagonal, etc.
5 One could argue that this assumption is, to some extent, contradictory with the use of the multinomial model,
which does not assume any order among the outcomes. However, there are cases where a natural ordering exists
and makes sense to the user, in particular for graphical representations, but this knowledge may not easily be
incorporated into a statistical model. This happens, for instance, when a quantitative variable is discretized by
defining a finite number of classes. The multinomial model is then still a common choice, as it makes minimal
assumptions. This situation is considered in this section.



Fig. 5. Representation of intervals of X ¼ fn1; . . . ; nKg, with K = 5. Each cell at the intersection of row k and
column r corresponds to interval Ak,r = {nk, . . . ,nr}. The singletons are located on the main diagonal, the intervals
of length 2 on the second upper diagonal, etc. The frame A1;K ¼ X corresponds to the upper right corner.
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By imposing that the focal sets of m be taken in I, one reduces the number of basic
belief numbers from 2K � 1 to K(K + 1)/2. Let mX denote such a bba, and belX the corre-
sponding belief function. We have:

mXðAk;rÞ ¼
belXðfnkgÞ if k ¼ r;

belXðAk;rÞ � belXðAkþ1;rÞ � belXðAk;r�1Þ if r ¼ k þ 1;

belXðAk;rÞ � belXðAkþ1;rÞ � belXðAk;r�1Þ þ belXðAkþ1;r�1Þ if r > k þ 1;

8><
>:

ð29Þ
If there exists a bba mX	 verifying belX	ðAk;rÞ ¼ P�ðAk;rÞ for all Ak;r 2 I, we then have
necessarily

mX	ðAk;rÞ ¼
P�k if k ¼ r;

P�ðAk;rÞ � P�ðAkþ1;rÞ � P�ðAk;r�1Þ if r ¼ k þ 1;

P�ðAk;rÞ � P�ðAkþ1;rÞ � P�ðAk;r�1Þ þ P�ðAkþ1;r�1Þ if r > k þ 1;

8><
>:

ð30Þ
mX	ðBÞ ¼ 0 8B 62 I. ð31Þ

In the following, we will show that mX	 defined by (30) and (31) is indeed a valid bba
(i.e., it defines a belief function), and that it is optimal according to criterion J defined by
(19), in the set of bbas with focal elements in I.

4.2. Properties of mX	
Proposition 2. The function defined by (30) and (31) is a valid bba.
Proof. As a consequence of (15), we have mX	ðAk;rÞP 0 "r P k. We then have to prove
that XK

k¼1

XK

r¼k

mX	ðAk;rÞ ¼ 1.
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In this sum, each term is a linear combination of lower probabilities P�(Ak,r). Each value
P�(Ak,r) appears:

• with a + sign in mX	ðAk;rÞ;
• with a � sign in mX	ðAk�1;rÞ if k > 1;
• with a � sign in mX	ðAk;rþ1Þ if r < K;
• with a + sign in mX	ðAk�1;rþ1Þ if k > 1 and r < K.

The sum of these terms is equal to 0, except for k = 1 and r = K. Consequently, we have

XK

k¼1

XK

r¼k

mX	ðAk;rÞ ¼ P�ðA1;KÞ ¼ 1. �

We will now show that mX	 defined above belongs to BXðP�Þ, and that the associated
belief function belX	 coincides with P� on the intervals of X.
Proposition 3. Let belX	 be the belief function associated with mX	 defined by (30) and (31).
We have:

belX	ðAk;rÞ ¼ P�ðAk;rÞ 8Ak;r 2 I; ð32Þ
belX	ðAÞ 6 P�ðAÞ 8A 2 2X. ð33Þ
Proof. We first prove (32) by induction on the length of the interval ‘ = r � k + 1. Obvi-
ously, (32) is true for ‘ = 1, since, by definition belX	ðAk;kÞ ¼ mðfnkgÞ ¼ P�k . It is also true
for ‘ = 2, since

belX	ðAk;kþ1Þ ¼ mðfnkgÞ þ mðfnkþ1gÞ þ mðAk;kþ1Þ
¼ P�k þ P�kþ1 þ P�ðAk;kþ1Þ � P�k � P�kþ1 ¼ P�ðAk;kþ1Þ.

Let us now consider two indices k and r such that r � k + 1 P 3, and let us assume that
(32) is true for all ‘ < r � k + 1. It is easy to see that

belX	ðAk;rÞ ¼ belX	ðAk;r�1Þ þ belX	ðAkþ1;rÞ � belX	ðAkþ1;r�1Þ þ mX	ðAk;rÞ. ð34Þ
Because (32) is true for all intervals smaller than Ak,r, we can replace belX	 by P� in the
first three terms in the right-hand side of (34). Replacing the last term by its definition
using (30), we have

belX	ðAk;rÞ ¼ P�ðAk;r�1Þ þ P�ðAkþ1;rÞ � P�ðAkþ1;r�1Þ
þ ðP�ðAk;rÞ � P�ðAkþ1;rÞ � P�ðAk;r�1Þ þ P�ðAkþ1;r�1ÞÞ
¼ P�ðAk;rÞ; ð35Þ

which completes the proof of (32).
To show (33), we remark that any arbitrary nonempty subset A of X may be written as

the union of Q disjoint intervals:

A ¼
[Q
q¼1

Akq;rq .
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Since the focal sets of mX	 are intervals, all focal sets included in A are included in one of
the Akq;rq . Consequently, we have

belX	ðAÞ ¼
XQ

q¼1

belX	ðAkq;rqÞ;

which implies that

belX	ðAÞ ¼
XQ

q¼1

P�ðAkq;rqÞ.

Now, since the Akq;rq are disjoint, we have, as a consequence of (15):

P�ðAÞP
XQ

q¼1

P�ðAkq;rqÞ.

Hence, belX	ðAÞ 6 P�ðAÞ, which establishes the result. h

Finally, the following proposition states that mX	 is optimal (according to criterion J

defined by (19)), in the set of all bbas with focal elements in I.

Proposition 4. mX	 defined by (30) and (31) is the unique solution to the linear program
(23)–(26), under the additional constraints

mXðAÞ ¼ 0 8A 62 I.
Proof. We have seen in the proof of Proposition 3 that any A � X is either an interval, or
a union of disjoint intervals, and belXðAÞ can then be written as the sum of the beliefs given
to the disjoint intervals (assuming that the focal elements of belX are intervals). Conse-
quently, JðmXÞ can be written as a linear combination of belXðAk;rÞ for all Ak;r 2 I:

JðmXÞ ¼
XK

k¼1

XK

r¼k

ak;rbelXðAk;rÞ;

where the ak,r are positive coefficients. Since belXðAk;rÞ 6 P�ðAk;rÞ for all k, r, it is clear that
J is maximum for mX ¼ mX	, which is the only bba satisfying belX	ðAk;rÞ ¼ P�ðAk;rÞ for all
k,r. h
Example 7. Table 4 shows categorized data6 concerning January precipitation in Arizona
(in inches), recorded during the period 1895–2004, together with the estimated probabili-
ties of each class, and Goodman simultaneous confidence intervals at confidence level 0.95.
Based on this data, what is our belief that the precipitation in Arizona next January will
exceed, say, 2.25 in.? The masses mX	ðAk;rÞ are given numerically in Table 5 and graphi-
cally in Fig. 6 (where each mass is represented by a circle with proportional area), using
the representation of Fig. 5. The same information is depicted differently in Fig. 7, show-
ing on the y-axis the masses given to intervals whose bounds are read on the x-axis,
together with the plausibility contour function n! plX	ðfngÞ, and the upper bounds of
the multinomial confidence intervals (by construction, the lower bounds p�k are equal to
6 The Arizona precipitation data have been obtained from the web page of the National Climatic Data Center,
National Oceanic and Atmospheric Administration (NOAA), at the following address: http://www.ncdc.noaa.
gov/oa/ncdc.html.

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.ncdc.noaa.gov/oa/ncdc.html
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Fig. 6. Graphical representation of the basic belief assignment given in Table 5. Each mass is proportional to the
area of the circle.

Table 5
Basic belief masses for the precipitation data, using the representation explained in Fig. 5

1 2 3 4 5 6

1 0.32 0 0 0.13 0.11 0
2 – 0.085 0 0 0.012 0.14
3 – – 0.098 0 0 0
4 – – – 0.047 0 0
5 – – – – 0.020 0
6 – – – – – 0.035

Masses are given to intervals Ak,r = {nk, . . . ,nr} with r P k. Each cell at the intersection of row k and columns r

contains m(Ak,r).

Table 4
Arizona January precipitation data, with simultaneous 95% confidence intervals

Class nk Nk Nk/n P�k Pþk

<0.75 48 0.44 0.32 0.56
[0.75,1.25) 17 0.15 0.085 0.27
[1.25,1.75) 19 0.17 0.098 0.29
[1.75,2.25) 11 0.10 0.047 0.20
[2.25,2.75) 6 0.055 0.020 0.14
P2.75 9 0.082 0.035 0.18

The bounds of the class intervals are in inches.
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Fig. 7. Alternative representation of the basic belief assignment given in Table 5 and in Fig. 6. Each mass given to
a singleton is represented by a filled square, and each mass given to an interval Ak,‘ is represented by a horizontal
line ranging from nk to n‘. The circles and the triangles represent, respectively, the plausibilities and the upper
probabilities of the singletons.
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the masses mX	ðfnkgÞ given to the singletons). It may be noted that the plausibility values
are significantly higher than the upper bounds of the multinomial confidence intervals,
which reflects a loss of information due to the approximation of a set of probability inter-
vals by a belief function. Using the data in Table 5, the answer to the above question can
easily be computed; we have

belðX P 2:25Þ ¼ belX	ðfn5; n6gÞ ¼ mX	ðfn5gÞ þ mX	ðfn6gÞ þ mX	ðfn5; n6gÞ
¼ 0:020þ 0:035þ 0 ¼ 0:055

and

plðX P 2:25Þ ¼ plX	ðfn5; n6gÞ ¼ 0:020þ 0:035þ 0:012þ 0:14þ 0:11 ¼ 0:317.
5. Conclusion

We have proposed a method for quantifying, in the belief functions framework, the
uncertainty concerning a discrete random variable X with unknown probability distribu-
tion PX , based on a realization of an iid sample from the same distribution. The proposed
solution verifies two ‘‘reasonable’’ properties with respect to PX : it is less committed than
PX with some user-defined probability, and it converges towards PX in probability as the
size of the sample tends to infinity.

This solution is obtained by searching for the most committed belief function that is less
committed than the lower probability measure induced by simultaneous confidence inter-
vals on multinomial parameters, at a given confidence level. This can be formalized as a
linear programming problem, which can be solved using standard iterative procedures.
However, an analytic expression has been given in the case of ordered data, under the
additional constraint that all focal elements are intervals.
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Although the resulting belief function is deduced from a lower probability measure,
their semantics are different: the lower probability defines a set of ‘‘plausible’’ values for
PX , given the data, whereas the belief function is interpreted as quantifying beliefs held
by a rational agent, as assumed in the TBM framework. It might be argued that the impre-
cise probability measure induced by the confidence intervals is an equally good character-
ization of the uncertainty on X. However, this lower probability is not, in general, a belief
function; consequently, it cannot be combined with other pieces of information expressed
in the belief function framework. Its transformation into a belief function is thus needed if
ones adopts the TBM as a model of uncertain reasoning.

In this paper, only the case of a discrete random variable X has been considered. The
method can be applied to the continuous case by discretizing the sample values (which is a
form of coarsening), and vacuously extending the obtained belief function. A specific
method designed for the continuous case is under study.

Appendix A. Proof of Proposition 1

Let us introduce the basic belief assignment mX

n defined as

mX

n ðfnkgÞ ¼ P�k ; k ¼ 1; . . . ;K; ð36Þ

mX

n ðXÞ ¼ 1�

XK

k¼1

P�k ; ð37Þ

and let belX
n denote the corresponding belief function (mX

n is a valid bba, sincePK

k¼1P�k 6 1). We have

belX
n ðfnkgÞ ¼ P�ðfnkgÞ; k ¼ 1; . . . ;K

and

belX
n ðAÞ ¼
X
nk2A

P�k 6 P�ðAÞ.

Hence, belX
n 6 P�. Since mX	
n maximizes J, we thus have JðmX


n Þ 6 JðmX	
n Þ.

Additionally, it is clear that mX

n ðfnkgÞ!

P
pk for all k and, consequently, mX


n ðXÞ!
P

0.
Hence, JðmX


n Þ!
P

2K�1. Now, the unconstrained maximum of J is obtained when the mass
is distributed to singletons, hence JðmX	

n Þ 6 2K�1. We thus have JðmX

n Þ 6 JðmX	

n Þ 6 2K�1

and, consequently, JðmX	
n Þ!

P
2K�1. From this, it is easy to see that

XK

k¼1

mX	
n ðfnkgÞ!

P
1.

Now, we have also

XK

k¼1

P�k !
P

1.

Hence,

XK

k¼1

ðP�k � mX	
n ðfnkgÞÞ!

P
0.
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Since P�k P mX	
n ðfnkgÞ, this implies that ðP�k � mX	

n ðfnkgÞÞ!
P

0 for all k, or, equivalently,
mX	

n ðfnkgÞ!
P

P�k , for all k. Since P�k !
P

pk, we thus have mX	
n ðfnkgÞ!

P
pk, for all k, which

implies that mX	
n ðAÞ!

P
PX ðAÞ for all A � X.
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