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Abstract
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Medical Image Segmentation with Belief Function Theory and Deep Learning

by Ling HUANG

Deep learning has shown promising contributions in medical image segmentation
with powerful learning and feature representation abilities. However, it has limita-
tions for reasoning with and combining imperfect (imprecise, uncertain, and partial)
information. In this thesis, we study medical image segmentation approaches with
belief function theory and deep learning, specifically focusing on information model-
ing and fusion based on uncertain evidence.

First, we review existing belief function theory-based medical image segmenta-
tion methods and discuss their advantages and challenges. Second, we present a
semi-supervised medical image segmentation framework to decrease the uncertainty
caused by the lack of annotations with evidential segmentation and evidence fusion.
Third, we compare two evidential classifiers, evidential neural network and radial
basis function network, and show the effectiveness of belief function theory in uncer-
tainty quantification; we use the two evidential classifiers with deep neural networks
to construct deep evidential models for lymphoma segmentation. Fourth, we present
a multimodal medical image fusion framework taking into account the reliability of
each MR image source when performing different segmentation tasks using mass
functions and contextual discounting.

Keywords: Belief function theory, Deep learning, Medical image analysis, Semi-
supervised learning, Uncertainty quantification, Information fusion
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Introduction

research background and challenges

In clinical routine, the segmentation or delineation of the target region is
performed manually by physicians. However, the manual segmentation
operation has limited efficiency and accuracy. First, image segmentation is
time-consuming, especially with 3D imagesv. It leads to a waste of medical
resources. Second, the segmentation performance is limited by the quality
of medical images, the difficulty of the disease, and the domain knowledge
of the experts. Thus, the study on automatic medical image segmentation
methods with powerful artificial intelligence technologies is necessary to
address the problem of limited medical resources and improve the seg-
mentation performance.

Classical medical image segmentation approaches [Batenburg et al.,
2009; Kimmel, 2003; Salvador et al., 2004; Strobl et al., 2007; Kleinbaum
et al., 1996] focus on low-level feature analysis, e.g., gray and textual fea-
tures or hand-crafted features. These approaches have limitations in terms
of segmentation accuracy, efficiency, and reliability, which creates a big
gap between experimental performance and clinical application. More re-
cently, the success of deep learning in the medical domain brought a lot
of contributions to medical image segmentation tasks [Ronneberger et al.,
2015; Myronenko, 2018; Isensee et al., 2018; Bahdanau et al., 2014]. Deep
learning solves the segmentation efficiency problem, allowing for large-
scale medical image segmentation, and contributes greatly to its accuracy.
However, large-scale labeled training data are needed to reach a satisfying
segmentation performance. Obtaining precisely annotated data is partic-
ularly challenging in the medical image segmentation domain, which has
become one of the bottlenecks of learning-based segmentation approaches.

Despite the excellent performance of deep learning-based medical im-
age segmentation methods, doubts about the reliability of the segmenta-
tion results still remain [Hüllermeier et al., 2021], which explains why their
application to therapeutic decision-making for complex oncological cases
is still limited. A reliable segmentation model should be well calibrated,
i.e., its confidence should match its accuracy. Therefore, a trustworthy
representation of uncertainty is desirable and should be considered a key
feature of any deep learning method, especially in safety-critical applica-
tion domains, e.g., medical image segmentation. In general, deep models
have two sources of uncertainty: aleatory uncertainty and epistemic uncer-
tainty [Hora, 1996; Der Kiureghian et al., 2009]. Aleatory uncertainty refers
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to the notion of randomness, i.e., the variability in an experimental out-
come due to inherently random effects. In contrast, epistemic uncertainty
refers to uncertainty caused by a lack of knowledge (ignorance) about the
best model, i.e., the ignorance of the learning algorithm or decision-maker.
As opposed to uncertainty caused by randomness, uncertainty caused by
ignorance can be reduced based on additional information or the design of
a suitable learning algorithm. In medical image segmentation, the uncer-
tainty can be decomposed into three levels [Lakshminarayanan et al., 2017].
Pixel/voxel-level uncertainty is useful for interaction with physicians by pro-
viding additional guidance for correcting segmentation results. Instance-
level is the uncertainty aggregate by pixel/voxel-level uncertainty, which
can be used to reduce the false discovery rate. Subject-level uncertainty of-
fers information on whether the segmentation model is reliable. Early ap-
proaches to quantify the segmentation uncertainty were based on Bayesian
theory [Hinton et al., 1993; MacKay, 1992]. The popularity of deep segmen-
tation models has revived research on model uncertainty estimation and
has given rise to specific methods such as variational dropout [Gal et al.,
2016; Tran et al., 2019], and model ensembles [Lakshminarayanan et al.,
2017; Rupprecht et al., 2017]. However, probabilistic segmentation models
capture knowledge in terms of a single probability distribution and cannot
distinguish between aleatory and epistemic uncertainty, which limits the
exploitation of the results.

Furthermore, single-modality biomedical data does not provide a com-
plete representation of disease information, and information sources are
usually imperfect. The advances in medical imaging machines and tech-
nologies now allow us to obtain medical images with several modalities,
such as Magnetic Resonance Imaging (MRI)/Positron Emission Tomogra-
phy (PET), multi-sequence MRI, or PET/Computed Tomography (CT). The
different modalities can provide complementary information about cancer
and other abnormalities in the human body. Thus, the fusion of multi-
ple information is vital to improve the accuracy of diagnosis and help
radiotherapy. The success of information fusion depends on how well
the fused knowledge represents reality [White, 1991]. More specifically, it
depends on how adequate the input information is, how accurate and ap-
propriate prior knowledge is, and on the quality of the uncertainty model
used [Rogova et al., 2004]. Though deep learning has shown promising
performance in information representation, modeling imperfect data and
combining unreliable sources need further study.

In this thesis, we address medical image segmentation using belief func-
tion theory (BFT) [Dempster, 1967; Shafer, 1976; Denœux et al., 2020] and
deep neural networks, with a focus on uncertainty quantification and in-
formation fusion. BFT is a theoretical framework for modeling, reasoning
with and combining imperfect (imprecise, uncertain, and partial) infor-
mation. With BFT, we can quantify epistemic uncertainty directly and
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further explore the possibility of improving the model reliability based
on the quantified uncertainty. Besides uncertainty quantification, Demp-
ster’s rule of BFT offers a way to fuse multiple uncertain information, e.g.,
multimodal medical images, to achieve more promising segmentation per-
formance [Lian et al., 2018a; Ghesu et al., 2021]. Motivated by the high
expressivity of BFT, the goals of this thesis are 1) to develop evidential
medical image segmentation models in the framework of BFT and deep
neural networks, with the cooperation of powerful learning algorithms
such as semi-supervised learning, 2) to study the performance of deep
evidential segmentation with uncertainty quantification and 3) to study
the effectiveness of BFT for constructing deep multimodal segmentation
model.

contributions of the thesis

The contributions of this thesis are organized in three parts:

• Semi-supervised medical image segmentation: The main idea of
this part is to address the annotation limitation with the design of
semi-supervised learning and decrease the uncertainty caused by
the lack of annotations with evidential segmentation and evidence
fusion. We first propose a semi-supervised learning algorithm based
on an image transformation strategy by producing pseudo labels for
unannotated data. Then a probabilistic-based deep neural network
and a BFT-based evidential neural network are used to compute seg-
mentation results with uncertainty quantified by probabilities and
mass functions. Finally, these probabilities and mass functions are
combined by Dempster’s rule.

• Uncertainty quantification in medical image segmentation: A rea-
sonable and reliable quantification of segmentation uncertainty is
important to optimize the segmentation framework and further im-
prove performance. In this part, an automatic evidential segmenta-
tion model based on BFT and deep learning is proposed to segment
lymphomas from 3D PET-CT images, which not only focuses on lym-
phoma segmentation accuracy but also on uncertainty quantification
using belief functions. The model is composed of a deep feature-
extraction module and an evidential layer. The feature extraction
module uses an encoder-decoder framework to extract semantic fea-
ture vectors from 3D inputs. The evidential layer then uses proto-
types in the feature space to compute a belief function at each voxel,
quantifying the uncertainty about the presence or absence of lym-
phoma at this location. Two evidential layers are compared based on
different ways of using distances to prototypes for computing mass
functions.
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• Multimodal medical image segmentation with contextual discount-
ing: Different modality biomedical data have different reliabilities to
segment specific diseases. Thus, quantifying context-based modality-
level uncertainty and combining multimodal information is essential
to reach a reliable decision and explain the decision. In this part, we
construct a multi-MR image brain tumor segmentation framework
by modeling the reliability of each source of MR images when doing
different segmentation tasks using mass functions and contextual dis-
counting. Different modality MR images are taken as an independent
source of input. One feature extraction and one evidential segmen-
tation module are used for each modality input to assign each voxel
a mass function. Then a contextual discounting layer is designed to
take into account the reliability of the single modality MR images
when classifying different diseases. Finally, the discounted evidence
from different modalities is combined by Dempster’s rule to obtain
a final segmentation.

layout of the thesis

This thesis is structured in two parts and seven chapters:

• Part I introduces the theoretical background and general context that
supports the thesis. Chapter 1 first introduces medical image segmen-
tation and its significance in clinical treatment and then introduces
classical deep segmentation methods and their limitations. Chapter
2 recalls the fundamentals of belief function theory. It first describes
how imperfect (uncertain and imprecise) information can be mod-
eled and combined in the framework of BFT, and then introduces
the basic belief assignment methods that generate mass function for
medical image segmentation. Chapter 3 comprehensively reviews
existing medical image segmentation methods using BFT.

• Part II is devoted to our three main contributions. Chapter 4 intro-
duces the semi-supervised evidence fusion model with the applica-
tion of MRI brain tumor segmentation. Chapter 5 describes the deep
evidential segmentation framework to quantify segmentation uncer-
tainty with 3D PET-CT lymphoma segmentation application. Chap-
ter 6 presents the contextual discounting-based multimodal medical
image fusion model with the application of multi-MRI brain tumor
segmentation. Finally, we conclude our work and give some perspec-
tives for future work in Chapter 7.



Part I

T H E O R E T I C A L B A C K G R O U N D A N D
G E N E R A L C O N T E X T





Chapter 1

Medical image segmentation

Contents

1.1 Introduction to medical image segmentation . . . . . . . . . 7

1.1.1 Common medical imaging techniques . . . . . . . . . 7

1.1.2 Significance of automatic medical image segmentation 12

1.2 Deep learning approaches to medical image segmentation . 13

1.2.1 Deep segmentation model . . . . . . . . . . . . . . . . 15

1.2.2 Model optimization . . . . . . . . . . . . . . . . . . . 15

1.2.3 Evaluation criteria . . . . . . . . . . . . . . . . . . . . 16

1.3 Three baseline deep segmentation models . . . . . . . . . . . 18

1.3.1 Residual-UNet . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 MFNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 No-New-UNet (nnUNet) . . . . . . . . . . . . . . . . 20

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 introduction to medical image segmentation

Medical image segmentation is a critical step in radiotherapy planning,
where organs at risk and tumors must be precisely located in images.
The segmentation of medical images involves the extraction of regions
of interest (ROI) from 2D/3D image data (e.g., pathological or optical
imaging with color images, MRI, PET, and CT scans). The main goal of
segmenting medical images is to identify areas of organs, cancer, and other
abnormalities in the human body, for example, brain tumor, lymphomas,
the interior of the human body (such as lungs, spinal canal, and vertebrae),
and skin and cell lesions.

1.1.1 Common medical imaging techniques

Medical imaging is playing an increasingly central role in radiotherapy
practice, thanks to the advances in imaging techniques. It influences the
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effectiveness of radiotherapy protocols, including the delineation of radi-
ation target volumes and adjacent normal tissues, the design of the ra-
diation dose distribution, the monitoring of treatment response, etc. A
treatment that adopts advanced imaging technology to reduce uncertain-
ties and assist decision-making during a course of treatment is referred
to as image-guided radiotherapy. In this section, we introduce three com-
monly used medical imaging technologies: Computed Tomography (CT),
Positron Emission Tomography (PET), and Magnetic resonance imaging
(MRI).

computed tomography (ct) CT is a gold standard image modality
in radiation oncology, and its imaging devices are widely available at al-
most all cancer centers. CT images can provide anatomical information
to show the geometric positions of the target tumor and adjacent organs
at risk. CT imaging is based on the measurement of the X-rays attenua-
tion between the source and the detector. The principle of CT imaging
is briefly described in Figure 1.1. The use of CT in radiotherapy allows
three-dimensional dose calculation and optimization.

positron emission tomography (pet) PET is a functional imag-
ing technique used in nuclear medicine that can measure tissue metabolic
activity in vivo through an injected radioactive tracer. Complementary to
CT, PET can provide critical functional information on target tissues or
tumors for more precisely guarding the procedure of radiotherapy. The
principle of PET imaging is briefly described in Figure 1.2. With different
radioactive tracers, PET imaging makes it possible to monitor the different
functional activities of a target tumor (e.g., metabolism, proliferation, and
oxygen delivery) on a molecular scale. The most commonly used radioac-
tive tracer in clinical oncology practice is fluorine-18 (F-18) fluorodeoxyglu-
cose (FDG). PET scanning with FDG, i.e., FDG-PET, can highlight tumor
tissues with high metabolic rate. It has been widely used for diagnosis,
staging, and re-staging of most cancers, such as non-small cell lung cancer,
esophageal carcinoma, or lymphomas, etc.

magnetic resonance imaging (mri) MRI is a widely used tech-
nique to generate high-resolution and high-contrast medical images of soft
tissues. With MRI, we can see inside the human body in detail by using
magnets and radio to map the location of the water and then use this in-
formation to generate a detailed image. Figure 1.3 gives an introduction
to the physics of MRI and its revelation of the brain. Different protocols or
different MRI sequences defined by changing the repetition time (TR) and
the echo time (TE) can be used to generate different modalities of MR im-
ages. For example, tissue can be characterized by two different relaxation
times: T1 (longitudinal relaxation time) and T2 (transverse relaxation time).
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Figure 1.1: A depiction of a typical CT scanner [Pelberg, 2015]. The X-
ray source and row detectors are housed within the gantry, which ro-
tates around the patient (helical scanning technique). The cone-shaped
X-ray beams emanate from the tube source on one side of the gantry, pass
through the patient and terminate at the detectors on the other side of the
gantry.
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Figure 1.2: The fundamental principles of PET imaging [Rudroff et al.,
2015]. PET tracer is first selected, and the information, either the tracer’s
kinetics within the tissues with dynamic imaging or the spatial distribution
of the tracer with static imaging, is then detected by scintillation detectors
of the PET scanner and is used to reconstruct images.
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Figure 1.3: The physics of MRI and its revelation of the brain [Broadhouse,
2020]. (A) An example of an MRI scanner with a B1 field (magnetic field
strength varies across the body), which increases across the body, from
foot to head. Hydrogen protons in the head will then be spinning faster
than those in the feet, allowing us to define the spatial position according
to the frequencies. (B) Different tissues of a brain scan, such as white mat-
ter and gray matter (C) Examples of different brain images: the structural
connection of the brain via white matter—the information (top right), the
volume of gray matter regions of the brain (middle right), and the func-
tional connection and communication of the brain (bottom right).
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T1 determines the rate at which excited protons return to equilibrium in
the direction of the main magnetic field, and T2 determines the rate at
which excited protons reach equilibrium in the direction perpendicular to
the main magnetic field or go out of phase with each other. The most com-
mon MRI sequences are T1-weighted and T2-weighted scans. T1-weighted
images are produced by using the short TE and RT. This image weighting
is useful for obtaining morphological information such as the cerebral cor-
tex, fatty tissue, and focal liver lesions. In contrast, T2-weighted images are
produced by using longer TE and TR. This image weighting is useful for
detecting edema and inflammation, revealing white matter lesions, and as-
sessing zonal anatomy in the prostate and uterus. Fluid-attenuated inver-
sion recovery (FLAIR) is an MRI sequence with an inversion recovery set to
null fluids. The FLAIR sequence is similar to a T2-weighted image except
that the repetition time and TR times are very long. The FLAIR sequence
is very sensitive to pathology and makes the differentiation between Cere-
brospinal fluid (CSF) and an abnormality much easier. Radiotherapy is one
of the five principal methods used in the clinical treatment of malignant
tumors, the other methods being surgery, chemotherapy, immunotherapy,
and hormonal therapy. Accurate tumor segmentation in medical images
is a critical step for diverse objectives in clinical oncology, including reli-
able diagnosis and tumor staging, as well as solid radiotherapy planning.
Thanks to the sustained advancement of medical imaging techniques, as
well as progress made in medical image analysis, the effectiveness of ra-
diotherapy for cancer treatment is being continuously improved.

1.1.2 Significance of automatic medical image segmentation

In the practical process of radiotherapy planning, the delineation of target
tumor volumes is usually carried out manually by experienced clinicians
with a computer interface. However, manual segmenting of medical im-
ages is time-consuming, labor-intensive, and operator-dependent. More-
over, the segmentation performance is sensitive to the operator’s variabil-
ity and may lead to imprecise and unreliable tumor contours. Recent ad-
vances in machine learning techniques, especially deep learning, make it
possible to perform automatic segmentation with promising performance.
In the rest of this chapter, we first briefly recall deep learning-based med-
ical image segmentation methods in Section 1.2. Then we introduce three
deep segmentation models that be used as the baseline models in this the-
sis in Section 1.3. Finally, in Section 1.4, we give a conclusion of existing
deep learning-based segmentation methods and explain the advantages of
using BFT with deep neural network in medical image segmentation.
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1.2 deep learning approaches to medical image segmenta-
tion

Early image segmentation methods used the information provided by the
image itself, e.g., gray, textual, contrast, and histogram features, as well
as segmenting ROI based on threshold [Batenburg et al., 2009], edge de-
tection [Kimmel, 2003], graph partitioning [Onoma et al., 2014], cluster-
ing [Salvador et al., 2004], etc. More recently, researchers have been in-
terested in hand-crafted features, e.g., Scale Invariant Feature Transform
(SIFT) [Lowe, 1999], Features from Accelerated Segment Test (FAST) [Ros-
ten et al., 2006], and Geometric hashing [Mian et al., 2006], as well as seg-
menting ROI using machine learning-based methods such as support vec-
tor machine (SVM) [Suykens et al., 1999], random forest (RF) [Strobl et al.,
2007], logistic regression (LR) [Kleinbaum et al., 1996], etc. Those methods
have attracted great interest for a while, but their accuracy cannot meet
clinical application requirements because only low-level or middle-level
features are considered.

Deep learning, a sub-field of machine learning concerned with neural
networks, has achieved significant achievements in computer vision tasks
by its ability to represent high-level semantic features [Krizhevsky et al.,
2012; Bai et al., 2018], as well as in medical image segmentation domain
[Ciresan et al., 2012; Seyedhosseini et al., 2013; Hariharan et al., 2015; Long
et al., 2015; Ronneberger et al., 2015]. In [Ciresan et al., 2012], Ciresan et al.
proposed a pixel-level classification network for electron microscopy (EM)
image segmentation. This network won the competition of EM segmen-
tation challenge at ISBI 2012 by a large margin. In [Seyedhosseini et al.,
2013], Seyedhosseini et al. proposed a multiresolution contextual model
called the cascaded hierarchical model (CHM). In [Hariharan et al., 2015],
Hariharan et al. used hypercolumns as pixel descriptors to make the best
use of semantic context and allow precise location. Long et al. [Long et
al., 2015] were the first authors to show that a fully convolutional network
(FCN) [Long et al., 2015] could be trained end-to-end for semantic seg-
mentation, exceeding the state-of-the-art when the paper was published
in 2015. UNet [Ronneberger et al., 2015], a successful modification and
extension of FCN, has become the most popular model for medical image
segmentation in recent years. Figure 1.4 shows an example framework of
UNet with a down-sampling path and an up-sampling path. Based on
UNet, research for deep learning-based medical image segmentation can
be summarized in two major directions: the design of the segmentation
model and the optimization (loss function).



14 1.2 deep learning approaches to medical image segmentation

Figure 1.4: Example of an UNet architecture [Ronneberger et al., 2015].
Each blue box corresponds to feature maps (32 × 32 in the lowest reso-
lution). The number of channels in the feature maps is denoted at the
top of the box. The width and height of the convoluted feature maps are
provided at the lower-left edge of the box. White boxes represent copied
feature maps from the dotted box.
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1.2.1 Deep segmentation model

Based on UNet, there has been many studies on deep segmentation net-
works with an encoder-decoder architecture (e.g., 3D UNet [Çiçek et al.,
2016], Deep3D-UNet [Zhu et al., 2018], V-Net [Milletari et al., 2016], Seg-
ResNet [Myronenko, 2018]). Recently, some popular approaches, such as
attention mechanism [Bahdanau et al., 2014] and transformer mechanism
[Carion et al., 2020; Han et al., 2021] have achieved promising performance
with deep neural networks (e.g., Attention UNet [Oktay et al., 2018; Tre-
bing et al., 2021] and Transformer-UNet [Cao et al., 2021; Hatamizadeh
et al., 2022b; Hatamizadeh et al., 2022a]), and have also been applied to
medical image segmentation. Although the design of deep segmentation
models with a research focus on the model structure has achieved great
success, there are still some doubts about whether the so-called innovation
of the network structure over the years is really just overfitting [Isensee et
al., 2021], and some researchers suggest that more attention should be paid
not only to the structure, but also to other aspects such as training and in-
ference strategies. Thus, deep analysis of the segmentation performance,
e.g., segmentation accuracy and uncertainty, is necessary to achieve a bet-
ter segmentation performance.

1.2.2 Model optimization

Model optimization consists of designing loss functions relevant to the
problems to be solved. Different from nature image segmentation, the seg-
mented objects in a medical image are usually tiny compared with the
background, which causes the unbalanced label distribution problem. The
specific design of loss functions is one of the crucial ingredients in deep
learning-based medical image segmentation. The existing loss functions
for the deep segmentation model can be classified into four categories:
distribution-based loss, region-based loss, boundary-based loss, and com-
pound loss. Figure 1.5 shows the overview of loss functions for medical
image segmentation. The distribution-based loss aims to minimize the dis-
similarity between two distributions. Cross entropy (CE) loss is the funda-
mental function. Based on this, a lot of variants, such as Weighted CE loss
[Ronneberger et al., 2015], Focal loss [Lin et al., 2017], distance penalized
CE loss [Caliva et al., 2019], and CE with KL divergence [Zhou et al., 2022]
are used for medical image segmentation. The region-based loss functions
aim to minimize the mismatch or maximize the overlap regions between
ground truth and predicted segmentation. The Dice loss [Milletari et al.,
2016] is the most commonly used region-based loss function because it
directly optimizes the Dice coefficient. Based on Dice loss, there are a lot
of variants, e.g., IoU loss (also called Jaccard loss) [Rahman et al., 2016],
Tversky loss [Salehi et al., 2017], Generalized Dice loss [Sudre et al., 2017],
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Figure 1.5: Overview of loss functions for medical image segmentation
[Ma, 2020].

ContrastiveLoss [Chen et al., 2020], etc. The recently-proposed boundary-
based loss functions aim to minimize a distance between ground truth and
predicted segmentation. Representative examples are Boundary (BD) loss
[Ma, 2020] and Hausdorff Distance (HD) loss [Karimi et al., 2019].

In addition to the above three categories of loss functions, compound
loss functions are popular and efficient in medical image segmentation;
they consist in combining different types of loss functions, i.e., the
weighted sum between weighted CE and Dice loss. A general summary
can be obtained from the existing literature that mildly imbalanced
problems are well handled by Dice loss or generalized Dice loss [Sudre
et al., 2017]. Highly imbalanced segmentation tasks are much more
complicated and require more robust loss functions. More details about
loss functions for deep segmentation can be found in [Ma, 2020].

1.2.3 Evaluation criteria

Dice score, Sensitivity, Precision, and Hausdorff distance (HD) are the
most commonly used evaluation criteria to assess the quality of deep med-
ical image segmentation methods; they are defined as follows:

Dice(P, T) =
2× TP

FP+ 2× TP+ FN
, (1.1)

Sensitivity(P, T) =
TP

TP+ FN
, (1.2)

Precision(P, T) =
TP

TP+ FP
, (1.3)

where P is the number of real positive voxels in the data, N is the number
of real negative voxels in the data; TP, FP, and FN denote the numbers
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Predicted tumor region
Actual tumor region

FN
FPTP

TN

Figure 1.6: Interpretation of the true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) used for the definition of evaluation
criteria.

of true positive, false positive, and false negative voxels, respectively (See
Figure 1.6), and

HD = max
(

max
i∈S

min
j∈G

d(i, j), max
j∈G

min
i∈S

d(i, j)
)

, (1.4)

where G denotes the actual tumor region, S denotes the segmented tumor
region, and d represents the distance of voxels between S and G.

The Dice score is a global measure of segmentation performance. Sen-
sitivity is the proportion, among actual tumor voxels, of voxels correctly
predicted as tumors. Precision is the proportion, among predicted tumor
voxels, of voxels that actually belong to the tumor region; it is, thus, an
estimate of the probability that the model is correct when it predicts that
a voxel is in a tumor region. We note that neither sensitivity nor precision
is global performance criteria. We can increase sensitivity by predicting
the tumor class more often (at the expense of misclassifying a lot of back-
ground pixels), and we can increase precision by being very cautious and
predicting the tumor class only when it has a high probability (at the ex-
pense of missing a lot of tumor voxels). These two criteria, thus, have to be
considered jointly. Finally, we can also remark that a fourth criterion can
also be defined: specificity, which is the proportion, among background
voxels, of voxels, correctly predicted as background (i.e., TN/(TN+ FP)).
However, as there are much more background voxels than tumor ones,
this criterion is not informative in tumor segmentation applications (it is
always very close to 1). The Hausdorff distance measures how far two
subsets of a metric space are from each other with the definition in (1.4).
More precisely, the Hausdorff distance is the greatest of all the distances
from a point in one set to the closest point in the other set. Figure 1.7
shows an example of the calculation of the Hausdorff distance. A more
comprehensive introduction to the evaluation criteria for medical image
segmentation can be found in [Taha et al., 2015].
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S

G

Figure 1.7: The calculation of the Hausdorff distance between the blue
region S and the orange region G.

1.3 three baseline deep segmentation models

In this section, we describe three deep segmentation networks: Residual-
UNet [Kerfoot et al., 2018], MFNet [Chen et al., 2018], and No-New-UNet
[Isensee et al., 2021], which will be used in the rest of the thesis as the
baseline models.

1.3.1 Residual-UNet

Residual-UNet [Kerfoot et al., 2018] is a commonly used deep segmenta-
tion network with encoder and decoder layers defined using residual units.
Data in the encoding path is down-sampled with convolution operation,
and the decoding path is up-sampled using transpose convolution oper-
ation. Fig. 1.8 gives an example of Residual-UNet. Each Down-sampling
layer (marked in blue) comprises convolution, normalization, dropout, and
activation blocks, as well as a residual connection. Each Up-sampling
layer (marked in green) comprises transpose convolution, normalization,
dropout, activation blocks, and residual connection. The last layer (marked
in yellow) is the bottom connection that does not down/up sample the
data. The Residual-UNet will be used as the feature extraction module of
the deep evidential segmentation model in Chapter 5 and the multimodal
medical image segmentation model in Chapter 6.

1.3.2 MFNet

In [Chen et al., 2018], Chen et al. proposed a multi-fiber network (MFNet)
whose framework is similar to UNet but can reduce by more than half
the computation cost compared with UNet. It uses multi-fiber units in-
stead of the residual units to construct the encoder-decoder module. As
shown in Figure 1.9 (a), the conventional residual unit uses two 3× 3× 3



1.3.2 mfnet 19

Down-sampling Up-sampling

Up-sampling

Up-sampling

Up-sampling

Down-sampling

Down-sampling

Down-sampling

Bottom connection

Conv3d+Stride Conv3d ConvTrans3d+Stride ConcatPReLUInstance Norm

Down-sampling Unit Up-sampling Unit

Figure 1.8: Framework of Residual-UNet. Each Down-sampling layer
(marked in blue) comprises convolution, normalization, dropout, and ac-
tivation blocks. Each Up-sampling layer (marked in green) comprises
transpose convolution, normalization, dropout, and activation blocks. The
last layer (marked in yellow) is the bottom connection which does not
down/up sample the data.
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Figure 1.9: Illustration from residual unit to multi-fiber unit. (a) A single
fiber with residual unit composed of two 3× 3× 3 convolution layers [He
et al., 2016]. (b) Multi-fiber (MF) units [Chen et al., 2018], 3 fibers for exam-
ple. (c) Multi-fiber units with a multiplexer for transferring information
across separated fibers [Chen et al., 2018]. Let Vin, Vmid, and Vout denote
the number of input channels, middle channels, and output channels, re-
spectively. The total number of connections for the residual unit and multi-
fiber units is Vin × Vmid + Vmid × Vout and (Vin × Vmid + Vmid × Vout)/M,
respectively.
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convolutional layers to learn features, which is straightforward but com-
putationally expensive. The multi-fiber unit is illustrated in Figure 1.9 (b).
It slices the residual unit into M parallel and separated paths (called fibers
here). The connection number is then reduced by the slicing parameter
M. However, the slicing operation isolates each path from the others and
blocks information flow across them, resulting in limited learning capacity
for information representation. Thus, the authors propose a multiplexer
layer (see Figure 1.9 (c)) that acts as a router that operates across fibers.
The multiplexer layer first gathers features from all fibers using a 1× 1× 1
convolution layer and then redirects them to specific fibers using the fol-
lowing 1× 1× 1 convolution layer. The MFNet unit will be used as the
feature extraction module of the semi-supervised medical image segmen-
tation model in Chapter 4.

1.3.3 No-New-UNet (nnUNet)

nnUNet [Isensee et al., 2021] is the first segmentation model designed as
a segmentation pipeline for any given dataset and is a plug-and-play tool
for state-of-the-art biomedical segmentation. Instead of designing a new
encoder-decoder structure, the authors focus on studying a recipe that
systematizes the configuration process on a task-agnostic level and dras-
tically reduces the search space for empirical design choices by a set of
fixed parameters, interdependent rules, and empirical decisions. Due to
its modular structure, new architectures or algorithms can easily be inte-
grated into nnUNet. Figure 1.10 is the proposed automated configuration
by nnUNet. The nnUNet will be used as another feature extraction module
of the multimodal medical image segmentation model in Chapter 6.

1.4 conclusion

The research reviewed in this chapter focuses on improving the accuracy of
segmentation performance under the assumption of adequate and perfect
input information and accurate and appropriate prior knowledge. How-
ever, in reality, especially in the medical image segmentation domain, both
the input information and prior knowledge are imperfect and contain a de-
gree of uncertainty. Figure 1.11a illustrates uncertain information taking a
brain tumor segmentation task as an example. Let X be the type of tumor
of a voxel, and Ω = {ED,ET ,NRC,Others}, corresponding to the possibil-
ities: edema, enhancing tumor, necrotic core, and others. Let us assume
that a specialist provides the information X ∈ {ED,ET }, but there is a proba-
bility p = 0.1 that the information is unreliable. How to represent this situ-
ation by a probability function is a challenging problem. Another situation
is when we have multiple information sources tainted with uncertainty, as
illustrated in Figure 1.11b; how can we model that kind of uncertainty and
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Figure 1.10: Proposed automated configuration by nnUNet [Isensee et al.,
2021]. Dataset properties are summarized in a “dataset fingerprint”. A set
of heuristic rules operates on this fingerprint to infer the data-dependent
hyperparameters of the pipeline. These are completed by blueprint pa-
rameters and the data-independent design choices to form “pipeline fin-
gerprints”. Three architectures are trained based on these pipeline finger-
prints in a 5-fold cross-validation. Finally, nnU-Net automatically selects
the optimal ensemble of these architectures and performs post-processing
if required.

fuse the evidence? Furthermore, if the information sources are in conflict
and contain uncertainty as well, i.e., Figure 1.11c, it is difficult to represent
and summarize that information by probabilistic models. Thanks to BFT,
these challenges can be addressed by designing new frameworks for mod-
eling, reasoning, and fusing imperfect (uncertain, imprecise) information.
In the next chapter, we will give a brief introduction to BFT.
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Figure 1.11: (a) Example of a segmentation task with uncertain informa-
tion, (b) Example of a segmentation task with multiple sources of infor-
mation, (c) Example of a segmentation task with conflicting sources of
information.
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BFT is a generalization of Bayesian theory, but it is more flexible than
the Bayesian approach and suitable under weaker conditions [Sun et al.,
2018], i.e., imperfect (uncertain, imprecise, partial) information. Figure 2.1
shows the difference between a probabilistic model and a BFT model when
applied to a three-class classification task (Ω = {a,b, c}). For input x, the
probabilistic model outputs the probability that x belongs to classes a, b,
and c as 0.4, 0.5, and 0.1, respectively. In contrast, the BFT model can
represent degrees of belief that x belongs specifically to any subset of Ω,
e.g., {a,b}, {b, c}. Compared with the probabilistic model, the BFT model
has more degrees of freedom to represent its uncertainty directly, as it
shares a unit mass of belief among all subsets of Ω.

In the past decades, BFT has generated considerable interest and
has had great success in diverse fields, including uncertain reason-
ing [Smets, 1990; Yager, 1987; Dubois et al., 1988; Denœux, 2008],
classification [Denœux, 1995; Denœux, 2000] and clustering [Denœux
et al., 2004; Masson et al., 2009], etc. It was first originated by Demp-
ster [Dempster, 1967] in the context of statistical inference in 1968 and was
later formalized by Shafer [Shafer, 1976] as a theory of evidence in 1976.
In 1986, Dubois and Prade proposed an approach to the computerized



24 2.1 representation of evidence

Probability Assignment

class a class b
{b}{a}

p(a)=0.4 p(b)=0.5

m({a})=0.2

Frame of discernment: �

Frame of discernment: �

(1)

(2)

Input x

Input x

{c}
class c

p(c)=0.1

class a class b

{b}{a} {a,b} {c} {a,c} {b,c}
class c class a,cclass a,b class b,c

{a,b,c}
class �

m({b})=0.4 m({a,b})=0.1 m({c})=0.1 m({a,c})=0.05 m({b,c})=0.1 m({a,b,c})=0.05

Information 
representation 

Information 
representation 

Basic Belief 
Assignment 

Figure 2.1: An example of three class assignments: (1) Probabilistic model
and (2) BFT model. In contrast with the probabilistic model, the BFT model
can quantify uncertainty and assign it to the focal set {a,b}, {a, c}, {b, c} and
{a,b, c} to represent its uncertainty or ignorance (m here is the evidence
(mass function) about a variable ω taking values in Ω, which will be
introduced in Section 2.1).

processing of uncertainty [Dubois et al., 2012]. In 1978, Yager proposed a
new combination rule of the belief function framework [Yager, 1987]. In
1990, BFT was further popularized and developed by Smets [Smets, 1990]
as the ’Transferable Belief Model’ with the pignistic transformation for
decision making. Since then, there has been many developments. More
detailed information about the development of BFT in 40 years can be
found in [Denœux, 2016].

In this chapter, we first introduce the basic notions of BFT, which in-
cludes evidence representation (i.e., mass functions, belief, plausibility and
contour function, as well as simple mass function) in Section 2.1. Second,
we introduce Dempster’s rule in Section 2.2 to explain fusion operations
of multiple sources of evidence. Third, we introduce the discounting op-
eration for unreliable sources in Section 2.3. Fourth, we introduce some
commonly used decision-making methods in Section 2.4. Finally, in Sec-
tion 2.5, we give a summary of basic belief assignment methods used to
generate mass functions for medical image segmentation.

2.1 representation of evidence

Let Ω = {ω1,ω2, ...,ωC} be a finite set of all possible hypotheses about
some problem, called the frame of discernment. Evidence about a variable
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ω taking values in Ω can be represented by a mass function m, from the
power set 2Ω to [0, 1], such that∑

A⊆Ω
m(A) = 1, (2.1a)

m(∅) = 0. (2.1b)

Mapping m can also be called basic belief assignment (BBA). Each subset
A ⊆ Ω such that m(A) > 0 is called a focal set of m. The mass m(Ω)

represents the degree of ignorance about the problem. If all focal sets are
singletons, thenm is said to be Bayesian and it is equivalent to a probability
distribution.

The information provided by a mass functionm can also be represented
by a belief function Bel or a plausibility function Pl from 2Ω to [0, 1]
defined, respectively, as

Bel(A) =
∑
B⊆A

m(B) (2.2)

and
Pl(A) =

∑
B∩A 6=∅

m(B) = 1−Bel(Ā), (2.3)

for all A ⊆ Ω, where Ā denotes the complement of A. The quantity
Bel(A) can be interpreted as a degree of support to A, while Pl(A) can
be interpreted as a measure of lack of support given to the complement of
A. The contour function pl associated to m is the function that maps each
element ω of Ω to its plausibility:

pl(ω) = Pl({ω}), ∀ω ∈ Ω. (2.4)

A mass function m is said to be simple if it can be obtained by discount-
ing a logical mass function; it thus has the following form:

m(A) = s, m(Ω) = 1− s, (2.5)

for some A ⊂ Ω such that A 6= ∅ and some s ∈ [0, 1], called the degree of
support in A. The quantity w = − ln(1− s) is called the weight of evidence
associated to m [Shafer, 1976, page 77]. In Chapter 5, a simple mass
function with focal set A and weight of evidence w will be denoted as Aw.

2.2 dempster’s rule

In BFT, the belief about a certain question is elaborated by aggregating
different belief functions over the same frame of discernment. Given two
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Table 2.1: Example of Dempster’s rule for evidence fusion.

m1

m2 {a}, 0.2 {b}, 0.3 {a,b}, 0.1 {c}, 0.1 {a, c}, 0 {b, c},0.2 {a,b, c}, 0.1

{a}, 0.3 {a}, 0.06 ∅, 0.09 {a}, 0.03 ∅, 0.03 {a}, 0 ∅, 0.06 {a}, 0.03

{b}, 0.3 ∅, 0.06 {b}, 0.09 {b}, 0.03 ∅, 0.03 ∅ ,0 {b}, 0.06 {b}, 0.03

{a,b}, 0.1 {a}, 0.02 {b}, 0.03 {a,b}, 0.01 ∅, 0.01 {a}, 0 {b}, 0.02, {a,b}, 0.01

{c}, 0 ∅, 0 ∅, 0 ∅, 0 {c}, 0 {c}, 0 {c}, 0 {c}, 0

{a, c}, 0.1 {a}, 0.02 ∅, 0.03 {a}, 0.01 {c}, 0.01 {a, c}, 0 {c}, 0.02 {a, c}, 0.01

{b, c}, 0.1 ∅, 0.02 {b}, 0.03 {b}, 0.01 {c}, 0.01 {c}, 0 {b, c}, 0.02 {b, c}, 0.01

{a,b, c}, 0.1 {a}, 0.02 {b}, 0.03 {a,b}, 0.01 {c}, 0.01 {a, c}, 0 {b, c}, 0.02 {a,b, c}, 0.01

mass functions m1 and m2 derived from two independent items of evi-
dence, the final belief that supports A can be obtained by combining m1

and m2 with Dempster’s rule [Shafer, 1976] defined as

(m1 ⊕m2)(A) =
1

1− κ

∑
B∩D=A

m1(B)m2(D), (2.6)

for all A ⊆ Ω,A 6= ∅, and (m1⊕m2)(∅) = 0. The coefficient κ is the degree
of conflict between m1 and m2, it is defined as

κ =
∑
B∩D=∅

m1(B)m2(D). (2.7)

Mass functions m1 and m2 can be combined if and only if κ < 1. The mass
function m1 ⊕m2 is called the orthogonal sum of m1 and m2. Let pl1, pl2
and pl12 denote the contour functions associated with, respectively, m1,
m2 and m1 ⊕m2. The following equation holds:

pl12 =
pl1pl2
1− κ

. (2.8)

Table 2.1 shows an example of two source evidence fusion by using Demp-
ster’s rule for A = {a}, {b}, {a,b}, {c}, {a, c}, {b, c}, and {a,b, c}. The degree
of conflict is κ = 0.09+ 0.03+ 0.06+ 0.06+ 0.03+ 0.01+ 0.03+ 0.02 = 0.33.
The combined mass function is

(m1 ⊕m2)({a}) = (0.06+ 0.03 ∗ 2+ 0.02 ∗ 3+ 0.01)/(1− 0.33) = 19/67,

(m1 ⊕m2)({b}) = (0.09+ 0.03 ∗ 5+ 0.06+ 0.02+ 0.01)/0.67 = 33/67,

(m1 ⊕m2)({a,b}) = (0.01 ∗ 3)/0.67 = 3/67,

(m1 ⊕m2)({c}) = (0.01 ∗ 3+ 0.02)/0.67 = 5/67,

(m1 ⊕m2)({a, c}) = 0.01/0.67 = 1/67,

(m1 ⊕m2)({b, c}) = (0.02 ∗ 2+ 0.01)/0.67 = 5/67,

(m1 ⊕m2)({a,b, c}) = 0.01/0.67 = 1/67.
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2.3 discounting

In (2.7), ifm1 andm2 are logically contradictory, we cannot use Dempster’s
rule to combine them. Discounting strategies can be used to combine
highly conflicting evidence [Shafer, 1976; Mercier et al., 2008; Denœux et
al., 2019]. Let m be a mass function on Ω and β a reliability coefficient
in [0, 1]. The discounting operation [Shafer, 1976] with the discount rate
1− β transforms m into a weaker, less informative mass function defined
as follows:

βm = βm+ (1−β)m?, (2.9)

where m? is the vacuous mass function defined by m?(Ω) = 1, and coeffi-
cient β is the degree of belief that the source mass function m is reliable
[Smets et al., 1994]. When β = 1, we accept the mass function m pro-
vided by the source and take it as a description of our knowledge; when
β = 0, we reject it, and we are left with the vacuous mass function m?.
In this paper, we focus on the situation when β ∈ [0, 1] and combine un-
certain evidence with partial reliability using Dempster’s rule. Mercier et
al. extended the discounting operation with contextual discounting in the
BFT framework to refine the modeling of sensor reliability, allowing us
to use more detailed information regarding the reliability of the source in
different contexts [Mercier et al., 2008], i.e., conditionally on different hy-
potheses regarding the variable of interest. More details about contextual
discounting will be introduced in Chapter 6.

2.4 decision-making (dm)

After combining all the available evidence in the form of a mass function,
it is necessary to make a decision. In this section, we introduce some
classical BFT-based decision-making methods.

upper and lower expected utilities Let u be a utility function.
The lower and upper expectations of u with respect to m are defined,
respectively, as the averages of the minima and the maxima of u within
each focal set of m:

Em(u) =
∑
A⊆Ω

m(A)min
ω∈A

u(ω), (2.10a)

Em(u) =
∑
A⊆Ω

m(A)max
ω∈A

u(ω). (2.10b)

When m is Bayesian, Em(u) = Em(u). If m is logical with focal set A, then
Em(u) and Em(u) are, respectively, the minimum and maximum of u in
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Figure 2.2: Overview of Basic belief assignment (BBA) methods.

A. The lower or upper expectations can be chosen for the final decision
according to the given task and decision-maker’s attitude.

pignistic criterion In 1990, Smets proposed a pignistic transforma-
tion [Smets, 1990] that distributes each mass of belief distributed equally
among the elements of Ω. The pignistic probability distribution is defined
as

BetP(ω) =
∑
ω∈A

m(A)

| A |
, ∀ω ∈ Ω, (2.11)

where |A| denotes the cardinality of A ⊆ Ω.
Besides the above methods, there are various decision-making methods

proposed for BFT, such as Generalized OWA criterion [Yager, 1992], Gen-
eralized minimax regret [Yager, 2004], Generalized divergence [Xiao et al.,
2022], etc. More details about decision-making with BFT can be found in
the review paper [Denœux, 2019a].

2.5 basic belief assignment (bba) methods to generate mass

functions

To model segmentation uncertainty, the first step is to generate mass func-
tions. In this section, we introduce the main basic belief assignment meth-
ods applied to medical image segmentation. Figure 2.2 is an overview of
basic belief assignment methods. In general, those methods can be sep-
arated into supervised and unsupervised methods according to whether
annotations are used to optimize the parameters of basic belief assignment
models or not.

2.5.1 Supervised basic belief assignment methods

Supervised basic belief assignment methods can be classified into two
categories. One is the likelihood-based methods, such as Shafer’s
model [Shafer, 1976] and Appriou’s model [Appriou, 1999; Appriou,
2005]. The other category is composed of distance-based methods, such
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as the evidential KNN rule [Denœux, 1995], the evidential neural network
classifier [Denœux, 2000] and Radial basis function networks [Denœux,
2019a]. It should be noted that the distance-based methods can easily
be merged with popular deep segmentation models and have shown
promising results [Tong et al., 2021b; Huang et al., 2021a; Huang et al.,
2022b].

2.5.1.1 Likelihood-based methods

shafer’s model In [Shafer, 1976], Shafer proposed a likelihood-based
evidential model to calculate mass functions. Assuming that conditional
density functions f(x | ωc) are known, then the conditional likelihood
associated with the pattern X is defined by `(ωc | x) = f(x | ωc). The
mass functions are defined according to the knowledge of all hypotheses
ω1, . . . ,ωC. Firstly, the plausibility of a simple hypothesis ωc is propor-
tional to its likelihood. The plausibility is, thus, given by

Pl({ωc}) =  h · `(ωc | x), ∀ωc ∈ Ω, (2.12)

where  h is a normalization factor with  h = 1/maxω∈Ω `(ω|x). The plausi-
bility of a set A is, thus, given by

Pl(A) =  h · max
ωc∈A

`(ωc | x). (2.13)

appriou’s model Appriou [Appriou, 1999; Appriou, 2005] also pro-
posed two likelihood-based models to calculate mass functions with the
frame of discernment Ω = {ωc,¬ωc}. For the first model, the mass func-
tions are defined by

m({ωc}) = 0, (2.14a)
m({¬ωc}) = αc(1−  h · `(ωc | x)), (2.14b)

m(Ω) = 1−αc(1−  h · `(ωc | x)), (2.14c)

where αc is a reliability factor depending on the hypothesis ωc and on the
source information. The second model is defined as

m({ωc}) = αc ·  h · `(ωc | x)/(1+  h · `(ωc | x)), (2.15a)
m({¬ωc}) = αc/(1+  h · `(ωc | x)), (2.15b)

m(Ω) = 1−αc. (2.15c)

2.5.1.2 Distance-based methods

evidential knn (eknn) rule In [Denœux, 1995], Denœux proposed
a distance-based KNN classifier for classification tasks. Let NK(x) denote
the set of the K nearest neighbors of x in learning set. Each xi ∈ NK(x)
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is considered as a piece of evidence regarding the class label of x. The
strength of evidence decreases with the distance between x and xi. The
evidence of (xi,yi) support class c is represented by

mi({ωc}) = ϕc(di)yic, 1 6 c 6 C, (2.16a)
mi(Ω) = 1−ϕc(di), (2.16b)

where di is the distance between x and xi, which can be the Euclidean
or other distance function; and yic = 1 if yi = ωc and yic = 0 otherwise.
Function ϕc is defined as

ϕc(d) = α exp(−γd2), (2.17)

where α and γ are two tuning parameters. The evidence of the K nearest
neighbors of x is fused by Dempster’s rule:

m =
⊕

xi∈NK(x)

mi. (2.18)

The final decision is made according to maximum plausibility. The de-
tailed optimization of these parameters is described in [Zouhal et al., 1998].
Based on this first work, Denœux et al. proposed the contextual discount-
ing evidential KNN rule [Denœux et al., 2019] with partially supervised
learning to address the annotation limitation problem.

evidential neural network (enn) The success of machine learn-
ing encouraged the exploration of applying belief function theory with
learning methods. In [Denœux, 2000], Denœux proposed an ENN classi-
fier in which mass functions are computed based on distances to proto-
types.

The ENN classifier is composed of an input layer of H neurons, two
hidden layers, and an output layer. The first input layer is composed of I
units, whose weights vectors are prototypes p1, . . . ,pI in input space. The
activation of unit i in the prototype layer is

si = αi exp(−γid2i ), (2.19)

where di = |x− pi| is the Euclidean distance between input vector x and
prototype pi, γi > 0 is a scale parameter, and αi ∈ [0, 1] is an additional
parameter. The second hidden layer computes mass functions mi repre-
senting the evidence of each prototype pi, using the following equations:

mi({ωc}) = uicsi, c = 1, . . . ,C (2.20a)
mi(Ω) = 1− si, (2.20b)
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Figure 2.3: Evidential neural network.

where uic is the membership degree of prototype i to class ωc, and∑C
c=1 uic = 1. Finally, the third layer combines the I mass functions

m1, . . . ,mI using Dempster’s rule. The output mass functionm =
⊕I
i=1mi

is a discounted Bayesian mass function that summarizes the evidence of
the I prototypes.

Let θ denote the vector of all network parameters, composed of the I
prototypes pi, their parameters γi and αi, and their membership degrees
uic, c = 1, . . . ,C. In [Denœux, 2000], it was proposed to learn these
parameters by minimizing the regularized sum-of-squares loss function

LSS(θ) =

N∑
n=1

C∑
c=1

(pnc − ync)
2 + λ

I∑
i=1

αi, (2.21)

where pnc is the pignistic probability of class ωc for instance n, N is the
number of training instances, and ync = 1 if the true class of instance n
is ωc, and ync = 0 otherwise. The second term on the right-hand side of
(2.21) is a regularization term, and λ is a hyperparameter that can be tuned
by cross-validation.

2.5.2 Unsupervised basic belief assignment methods

The goal of unsupervised basic belief assignment methods is to generate
mass functions without any label information. In earlier basic belief assign-
ment studies, Fuzzy C-means (FCM) [Dunn, 1973] was the most popular
algorithm used to generate membership values (MVs). Based on MVs, the
authors can obtain mass functions according to some domain knowledge,
e.g., threshold [Zhu et al., 2002], or user-specific parameters [Ghasemi
et al., 2012]. The sigmoid and one-sided Gaussian function can also be
used to generate MVs [Safranek et al., 1990]. The notion of credal parti-
tion [Denœux et al., 2004], an extension of fuzzy partition, enables us to
generate mass functions directly [Masson et al., 2008]. Besides these two
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Figure 2.4: (a) Construction of triangular membership functions and (b)
maximum ambiguity case: υc(g) = υc+1(g) = 0.5.

popular basic belief assignment methods, mass functions can also be gener-
ated from the Gaussian distribution of the input to the cluster center [Chen
et al., 2012].

2.5.2.1 MV-based methods

fcm Considering that there are some BFT-based methods that use FCM
to generate MVs, we briefly summarize FCM here to offer a basic view
for readers. With FCM, any x has a set of coefficients wk(x) representing
the degree of membership in the kth cluster. The centroid of a cluster is
the mean of all points, weighted by the m-th power of their membership
degree,

ck =

∑
xwk(x)

mx∑
xwk(x)

m , (2.22)

where m is the hyper-parameter that controls how fuzzy the cluster will
be. The higher it is, the fuzzier. Given a finite set of data, the FCM
algorithm returns a list of cluster centers P = {c1, . . . , cC} and a partition
matrix W = (wij), i = 1, . . . ,N, j = 1, . . . ,C,

wij =
1∑C

k=1

(
‖xi−cj‖
‖xi−cc‖

) 2
m−1

, (2.23)

where wij, is the degree of membership of xi to cluster cj. The objective
function is defined as

argmax
P

N∑
i=1

C∑
j=1

wmij
∥∥xi − cj

∥∥ . (2.24)

zhu’s model In [Zhu et al., 2002], Zhu et al. proposed a method to
determine mass functions using FCM and neighborhood information. The
mass assigned to a simple hypothesis {ωc} is directly obtained from the
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filtered membership functions υc(g) of the gray level g(x,y) to cluster c as
m({ωc}) = υc(g). For a given gray level, the piece of evidence of belonging
to the cluster c is, thus, directly given by its degree of membership to the
same cluster. If there is a high ambiguity in assigning a gray level g(x,y)
to cluster c or c+ 1, that is, |υc(g) − υc+1(g)| < ε, where ε is a thresholding
value, then a double hypothesis is formed. The value of the threshold ε
is chosen depending on the application. The authors suggested fixing ε
at 0.1. Once the double hypotheses are formed, their associated mass is
calculated according to the following formula:

m({ωc,ωc+1}) =
S[υc(g),υc+1(g)]

2Smax
, (2.25)

where S represents the surface of a triangle and Smax is the maximum of
ambiguity. The surface of such a triangle depends both on the degrees
of the membership functions of g(x,y) to clusters c and c + 1 and on
the conflicts between these MVs. Figure 2.4a shows how the triangle is
constructed and how the mass of double hypotheses {ωc,ωc+1} is derived
from the surface of the triangle. The vertical axis of Figure 2.4a represents
the MVs. The surfaces of the two dotted triangles define two so-called
triangular membership functions corresponding to classes c and c+ 1. The
two triangles are isosceles and have the same length for their bases. The
heights of the triangles are equal to m({ωc}) and m({ωc+1}), respectively.
The overlapping surface S of the two triangles represents the MV to the
double hypothesis {ωc,ωc+1}. Therefore, the mass value attributed to the
double hypothesis {ωc,ωc+1} can be directly calculated from the surface S.
Figure 2.4b shows the condition of the maximum ambiguity case.

ratio mv transformation In [Ghasemi et al., 2012], Ghasemi et al.
proposed a ratio membership value transformation method to calculate
mass functions. The FCM algorithm was first used to generate MVs fωc

for each pixel. Then the MVs are used to build the mass functions. For this
purpose, the three ratios of the available MVs are calculated, correspond-
ing to three situations: “no uncertainty” (NU), “semi-uncertainty” (SU),
and “perfect-uncertainty” (PU). First, PU is a critical situation in which
the Ratio MVs are smaller than α, then the mass function is calculated as
m({ω1}) = m({ω2}) = m(Ω) = (fω1

+ fω2
)/3. Second, two thresholds α

and βwith α = 1.5 and β = 3 are selected to control the boundary between
SU and PU, and between NU and SU, separately. For example, with

fω1
= 0.18, fω2

= 0.81, RMV = fω1
/fω2

= 4.5, RMV > β,

the two MVs fall in the NU category. If

fω1
= 0.25, fω2

= 0.65, RMV = fω1
/fω2

= 2.6, α < RMV < β,
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Table 2.2: Example of credal partition.

A m1(A) m2(A) m3(A) m4(A) m5(A)
{∅} 1 0 0 0 0

{a} 0 0 1 0.5 0.6
{b} 0 0 0 0.3 0.4

{a,b} 0 1 0 0.2 0

the two MVs are in the SU category. The mass functions are calculated as

m({ω1}) = fω1
−
λω1,ω2

2
, (2.26a)

m({ω2}) = fω2
−
λω1,ω2

2
, (2.26b)

m(Ω) = λω1,ω2
, (2.26c)

where λ is an uncertainty distance value defined as λω1,ω2
=

|fω1
−fω2 |
β−α .

2.5.2.2 Evidential C-means (ECM)

In [Denœux et al., 2004], Denœux et al. proposed an evidential clustering
algorithm, called EVCLUS, based on the notion of credal partition, which
extends the existing concepts of hard, fuzzy (probabilistic), and possibilis-
tic partition by allocating to each object a “mass of belief”, not only to
single clusters but also to any subsets of Ω = {ω1, . . . ,ωC}.

credal partition Assuming there is a collection of five objects for
two classes, mass functions for each source are given in Table 2.2. They
represent different situations: the mass function of object 1 indicates strong
evidence that the class of object 1 does not lie in Ω; the class of object 2

is completely unknown, and the class of object 3 is known with certainty;
the cases of objects 4 and 5 correspond to situations of partial knowledge
(m5 is Bayesian). The EVCLUS algorithm generates a credal partition for
dissimilarity data by minimizing a cost function.

evidential c-means (ecm) The ECM algorithm [Masson et al., 2008]
is another method for generating a credal partition from data. In ECM, a
cluster is represented by a prototype pc. For each non-empty set Aj ⊆ Ω, a
prototype p̄j is defined as the center of mass of the prototypes pc such that
ωc ∈ Aj. Then the non-empty focal set is defined as F = {A1, . . . ,Af} ⊆
2Ω \ {∅}. Deriving a credal partition from object data implies determining,
for each object xi, the quantities mij = mi(Aj),Ai 6= ∅,Aj ⊆ Ω, in such
a way that mij is low (resp. high) when the distance between xi and the
focal set p̄j is high (resp. low). The distance between an object and any
nonempty subset of Ω is then defined by
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d2ij =
∥∥xi − p̄j∥∥2 . (2.27)

2.5.2.3 Gaussian distribution (GD)-based model

Besides the FCM-based and credal partition-based methods, the mass func-
tions can also be generated from GD [Chen et al., 2012]. The mass of simple
hypotheses {ωc} can be obtained from the assumption of GD according to
the information xi of a pixel from an input image to cluster c as follows:

m({ωc}) =
1

σc
√
2π

exp
−(xi − µc)

2

2σ2c
, (2.28)

where µc and σ2c represent, respectively, the mean and the variance of the
cluster c, which can be estimated by

µc =
1

nc

nc∑
i=1

xi, (2.29)

σ2c =
1

nc

nc∑
i=1

(xi − µc)
2, (2.30)

where nc is the number of pixels in the cluster c. The mass of multiple
hypotheses {ω1,ω2, . . . ,ωT } is determined as

m({ω1,ω2, . . . ,ωT }) =
1

σt
√
2π

exp
−(xi − µt)

2

2σ2t
, (2.31)

where µt = 1
T

∑T
i=1 µi, σt = max(σ1,σ2, . . . ,σT ), 2 6 T 6 C, C is the number

of clusters.

2.5.2.4 Binary frames of Discernment (BFOD)

Under the assumption that the membership value is available, Safranek et
al. introduced a BFOD-based method [Safranek et al., 1990] to transform
membership values into mass functions. The BFOD is constructed as Ω =

{ω,¬ω} with a function cf(ν), taking values in [0, 1] that assigns confidence
factors. According to the authors, the sigmoid and one-sided Gaussian
functions are the most appropriate functions for defining cf(ν). Once a
confidence value is obtained, the transformation into mass functions can
be accomplished by defining appropriate transfer functions:

m({ω}) =
B

1−A
cf(ν) −

AB

1−A
, (2.32a)

m({¬ω}) =
−B

1−A
cf(ν) +B, (2.32b)

m(Ω) = 1−m({ω}) −m({¬ω}), (2.32c)
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where A and B are user-specific parameters. In (2.32a) and (2.32b), the left-
hand side stays clamped at zero when the right-hand side goes negative.
Parameter A is the confidence-factor axis intercept of the curve that depicts
the dependence of m({ω}) on confidence factors, and B is the maximum
support value assigned to m({ω}) or m({¬ω}).

2.6 conclusion

BFT is a powerful tool to represent imperfect information and combine dif-
ferent sources of information by Dempster’s rule. In this chapter, we first
recalled how imperfect information can be represented by mass functions
and how multiple sources of evidence can be combined by Dempster’s rule.
We then introduced the discounting operation for unreliable evidence and
decision-making based on mass functions. In addition, we gave a sum-
mary of existing basic belief assignment methods that have been used in
medical image segmentation. In the next chapter, we will provide an over-
all review of BFT-based medical image segmentation methods.
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To summarize the BFT-based medical image segmentation methods, we
can either classify them by the input modality of the images or by the
specific clinical application. Figure 3.1a shows the proportion of types of
medical images applied in the segmentation task and Figure 3.1b displays
the proportions of application in the medical image segmentation task.

We have presented the common basic belief assignment methods to
generate mass functions for medical images in Section 2.5. The most in-
teresting way now to analyze those segmentation methods is to classify
them according to the stage at which they fuse mass functions. Figure 3.2
gives an overview of the BFT-based medical image segmentation methods
classified according to the fusion operation they perform. We first classify
methods by the number of classifiers/clusterers, i.e., whether the fusion
of mass functions is performed at the classifiers/clusterers level. Then we
consider the number of input modalities, i.e., whether the fusion of mass
functions is performed at the modality level. It should be noted that the
medical image segmentation with single-modality input and single classi-
fier/clusterer can also have a fusion operation, which is performed at the
pixel/voxel level. Figure 3.3 gives the proportions of the BFT-based seg-
mentation methods if multiple classifiers/clusterers or multimodal medi-
cal images are used. 73% of the methods use a single classifier or cluster.
Among these methods, 24% take single-modality medical images as input,
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(a) (b)

Figure 3.1: (a) The composition of input modality of the medical image,
(b)The composition of specific medical application.
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Figure 3.2: Overview of BFT-based medical image segmentation methods.
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Figure 3.3: The composition of the proportion of modalities and classifier-
s/clusterers.

and 49% take multimodal medical images as input. The remaining 27% of
the methods use several classifiers or clusterers. Among those methods,
18% take single-modality medical images as input, against 9% for multi-
modal medical images. In Sections 3.1 and 3.2 we give more details about
the fusion operations and discuss their performances.

3.1 segmentation with a single classifier or clusterer

The medical image segmentation methods summarized in this section fo-
cus on using a single classifier or clusterer. To simplify the introduction,
we classify them into single-modality and multimodal inputs according to
whether the authors treat the input images as single or multiple source
inputs. We will introduce them in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Single-modality evidence fusion

Figure 3.4 shows the framework of single-modality evidence fusion with
a single classifier (we only take the classifier as an example in the rest
of this chapter to simplify the explanation). The inputs of the frame-
work are single-modality medical images. The segmentation process com-
prises three steps: mass calculation (including feature extraction and BBA),
feature-level mass fusion, and decision-making. Since decision-making is
not the focus of this chapter, we will not go into details about it; readers
can refer to Ref. [Denœux, 2019a] for a recent review of decision methods
based on belief functions.



40 3.1.1 single-modality evidence fusion

��({�}) ��({�, �})...

�({�}) �({�, �})

  Input

One pixel 

Output  

��({�})

��({�}) ��({�}) ��({�, �})
Fused mass function  of pixel 

�({�})

Feature-level 
masses fusion

��({�}) ��({�}) ��({�, �})

...

K mass functions  of pixel 

Feature 
extraction BBA

Decision-
making

1 2 3

Figure 3.4: Example framework of single-modality evidence fusion with
single classifier. The segmentation process is composed of three steps:
(1) image information is transferred into the feature extraction block, and
some BBA methods are used to get feature-level mass functions; (2) Demp-
ster’s rule is used to fuse feature-level mass functions; (3) decision-making
is made based on the fused mass functions to output a segmented mask.
We take only one pixel zi as an example and show how BFT works on
pixel-level evidence fusion under a binary segmentation task to simplify
the process. For each pixel zi, we can obtain K mass functions from BBA.
After feature-level evidence fusion, a fused mass function is assigned to
pixel zi to represent the degree of belief this pixel belongs to classes a, b
and ignorance.

(1) First, the mass calculation step assigns each pixel/voxel K mass func-
tions based on the evidence of K different BBA methods, K input
features, K nearest neighbors, or K prototype centers.

(2) Dempster’s rule is then used for each pixel/voxel to fuse the feature-
level mass functions.

(3) Finally, decisions are made to obtain final segmentation results.

Here, a feature extraction method is used to generate MVs (corresponding
to traditional medical image segmentation methods) or deep features (cor-
responding to deep learning-based medical image segmentation methods).
The feature extraction method could be intensity-based methods such as
threshold intensity, probabilistic-based methods such as SVM, fuzzy set-
based methods such as FCM, etc. There are various basic belief assignment
methods, therefore we introduce them in specific tasks in the following.
In general, the methods introduced in this section focus on feature-level
evidence fusion. Table 3.1 shows the segmentation methods with a single-
modality input and classifier/cluster that focus on feature-level evidence
fusion.

In [Suh et al., 1993], Suh et al. developed a knowledge-based endo-
cardial and epicardial boundary detection and segmentation system with
cardiac MR image sequences. Pixel and location information were mapped
into mass functions by Shafer’s model [Shafer, 1976] (see Section 2.5.1.1).
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Table 3.1: Summary of BFT-based medical image segmentation methods
with single-modality inputs and a single classifier/clusterer.

Publications Input image type Application BBA method
[Suh et al., 1993] MR images cardiac segmentation Shafer’s model
[Gerig et al., 2000] MR images brain tissue segmentation BFOD
[Vauclin et al., 2005] CT lung and spinal canal segmentation Shafer’s model
[Vannoorenberghe et al., 2006] CT thoracic segmentation EKNN
[Derraz et al., 2013b] optical imaging with color cell segmentation Appriou’s model
[Derraz et al., 2013a] optical imaging with color retinopathy segmentation Appriou’s model
[Derraz et al., 2013b] optical imaging with color retinopathy segmentation Appriou’s model
[Lian et al., 2017b] FDG-PET lung tumor segmentation ECM
[Lian et al., 2017c] FDG-PET lung tumor segmentation ECM
[Huang et al., 2021c] PET-CT lymphoma segmentation ENN
[Huang et al., 2022b] PET-CT lymphoma segmentation ENN, RBF

The mass functions from the two sources were fused by using Dempster’s
rule (see Section 2.2). Experiments were applied to cardiac short-axis im-
ages and obtained an excellent success rate (> 90%). However, this work
only focused on cardiac boundary detection and did not discuss the de-
tails of the heart. In [Vauclin et al., 2005], Vauclin et al. proposed a BFT-
based lung and spinal canal segmentation model. The k-means clustering
algorithm was first used to perform a pre-segmentation. Then a 3D fil-
ter exploits the results of the pre-segmentation to compute the MVs from
spatial neighbors using Shafer’s model. Segmentation results showed the
credal partition permits the reduction of the connection risks between the
trachea and the lung when they are very close and between the left and
right lungs at the anterior or posterior junctions.

In [Gerig et al., 2000], Gerig et al. presented a method for automatic seg-
mentation and characterization of object changes in time series of 3D MR
images. A set of MVs was derived from time series according to brightness
changes. The BFOD transformation (see Section 2.5.2.4) was used to map
the obtained features into mass functions. Then the set of evidence was
combined by Dempster’s rule (See Section 2.2). A comparison with results
from alternative segmentation methods revealed an excellent sensitivity
and specificity performance in the brain lesion region. The author also
pointed out that better performance could be obtained with multimodal
and multiple time-series evidence fusion. Simulation results showed that
about 80% of the implanted voxels could be detected for most generated
lesions.

In [Vannoorenberghe et al., 2006], Vannoorenberghe et al. presented
a BFT-based thoracic image segmentation method. First, a K-means al-
gorithm performed coarse segmentation on the original CT images. Sec-
ond, the EKNN rule (see Section 2.5.1.2) was applied by considering spa-
tial information and calculating feature-level mass functions. The authors
claimed that using this segmentation scheme leads to a complementary
approach combining region segmentation and edge detection. Experimen-
tal results showed promising results on 2D and 3D CT images for lung
segmentation.
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In [Derraz et al., 2013b], Derraz et al. proposed an active contour
(AC)-based [Chan et al., 2000] global segmentation method for vector-
valued image that incorporated both probability and mass functions. All
features issued from the vector-valued image were integrated with insid-
e/outside descriptors to drive the segmentation results by maximizing the
Maximum-Likelihood distance between foreground and background. Ap-
priou’s second model (2.15) was used to calculate the imprecision caused
by low contrast and noise between inside and outside descriptors issued
from the multiple channels. Then the fast algorithm based on Split Breg-
man [Goldstein et al., 2009] was used for final segmentation by forming a
fast and accurate minimization algorithm for the Total Variation (TV) prob-
lem. Experiments were conducted on color biomedical images (eosinophil,
lymphocyte, eosinophil, monocyte, and neutrophil cell [Mohamed et al.,
2012]) and achieve around 6% improvements by using F-score on five im-
age groups. In the same year, Derraz et al. proposed a new segmentation
method [Derraz et al., 2013a] based on Active Contours (AC) for the vector-
valued image that incorporates Bhattacharyya’s distance [Michailovich et
al., 2007]. The only difference is that the authors calculate the probability
functions by Bhattacharyya distance instead of the Maximum-Likelihood
distance in this paper. The performance of the proposed algorithm was
demonstrated on the retinopathy dataset [Quellec et al., 2008; Niemeijer
et al., 2009], showing an increase of 3% in F-score compared with the best-
performed methods.

In [Lian et al., 2017b], Lian et al. introduced a tumor delineation
method in fluorodeoxyglucose positron emission tomography (FDG-PET)
images by using spatial ECM [Lelandais et al., 2014] with adaptive distance
metric, a variant of the ECM algorithm recalled in Section 2.5.2.2. The au-
thors proposed the adaptive distance metric to extract the most valuable
features, and spatial ECM was used to calculate mass functions. Com-
pared with ECM and spatial ECM, the proposed method showed a 14%
and 10% increase in Dice score when evaluated on the FDG-PET images
of non-small cell lung cancer (NSCLC) patients, which constitutes a very
good performance.

In [Huang et al., 2021c], we proposed a 3D PET/CT lymphoma seg-
mentation framework with BFT and deep learning. In this paper, the PET
and CT images were concatenated as a signal modal input method and
transferred into UNet to get high-level semantic features. Then the ENN
classifier (see Section 2.5.1.2) was used to map high-level semantic features
into mass functions by fusing the contribution of K prototypes. Moreover,
the segmentation uncertainty was considered in this paper with an un-
certainty loss during training. Based on the first work, we verified the
similarity of radial basis function (RBF, see Section 5.2.1.2 ) network and
ENN in uncertainty quantification and merged them with the deep neu-
ral network (UNet, see Section 1.3.1) for lymphoma segmentation [Huang
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et al., 2022b]. The segmentation performance confirmed that RBF is an
alternative approach of ENN to act as an evidential classifier and showed
that the proposal outperforms the baseline methods and the state-of-the-
art both in accuracy and reliability. We will introduce more detail about
this work in Chapter 5.

Before 2020, the BFT-based medical image segmentation methods with
single-modality medical used low-level image features, e.g., grayscale and
shape features, to generate mass functions, which limits the segmentation
accuracy. However, none of them discussed the reliability of the segmen-
tation results. We are the first to merge BFT with a deep segmentation
model (UNet) and optimize the mass functions with some learning algo-
rithms [Huang et al., 2021c]. Based on this, we further discuss the rela-
tionship between segmentation accuracy and reliability in [Huang et al.,
2022b], which takes a new direction to study reliable medical image seg-
mentation methods and bridge the gap between experimental results and
clinical application.

3.1.2 Multimodal evidence fusion

Single-modality medical images often do not contain enough information
to present the information about the disease and are often tainted with
uncertainty. In addition to feature-level evidence fusion, the fusion of mul-
timodal evidence is also important to achieve accurate and reliable medical
image segmentation performance. Approaches for modality-level evidence
fusion can be summarized into three main categories according to the way
they calculate the evidence: probabilistic-based fusion, fuzzy set-based
fusion, and BFT-based fusion. The development of convolution neural net-
works (CNNs) further contributes to the probabilistic-based fusion meth-
ods [Zhou et al., 2019], which can be summarized into image-level fusion
(e.g., data concatenation [Peiris et al., 2021]), feature-level fusion (e.g., at-
tention mechanism concatenation [Zhou et al., 2020; Zhou et al., 2022]),
and decision-level fusion (e.g., model ensembles [Kamnitsas et al., 2017]).
However, none of those methods considers the conflict between sources
of evidence, i.e., the modality-level uncertainty is not well studied, which
limits the reliability and explainability of the performance.

This section focuses on the BFT-based segmentation methods with
modality-level evidence fusion. Figure 3.5 shows an example framework
of multimodal evidence fusion with a single classifier. We separate the seg-
mentation process into four steps: mass calculation, feature-level evidence
fusion (optional), modality-level evidence fusion, and decision-making.
Compared with single-modality evidence fusion reviewed in Section 3.1.1,
multimodal evidence fusion focuses here not only on feature-level but also
on modality-level evidence fusion. It should be noted that feature-level
evidence fusion is not necessary in this case. Multimodal evidence fusion
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Figure 3.5: Example framework of multimodal evidence fusion with a sin-
gle classifier. The segmentation process is composed of four steps: (1) for
each modal input, image features are fed into the classifier, and some BBA
methods are used to get feature-level mass functions; (2) inside each modal,
the calculated feature-level mass functions are fused by using Dempster’s
rule to generate modality-level mass functions; (3) between the modalities,
the calculated modality-level mass functions are fused by using Demp-
ster’s rule again; (4) decision-making is made based on the fused mass
functions to output a segmented mask.

is the most popular application for BFT in the medical image segmen-
tation domain. Therefore we classify those methods according to their
input modal for better analysis. Table 3.2 summarizes the segmentation
methods with multimodal inputs and a single classifier/cluster with the
main focus on modality-level evidence fusion.

fusion of multimodal mr images In [Bloch, 1996], Bloch first
proposed a BFT-based dual-echo MR pathological brains tissue seg-
mentation model with uncertainty and imprecision quantification. The
author assigned mass functions based on a reasoning approach that uses
gray-level histograms provided by each image to choose focal elements.
After defining mass functions, Dempster’s rule combined the mass from
dual-echo MR images for each pixel. Based on the first work with BFT,
in [Bloch, 2008], Bloch proposed to use fuzzy mathematical morphol-
ogy [Bloch, 1995], i.e., erosion and dilation, to generate mass functions
by introducing imprecision in the probability functions and estimating
compound hypotheses. Then Dempster’s rule (see Section 2.2) is used
to fuse mass functions from multimodal images. It should be noted
that in this paper, the strong assumption is made that it is possible to
represent imprecision by a fuzzy set, also called the structuring element.
Application examples on dual-echo MR image fusion showed that the
fuzzy mathematical morphology operations could represent either spatial
domain imprecision or feature space imprecision (i.e., gray levels features).
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Table 3.2: Summary of BFT-based medical image segmentation methods
with multimodal input and single classifier/clusterer.

Publications Input image type Application BBA method
[Vannoorenberghe et al., 1999] optical imaging with color skin cancer segmentation GD-based model
[Bloch, 1996] multimodal MR images brain tissue segmentation prior knowledge
[Taleb-Ahmed et al., 2002] multimodal MR images vertebrae segmenta threshold+contour distance
[Chaabane et al., 2009] optical imaging with color cell lesion segmentation Appriou’s model
[Zhu et al., 2002] multimodal MR images brain tissue segmentation Zhu’s model
[Bloch, 2008] multimodal MR images brain tissue segmentation prior knowledge
[Chaabane et al., 2011] optical imaging with color cell lesion segmentation Aprrious’s method
[Ghasemi et al., 2012] multimodal MR images brain tissue segmentation Ratio MV
[Harrabi et al., 2012] optical imaging with color breast cancer segmentation GD-based model
[Lelandais et al., 2012] PET biological target tumor segmentation ECM
[Wang et al., 2013] multimodal MR images cerebral infraction segmentation Zhu’s model
[Ghasemi et al., 2013] multimodal MR images brain tumor segmentation Ratio MV
[Lelandais et al., 2014] multi-tracer PET biological target tumor segmentation ECM
[Makni et al., 2014] multi-parametric MR image prostate zonal anatomy ECM
[Derraz et al., 2015] PET/CT lung tumor segmentation Appriou’s model
[Trabelsi et al., 2015] optical imaging with color skin lesion segmentation None
[Xiao et al., 2017] multimodal MR images vascular segmentation GD-based model
[Lian et al., 2017a] FDG-PET/CT lung tumor segmentation ECM
[Lian et al., 2018b] FDG-PET/CT lung cancer segmentation ECM
[Tavakoli et al., 2018] multimodal MR images brain tissue segmentation Ratio MV
[Lima et al., 2019] multimodal MR images brain tissue segmentation Ratio MV
[Lian et al., 2018a] PET/CT lung tumor segmentation ECM

The visualized brain tissue segmentation results show the robustness of
the proposed method.

As we mentioned in Section 2.5, Zhu et al. proposed modeling mass
functions in BFT using FCM and spatial neighborhood information for
image segmentation [Zhu et al., 2002]. The visualized segmentation results
on MR brain images showed that the fusion-based segmented regions are
relatively homogeneous, enabling accurate measurement of brain tissue
volumes compared with single-modality input MR image input.

In [Ghasemi et al., 2012], Ghasemi et al. presented a brain tissue seg-
mentation approach based on FCM and BFT. The authors used the FCM to
model two different input features: pixel intensity and spatial information,
as membership values (MVs). Then for each pixel, the Ratio MV trans-
formation (see Section 2.5.2.1) was used to map MVs into mass functions.
Last, the authors used Dempster’s rule (see Section 2.2) to fuse intensity-
based and spatial-based mass functions to get final segmentation results.
Compared with FCM, the authors reported an increase in Dice score and
accuracy. As an extension of [Ghasemi et al., 2012], Ghasemi et al. pro-
posed an unsupervised brain tumor segmentation method that modeled
pixel intensity and spatial information into mass functions with Ratio MV
transformation and fused the two mass functions with Dempster’s rule
in [Ghasemi et al., 2013].

In [Wang et al., 2013], Wang et al. proposed a lesion segmentation
method for infarction and cytotoxic brain edema. The authors used a
method similar to Zhu’s model (see Section 2.5.2.1) to define simple and
double hypotheses. FCM was used first to construct the mass functions
of simple hypotheses {a} and {b}. Then masses were assigned to double
hypotheses as m({a,b}) = 1

4 ×
min(m({a}),m({b}))
m({a})+m({b}) . Finally, the authors used

Dempster’s rule for modality-level evidence fusion. The results showed
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that infarction and cytotoxic brain edema around the infarction could be
well segmented by final segmentation.

In [Makni et al., 2014], Makni et al. introduced a multi-parametric
MR image segmentation model by using spatial neighborhood in ECM
for prostate zonal anatomy. The authors extended the ECM (see Section
2.5.2.2) with neighboring voxels information to map multi-parametric MR
images into mass functions. Then they used prior knowledge related to
defects in the acquisition system to reduce uncertainty and imprecision.
Finally, the authors used Dempster’s rule to fuse the mass functions from
the multi-parametric MR images. The method achieved good performance
on prostate multi-parametric MR image segmentation.

In [Tavakoli et al., 2018], Tavakoli et al. proposed a segmentation
method based on the evidential fusion of different modalities (T1, T2, and
Proton density (PD)) for brain tissue. The authors used FCM to get MVs
and used the Ratio MV transformation (see Section 2.5.2.1) to transform
the clustering MVs into mass functions. The authors first formed the belief
structure for each modal image and used Dempster’s rule to fuse the three
modalities’ mass functions of T1, T2, and PD. Compared with FCM, this
method achieved a 5% improvement in the Dice score. Based on Tavakoli’s
method [Tavakoli et al., 2018], Lima et al. proposed a modified brain tis-
sue segmentation method in [Lima et al., 2019]. The authors tested their
method with four modality inputs: T1, T2, PD, and Flair. The reported re-
sults outperformed both the baseline method FCM and Tavakoli’s method
with four-modality evidence fusion.

In [Xiao et al., 2017], Xiao et al. proposed an automatic vascular seg-
mentation algorithm, which combines the grayscale and shape features of
blood vessels and extracts 3D vascular structures from the head phase-
contrast MR angiography dataset. First, grayscale and shape features are
mapped into mass functions by using the GD-based method (see Section
2.5.2.3). Second, a new reconstructed vascular image was established ac-
cording to the fusion of vascular grayscale and shape features by Demp-
ster’s rule. Third, a segmentation ratio coefficient was proposed to con-
trol the segmentation result according to the noise distribution characteris-
tic. Experiment results showed that vascular structures could be detected
when both grayscale and shape features are robust. Compared with tra-
ditional grayscale feature-based or shape feature-based methods, the pro-
posal showed better performance in segmentation accuracy with the de-
creased over-segmentation and under-segmentation ratios by fusing two
sources of information.

Since Bloch’s early work fully demonstrated the advantages of BFT in
modeling uncertain and imprecision, introducing partial or global igno-
rance, and fusing conflicting evidence in a multimodal MR images seg-
mentation task, researchers in this domain have gone further to explore
the advantages of BFT in multi MR image fusion. Among these research
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works, FCM is the most popular clustering algorithm to map input infor-
mation into MVs. Ration MV transformation or Zhu’s model (see Section
2.5.2.1) is usually used to generate mass functions from MVs. Apart from
these two-step methods, the GD-based model (see Section 2.5.2.3) can also
be used to generate mass functions directly.

fusion of rgb channels In [Vannoorenberghe et al., 1999], Van-
noorenberghe et al. pointed out that taking the R, G, and B channels
as three independent information sources can be limited and nonoptimal
for medical image tasks and proposed a color image segmentation method
based on BFT. They calculated the degree of evidence by mapping R, G,
and B channel intensity into mass functions using the Gaussian distribu-
tion information (similar to GD-based model) with an additional discount-
ing operation). Then three pieces of evidence were fused with Dempster’s
rule (see Section 2.2). The proposed segmentation method was applied to
biomedical images to detect skin cancer (melanoma). Experiments showed
a significant part of the lesion is correctly extracted from the safe skin. The
segmentation performance is limited by feature representation, e.g., some
regions correspond to pixels that cannot be classified as either the safe
skin or the lesion because only the pixel-level feature is insufficient for
hard-example segmentation.

In [Chaabane et al., 2009] Chaabane et al. proposed a color medi-
cal image segmentation method based on fusion operation. Compared
to [Vannoorenberghe et al., 1999], the authors first modeled probabilities
for each region by a Gaussian distribution, then used Appriou’s second
model (2.15) to map probability into mass functions. Dempster’s rule then
combined the evidence from the three color channels. Compared with
single-channel segmentation results, the fused results achieved a 10% in-
crease in segmentation sensitivity.

Different from the methods described in [Vannoorenberghe et al., 1999]
and [Chaabane et al., 2009] that decompose color images into R, G, B
channels, Harrabi et al. [Harrabi et al., 2012] presented a color image
segmentation method that represents the color image with 6 color spaces
(RGB, HSV, YIQ, XYZ, LAB, LUV). The segmentation operation is based
on multi-level thresholding and evidence fusion techniques. First, the
authors identified the most significant peaks of the histogram by multi-
level thresholding with the two-stage Otsu optimization approach. Second,
the GD-based model (see Section 2.5.2.3) was used to calculate the mass
functions for each color space. Then the authors used Dempster’s rule to
combine six sources of information. Compared with single color spaces,
such as RGB and HSV, the combined result taking into account six color
spaces, has a significant increase in segmentation sensitivity, for example,
an increase of 4% and 7% as compared to RGB and HSV, respectively.
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In [Trabelsi et al., 2015], Trabelsi et al. applied BFT in optical imaging
with color to improve skin lesion segmentation performance. The authors
decomposed color images into R, G, and B channels and applied the FCM
method on each channel to get probability functions for pixel x in each
color space. In this paper, the authors take the probability functions as
mass functions and calculate the orthogonal sum of the probability func-
tions from the three-channel images. Even though experiments showed
about 10% improvements in segmentation accuracy compared with single-
channel results, this work does not harness the full power of BFT as it only
considers Bayesian mass functions.

In general, the BFT-based RGB medical image segmentation ap-
proaches are used to generate mass functions from possibility distribu-
tions, e.g., Gaussian distribution and Possibility C-means distribution, and
fuse them by Dempster’s rule. Though the authors claimed they could get
better performance compared with single color input, the segmentation
performance is limited by features because gray-scale and intensity
features are not robust and efficient in representing image information.
Further research could take both feature extraction and uncertainty
quantification into consideration, e.g., a deep feature extraction model
with an evidential classifier, to improve the performance.

fusion of pet/ct In [Lelandais et al., 2012], Lelandais et al. proposed
a BFT-based multi-trace PET images segmentation method to segment bio-
logical target volumes. First, the authors used a modified FCM algorithm
with the discounting algorithm to determine mass functions. The modi-
fication integrated a disjunctive combination of neighboring voxels inside
the iterative process. Second, the operation of reduction of imperfect data
was conducted by fusing neighboring voxels using Dempster’s rule (see
Section 2.2). Based on this first work, Lelandais et al. proposed an ECM-
based fusion model [Lelandais et al., 2014] for biological target volume
segmentation with multi-tracer PET images. The segmentation method in-
troduced in this paper is similar to the one introduced in [Makni et al.,
2014] with a different application.

In [Derraz et al., 2015], Derraz et al. proposed a multimodal tumor
segmentation framework for PET and CT inputs. Different from Lelandais
et al.’s work that uses ECM or optimized ECM to generate mass func-
tions directly, the authors construct mass functions in two steps. They
first proposed a NonLocal Active Contours (NLAC) based variational seg-
mentation framework to get probability results. Then, similar to the au-
thors’ previous work [Derraz et al., 2013b; Derraz et al., 2013a], they used
Appriou’s second model (2.15) to map MVs into mass functions. Then
Dempster’s rule was used to fuse the mass functions from PET and CT
modalities. The framework was evaluated on a lung tumor segmentation
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task. Compared with the state-of-the-art methods, this framework yielded
the highest Dice score for tumor segmentation.

Based on Lelandais et al.’s work, Lian et al. proposed a tumor segmen-
tation method [Lian et al., 2017a] using Spatial ECM [Lelandais et al., 2014]
with Adaptive Distance Metric [Lian et al., 2017b] in FDG-PET images with
the guidance of CT images. Based on the first work, Lian et al. proposed
a co-segmentation method of lung tumor segmentation [Lian et al., 2018a;
Lian et al., 2018b]. They took PET and CT as independent inputs and used
ECM (see Section 2.5.2.2) to generate mass functions. At the same time,
an adaptive distance metric was used to quantify clustering distortions
and spatial relationships during the evidential clustering procedure. Then
Dempster’s rule was used to fuse mass functions from PET and CT modal-
ities. The quantitative and qualitative evaluation results showed superior
performance compared with single-modality segmentation results with an
increase of 1% and 58% in PET and CT in Dice scores, respectively.

ECM is the most common BBA method to generate mass functions
for PET/CT medical image segmentation approaches. Similar to the BFT-
based RGB medical image segmentation methods, the segmentation per-
formance here is limited by feature extraction methods. Further research
could build on recent advancements in deep feature representation and
combine ECM with deep neural networks to learn mass feature represen-
tation.

3.2 segmentation with several classifiers or clusterers

It is common practice that two or more physicians cooperate for disease di-
agnosis, which can minimize the impact of physicians’ misjudgments. Sim-
ilarly, combining the results from multiple decision mechanisms as well as
addressing the conflicts is critical to achieving a more reliable diagnosis.
This section introduces the BFT-based medical image segmentation meth-
ods with several classifiers or clusterers. We follow the same approach as
in Section 3.1 and separate the methods into single-modality and multi-
modal evidence fusion reviewed, respectively, in Sections 3.2.1 and 3.2.2.

3.2.1 Single-modality evidence fusion

Compared with the methods presented in Section 3.1.1, the methods in-
troduced in this section focus on feature-level and classifier-level evidence
fusion, which aims to minimize the impact of misjudgments caused by a
single model’s inner shortcomings. Figure 3.6 shows an example of a medi-
cal image segmentation framework with single-modality input and several
classifiers. We separate the segmentation process into four steps: mass cal-
culation, feature-level evidence fusion (optional), classifier-level evidence
fusion, and decision-making. Similar to Figure 3.4, we assume for each
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Figure 3.6: Example framework of single-modality evidence fusion with
several classifiers. The segmentation process is composed of four steps: (1)
for each pixel, image features are transferred into the different classifiers,
and some BBA methods are used to get feature-level mass functions; (2)
inside each classifier, the calculated feature-level mass functions are fused
by using Dempster’s rule to generate classifier-level mass functions; (3)
between the classifiers, the calculated classifier-level mass functions are
fused by using Dempster’s rule again; (4) decision-making is made based
on the final fused mass functions and output a segmented mask.

Table 3.3: Summary of BFT-based medical image segmentation methods
with multimodal inputs and several classifiers/clusterers.

Publications Input image type Application BBA method
[Capelle et al., 2002] MR images brain tumor segmentation EKNN

[Capelle et al., 2004] MR images brain tumor segmentation EKNN+Shafer’s
model+Appriou’s model

[Barhoumi et al., 2007] optical imaging with color skin lesion malignancy tracking None
[Guan et al., 2011] MR images brain tissue segmentation Zhu’s model
[Ketout et al., 2012] optical imaging with color endocardial contour detection threshold

[Wen et al., 2018] MR images brain tissue segmentation Zhu’s model+
GD-based model

[George et al., 2020] optical imaging with color breast cancer segmentation Discounting
[Huang et al., 2021a] PET-CT lymphoma segmentation ENN



3.2.1 single-modality evidence fusion 51

pixel, we can obtain K mass functions by one classifier. After feature-level
evidence fusion, for each pixel zi, we can get H mass functions correspond-
ing to H classifiers. Then we fuse the H mass functions and assign a fused
mass function to the pixel zi, representing the degree of belief this pixel be-
longs to classes a, b and ignorance. Table 3.3 summarizes the segmentation
methods with single-modality inputs and several single classifiers/cluster-
ers with the main focus on classifier/clusterer level evidence fusion.

In [Capelle et al., 2002], Capelle et al. proposed a segmentation scheme
for MR images based on BFT. The authors used the Evidential K-NN rule
recalled in Section 2.5.1.2 to map image features into mass functions. Then,
they applied the evidential fusion process to classify the voxels. Based on
this first work, Capelle et al. later proposed an evidential segmentation
scheme of multimodal MR images for brain tumor detection in [Capelle
et al., 2004]. This work focused on analyzing different evidential modeling
techniques and on the influence of the introduction of spatial information
to find the most effective brain tumor segmentation method. Three differ-
ent BFT-based models: the distance-based BFT model (EKNN, see Section
2.5.1.2), the likelihood function-based BFT method (Shafer’s model, see
Section 2.5.1.1), and Appriou’s first model (2.14c) were used to model in-
formation; Dempster’s rule (see Section 2.2) was then used to combine
the three mass functions. This study concluded that neighborhood infor-
mation increases the evidence of class membership for each voxel, thus
making the final decision more reliable. Experimental results showed bet-
ter segmentation performance compared with the state-of-the-art methods
when the paper was published.

In [Taleb-Ahmed et al., 2002], Taleb-Ahmed proposed a segmentation
method for MR sequences of vertebrae in the form of images of their
multiple slices with BFT. The authors used three different classifiers to
calculate three kinds of mass functions. Firstly, the authors used gray-level
intensity and standard deviation information to calculate two pixel-level
mass functions with two fixed thresholds. Then the distance between two
matching contours of consecutive slices (P and Q) was used to calculate
contour-level mass functions as follows:

m({SPQ}) =

{
1− e−η|d(Pi,Qi)−β| if d(Pi,Qi) ∈ [ρ,β],
0 otherwise

(3.1a)

m({SPQ}) =

{
1− e−η|d(Pi,Qi)−β| if d(Pi,Qi) ∈ (β,+∞),
0 otherwise

(3.1b)

m(Ω) = e−η|d(Pi,Qi)−β|, (3.1c)

where Pi and Qi are two matching points of the slices P and Q, d(Pi,Qi)
is the corresponding distance; Ω = {SPQ,SPQ}, SPQ means that points
Pi and Qi both belong to cortical osseous. Parameter β represents the
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tolerance that the expert associates with the value d(Pi,Qi), ρ is the inter-
slice distance and η makes it possible to tolerate a greater inaccuracy in
the geometrical resemblance of two consecutive contours. Dempster’s rule
was then used to combine the three mass functions for final segmentation.

In [Barhoumi et al., 2007], Barhoumi et al. introduced a new collabora-
tive computer-aided diagnosis system for skin malignancy tracking. First,
two diagnosis opinions were produced by perceptron neural network clas-
sification and content-based image retrieval (CBIR) schemes. Then Demp-
ster’s rule was used to fuse the two opinions to achieve a final malignancy
segmentation. Simulation results showed that this BFT-based combina-
tion could generate accurate diagnosis results. In this work, the frame
of discernment is composed of two elements, and the mass functions are
Bayesian.

In [Guan et al., 2011], Guan et al. proposed a human brain tissue
segmentation method with BFT. The authors first used Markov random
forest (MRF) [Li, 2009] for spatial information segmentation and then a
two-dimensional histogram (TDH) method of fuzzy clustering [Duan et
al., 2008] to get a vague segmentation. Then a redundancy image was gen-
erated, representing the difference between the MRF and TDH methods,
and Zhu’s model (see Section 2.5.2.1) was used to calculate mass functions.
Finally, Dempster’s rule fused the two segmentation results and the gener-
ated redundancy image to handle controversial pixels. The visual segmen-
tation results showed that this method has higher segmentation accuracy
compared with the state-of-the-art.

As discussed in Section 2.2, Dempster’s rule becomes numerically un-
stable when combining highly conflicting mass functions. In this case, the
fused results can be unreliable, as a small change in mass functions can
result in sharp changes in the fusion results. Researchers in the medical
domain have also recognized this limitation. In [Ketout et al., 2012], Ketout
et al. proposed a modified mass computation method to address this lim-
itation and applied their proposal to endocardial contour detection. First,
the outputs of each active contour model (ACM) [Kass et al., 1988] were
represented as mass functions. Second, a threshold was proposed to check
if the evidence m conflicts with others. If there was conflict, a modify-
ing operation was used on the conflicting evidence. Finally, the results of
edge set-based segmentation [Li et al., 2005] and region set-based segmen-
tation [Chan et al., 2001] were fused by using the “improved BFT” [Xin et
al., 2005] to get a more accurate contour of the left ventricle. Experimental
results showed that the fused contour is closer to the ground truth than
the contour from the edge or region. False detection of the two contours
was suppressed in the resulting image by rejecting the conflicting events
by the fusion algorithm. Meanwhile, the proposed method could detect
the edges of the endocardial borders even in low-contrast regions.
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In [Wen et al., 2018], Wen et al. proposed an improved MR image seg-
mentation method based on FCM and BFT. First, the authors fused two
modality images A and B with function F(x,y) = w1gA(x,y) +w2gB(x,y),
where x and y are image pixels and w1 and w2 are weighs used to adjust
the influence of different images on the final fusion result and verifying
w1 +w2 = 1. Second, the authors calculated the MV by FCM and calcu-
lated the mass functions of simple and double hypotheses by Zhu’s model
(see Section 2.5.2.1) without the neighboring pixel information. Third, the
authors generated another kind of mass functions by weighting those of its
neighboring pixels with the GD-based model (see Section 2.5.2.3) and used
Zhu’s model again to construct simple and double hypotheses mass func-
tions. Finally, the authors used Dempster’s rule to complete the fusion
of the two mass functions to achieve the final segmentation. Compared
with the FCM-based method, the proposed method can better decrease
the conflict in multiple sources to achieve easy convergence and signifi-
cant improvement by using Dempster’s rule for classifier-level evidence
fusion.

Besides, with the development of CNNs, the research community used
Dempster’s rule for the fusion of multiple CNN classifiers. In [George et
al., 2020], George et al. proposed a breast cancer detection system using
transfer learning and BFT. This first work first applied BFT in multiple
evidence fusion with deep learning. High-level features were extracted us-
ing a convolutional neural network such as ResNet-18, ResNet-50, ResNet-
101, GoogleNet, and AlexNet. A patch-based feature extraction strategy
was used to avoid wrong segmentation of the boundaries and provide
features with good discriminative power for classification. The extracted
features were classified into benign and malignant classes using a support
vector machine (SVM). A discounting operation was applied to transfer
probability-based segmentation maps into mass functions. The discounted
outputs from the different CNN-SVM frameworks were then combined us-
ing Dempster’s rule. This work takes advantage of deep learning and
BFT and has achieved good performance. Compared with majority voting-
based fusion methods, BFT-based fusion showed superior segmentation
accuracy. Compared with a single classifier, such as ResNet-101, the fused
framework achieved an increase of 1%, 0.5%, 3%, and 2% for, respectively,
sensitivity, specificity, and AUC. Also, the authors compared their results
with the state-of-the-art method and achieved comparable segmentation
accuracy.

Apart from using BFT to combine the discounted probabilities from the
CNN classifiers [George et al., 2020], another solution is to construct a deep
evidential segmentation framework directly. In [Huang et al., 2021a], We
proposed a BFT-based semi-supervised learning framework (EUNet) for
brain tumor segmentation. This work applied BFT in a deep neural net-
work to quantify segmentation uncertainty directly. During training, two
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Table 3.4: Summary of BFT-based medical image segmentation methods
with multimodal inputs and several classifiers/clusterers.

Publications Input image type Application BBA method
[Gautier et al., 2000] multimodal MR images lumbar sprain segmentation Prior knowledge
[Lajili et al., 2018] CT breast segmentation threshold
[Huang et al., 2021b] PET/CT lymphoma segmentation None
[Huang et al., 2022a] multimodal MR images brain tumor segmentation ENN

kinds of evidence were obtained: the segmentation probability functions
and mass functions generated by UNet and EUNet, respectively. Demp-
ster’s rule was then used to fuse the two pieces of evidence. This is the
first work that embeds BFT into CNN and achieves an end-to-end deep ev-
idential segmentation model. We will introduce more detail about EUNet
in Chapter 4.

The approaches introduced in this section use several classifiers or clus-
terers to generate different mass functions and fuse them by Dempster’s
rule. Among those approaches, George et al. [George et al., 2020] first
applied Dempster’s rule to combine the discounted probabilities from dif-
ferent deep segmentation models. In [Huang et al., 2021a], we merged
ENN with UNet to construct an end-to-end segmentation model and fuse
two kinds of evidence by Dempster’s rule. Compared to George et al.’s
approach [George et al., 2020], our approach can generate mass functions
directly from a deep segmentation model, which is more promising.

3.2.2 Multimodal evidence fusion

Figure 3.7 shows an example of a medical image segmentation framework
with several classifiers and multimodal inputs, which is more complex
than the frameworks introduced in Sections 3.1.1, 3.1.2 and 3.2.1. The
segmentation process comprises five steps: mass calculation, feature-level
evidence fusion (optional), classifier-level evidence fusion, modality-level
evidence fusion, and decision-making. Pixels at the same position from dif-
ferent modalities are fed into different classifiers and different BBA meth-
ods to get pixel-level mass functions. Dempster’s rule is used first for
feature-level evidence fusion, then to fuse classifier-level evidence, and last
to fuse modality-level evidence. Here we show the segmentation example
of the same located pixels z1i and zMi that are obtained from modal 1 and
M. The same pixel from different modalities is transferred separately into
H classifiers, and some BBAs are used to get pixel-level mass functions.
Similar to Figure 3.4, we assume we can obtain K mass functions with one
classifier for each pixel. After the fusion of feature-level, classifier-level,
and modality-level evidence fusion, a final mass function is assigned to
the pixel zi to represent the degree of belief this pixel belongs to class a, b
and ignorance. Table 3.4 summarizes the segmentation methods focusing
on classifier/clusterer fusion and modality-level evidence fusion.
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Figure 3.7: Example framework of multimodal evidence fusion with sev-
eral classifiers. The segmentation process is composed of five steps: (1)
for each modality input, image features are fed into different classifiers,
and some BBA methods are used to get feature-level mass functions; (2)
inside each classifier, the feature-level mass functions are fused by Demp-
ster’s rule to get classifier-level mass functions; (3) inside each classifier,
the calculated classifier-level mass functions are fused by Dempster’s rule
to get modality-level mass function; (4) inside each modal, the calculated
modality-level mass functions are fused by Dempster’s rule; (5) decision-
making is made based on the final fused mass functions and outputs a
segmented mask.
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In [Gautier et al., 2000], Gautier et al. proposed a method for helping
physicians monitor spinal column diseases with multimodal MR images.
At first, an initial segmentation was applied with active contour [Lai, 1994].
Then several mass functions were obtained from expert opinions on con-
structing the frame of discernment. Thus, the mass functions were human-
defined. Finally, Dempster’s rule (see Section 2.2) was then used to fuse
the mass functions from different experts. The method yielded the most
reliable segmentation maps when the paper was published.

Based on their previous work on multimodal medical image fusion
with a single cluster [Chaabane et al., 2009], Chaabane et al. presented an-
other BFT-based segmentation method with several clusterers [Chaabane
et al., 2011]. First, possibilistic C-means clustering [Bezdek, 2013] was
used on R, G, and B channels to get three MVs. Then the MVs were
mapped into mass functions with focal sets of cardinality 1 and 2 using
Zhu’s model (see Section 2.5.2.1). Dempster’s rule was used first to fuse
three mass functions from three corresponding color spaces. Based on the
initial segmentation results, another mass function was calculated for each
pixel and its neighboring pixels for each color space. Finally, the authors
used Dempster’s rule again to fuse the two mass functions from two cor-
responding clusterers. Experimental segmentation performance with cell
images showed the effectiveness of the proposed method. Compared with
the FCM-based segmentation method, the proposal increased by 15% the
segmentation sensitivity.

In [Lajili et al., 2018], Lajili et al. proposed a two-step evidential fu-
sion approach for breast region segmentation. The first evidential seg-
mentation results were obtained by a gray-scale-based K-means clustering
method, resulting in k classes. A sigmoid function was then used to de-
fine a mass function on the frame Ω = {Breast, Background} at each pixel
z depending on its class. For local-homogeneity-based segmentation, the
authors modeled the uncertainty with a threshold value α, by defining
m({Breast}) = 1−α, m({Background}) = 0, m(Ω) = α, where α represents
the belief mass corresponding to the uncertainty on the membership of
the pixel z. A final fusion strategy with Dempster’s rule was applied to
combine evidence from the two mass functions. Experiments were con-
ducted on two breast datasets [Suckling, 1994; Bowyer et al., 1996]. The
proposed segmentation approach yielded more accurate results than the
best-performed method. It extracted the breast region with correctness
equal to 0.97, which was 9% higher than the best-performing method.

In [Huang et al., 2021b], we proposed to consider PET and CT as two
modalities and used to UNet model to segment lymphoma separately.
Then the two segmentation masks were fused by Dempster’s rule. Al-
though this is the first work that applied BFT in multimodal evidence
fusion with several deep segmentation models, a limitation of this work
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is that only Bayesian mass functions are used for evidence fusion. To im-
prove this first work, we proposed a multimodal evidence fusion model
with contextual discounting for brain tumor segmentation [Huang et al.,
2022a]. In this work, using four modules for feature extraction and eviden-
tial segmentation, the framework assigns each voxel a mass function. In ad-
dition, a contextual discounting layer is designed to take into account the
reliability of each source when classifying different classes. Finally, Demp-
ster’s rule is used to combine the discounted evidence to obtain a final
segmentation. This method can be used together with any state-of-the-art
segmentation module to improve the final performance. We will introduce
more detail about the multimodal evidence fusion model in Chapter 6.

Few studies have considered multimodal medical images as indepen-
dent inputs and used independent classifiers to generate mass functions.
The performance of this kind of approach is limited by the representation
of image features and the ability to quantify the model uncertainty. We
first merged ENN with UNet for the fusion of multimodal MR images
with contextual discounting [Huang et al., 2022a]. This approach enables
the model to generate a learned reliability metric from input modalities
during different segmentation tasks, which can potentially make the re-
sults more explainable.

3.3 conclusion

The choice of using single-modality or multimodal depends on the dataset.
Generally, the more source data we have, the more reliable segmentation
results we will get. The choice of a single or several classifiers/clusterers
depends on the limitation of the computation source and the requirement
of computation efficiency. Prior to 2020, BFT-based medical image seg-
mentation methods had limited segmentation accuracy due to the use of
low-level image features, such as grayscale and shape features, to gener-
ate mass functions. Moreover, none of them considered the segmentation
reliability. Since the application of deep learning in medical image segmen-
tation has been very successful, the use of BFT in deep neural networks
is a promising research direction, in particular, to quantify the uncertainty
and reliability of the segmentation results, as well as fuse evidence from
multimodal medical images. In the next part, we will introduce our contri-
butions related to the construction of the deep segmentation model with
BFT and deep learning algorithms (Chapter 4), the uncertainty quantifi-
cation with deep segmentation models (Chapter 5), and multimodal evi-
dence fusion (Chapter 6).
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4.1 introduction

The performance of deep learning-based methods depends mainly on
large-scale learning examples and their annotations. However, obtaining
precisely annotated data is very challenging in the medical domain. Re-
cently, some semi-supervised deep learning methods have been proposed
to train the models with fewer labels. Techniques for semi-supervised
medical image segmentation can be divided into three classes: graph-
constrained methods [Xu et al., 2017], self-learning methods [Li et al.,
2019a; Min et al., 2019], and generative adversarial learning methods
[Mondal et al., 2018; Sun et al., 2019]. Though experimental results are
promising, only a few authors focus on studying the uncertainty caused
by the low quality of the images and the lack of annotations. In this work,
we follow the main idea of self-training and use the image information
to construct a semi-supervised brain tumor segmentation framework. We
first propose to use two parallel segmentation modules: a probabilistic
segmentation module and an evidential segmentation module, to obtain
two segmentation results. We then use an evidential fusion module to
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combine evidence in order to decrease uncertainty. Results from a series
of experiments on the BraTS2019 brain tumor dataset showed that our
framework achieves encouraging results when only some training data
are labeled.

We organize this chapter as follows: Section 4.2 introduces the semi-
supervised medical image segmentation framework. Section 4.3 reports
numerical experiments by comparing the segmentation performance with
the state-of-the-art methods under supervised and semi-supervised learn-
ing. Finally, we conclude this work in Section 4.4.

4.2 proposed framework

In this section, we describe the proposed framework, named SEFNet,
which is composed of a feature extraction module similar to UNet, a
probability assignment module to obtain a probability segmentation, a
basic belief assignment module to obtain an evidential segmentation,
and an evidence fusion module to combine both probability and evi-
dential segmentations. Figure 4.1 shows the overall flowchart of our
proposal. The first step is to extract features from input images. Second,
two modules are used in parallel to map features into probabilities or
mass functions. The probability assignment module uses the softmax
transformation to map the extracted features into probabilities. The mass
function assignment module uses ENN (see Section 2.5.1.2) to map the
extracted features into mass functions. Third, the two sources of evidence,
probabilities and mass functions, are combined by Dempster’s rule in the
evidence fusion module. The semi-supervised learning algorithm will be
introduced in Section 4.2.2.

4.2.1 Evidential segmentation with multiple evidence fusion

Figure 4.2 shows the detailed evidential segmentation framework. The
input is composed of four MRI modalities. (Here, we show an example of
input data of size 4× 128× 128× 128.)

feature extraction As shown in Figure 4.2, we apply multi-fiber
units (see Figure 1.9 from Section 1.3.2) in the encoding stage to achieve
multi-scale representation. In the decoding stage, the high-resolution fea-
tures from the encoding stage are concatenated with the upsampled fea-
tures, which makes the whole feature extraction module similar to UNet
[Ronneberger et al., 2015].

probability and belief assignment modules The probability as-
signment module comprises a 1× 1× 1 projection layer followed by a soft-
max layer, which maps the feature vectors into probabilities directly. The
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Figure 4.1: Overall flowchart of our proposal. It is composed of four mod-
ules for feature extraction, probability assignment, basic belief assignment,
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output of the probability assignment module is denoted as pCNN, and we
assume that each voxel belongs to one of four classes denoted as {0, 1, 2, 4}.
The belief assignment module is based on the ENN model recalled in Sec-
tion 2.5.1.2; it comprises three layers: an prototype activation layer that
computes distance-based activations using (2.19), a mass calculation layer
that computes mass functions using (2.20), and a combination layer that
combined mass functions derived from prototypes using Dempster’s rule.

evidence fusion The objective of this module is to make a final seg-
mentation decision. The decision based on several information sources can
be expected to be more accurate and reliable than using a single source of
information. In our case, if only part of the training data is labeled, the
uncertainty is higher than it is in the fully supervised case. To increase the
segmentation performance, we propose an additional evidence fusion layer
to combine evidence from the probability and belief assignment modules.
Here, the voxel-wise output probability distributions pCNN from the proba-
bility assignment module can be seen as a Bayesian mass functions, which
can be combined with the voxel-wise output mass functions mENN from
the belief assignment module using Dempster’s rule. The combined mass
functions are Bayesian, and are given by

(pCNN ⊕mENN)({ωc}) =
pCNN(ωc)plENN(ωc)∑C
l=1 pCNN(ωl)plENN(ωl)

, c = 1, . . . ,C, (4.1)

where plENN(ωc) = mENN({ωc}) +mENN(Ω) is the plausibility of class ωc
derived from mass function mENN.

4.2.2 Semi-supervised learning

We propose a semi-supervised learning algorithm to optimize the frame-
work when only part of the training data is labeled, with the aim of obtain-
ing an accuracy as close as possible to that of a fully supervised learning
method. The general idea is that similar images are expected to produce
similar classification or segmentation results even if some transformations
have been performed because the relevant characteristics are preserved de-
spite the transformation. During each learning epoch, a transformed copy
xt of each input image x is computed using one of several transformations,
namely, random intensity change, Gaussian blur and exponential noise.
This transformation operation will be described in Section 4.3.1.2. Two
loss functions are proposed for training data with and without labels.

training with labels We train the network with the labeled data
using the following loss1 function, class-independent Dice loss, which mea-
sures the overlap region between the output S and the ground truth G:
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loss1 =

C∑
c=1

(
1− 2

∑N1
n=1ScnGcn∑N1

n=1Scn +Gcn

)
, (4.2)

where Gcn = 1 if voxel n belongs to class c, and Gcn = 0 otherwise,
and Scn represents the corresponding predicted mask; C is the number of
classes and N1 is the number of voxels with labels.

training without labels For the data without labels, we use the
mean squared error loss, denoted here as loss2, to optimize the feature
representation by minimizing the difference between the original output S
and the transformed output St:

loss2 =
1

2N2C

C∑
c=1

N∑
n=1

∥∥Scn − Stcn∥∥2 , (4.3)

where Stcn is the segmented label at point n corresponding to the generated
input xt, N2 is the number of voxels without labels.

4.3 experiments and results

In this section, we present numerical experiments to verify the effective-
ness of the proposed model. In Section 4.3.1, we introduce the dataset, the
preprocessing of the data, the parameter setting, and the evaluation pro-
tocols. The sensitivity analysis of hyper-parameters and the comparative
analysis of segmentation performance are then introduced in Sections 4.3.2
and 4.3.3, respectively.

4.3.1 Experiment settings

4.3.1.1 Dataset

The experiment data is provided by the Brain Tumor Segmentation (BraTS)
2019 challenge [Menze et al., 2014; Bakas et al., 2017; Bakas et al., 2018].
The dataset consists of 335 cases of patients for training, 125 cases for val-
idation and 166 cases for test. Since the test set is not available now, in
this chapter, we use the official validation set to test our model, i.e., take
it as a test set. For each patient, we have four kinds of MR sequences:
T1, T1-weighted (T1Gd), T2, and FLAIR. Each of them has a volume of
155× 240× 240. For data from the training set, each case was annotated
into three heterogeneous histological sub-regions: peritumoral edema (ED,
label 2), necrotic core and non-enhancing tumor (NRC/NET, label 1), and
enhancing tumor(ET, label 4). The background is marked as label 0. Fig-
ure 4.3 shows an example of the four modalities and the corresponding
tumor region. The evaluation was based on the segmentation accuracy of
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Figure 4.3: Example of one patient from BraTs2019 dataset. The first and
second rows show MR images and MR images with labeled tumor masks,
respectively. From left to right: FLAIR, T1, T1Gd, T2. Labels 1, 2, and 4

are marked in red, green, and yellow, respectively.

three overlap regions: enhancing tumor (ET, label 4), tumor core (TC, the
composition of label 1 and 4), and whole tumor (WT, the composition of
label 1, 2, and 4). For data from the validation set, only four modalities of
MR sequence information are available.

We used five-fold cross-validation to train our SEFNet. During train-
ing, we randomly divided the BraTS 2019 training set into 5 equal-sized
datasets. The training process was then repeated five times, with each of
the 5 datasets used exactly once as the validation data. The segmentation
performance with cross-validation is reported by the average of five mod-
els. For a fair comparison with the state-of-the-art, we fine-tuned the best-
performing model with the full training set and tested the performance on
the validation set. The segmentation performances were assessed by the
online evaluation server CBICA’s Image Processing Portal 1.

4.3.1.2 Pre-processing

Before feeding the data into the framework, several pre-processing meth-
ods were used to process the input data. We first applied intensity normal-
ization to each MRI modality from each patient independently by subtract-
ing the mean and dividing by the standard deviation of the brain region
only. Moreover, to prevent overfitting, we used four types of data aug-
mentation. First, we applied a random intensity shift between [−0.1, 0.1]
and random intensity scaling between [0.9, 1.1] to MRI data. Second, we

1 https://ipp.cbica.upenn.edu/
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Orginal image Augmented image Transformed image

Case 1

Case 2

Figure 4.4: Example of pre-processed images. From left to right: the origi-
nal image, the augmented image and the transformed image, respectively.

randomly cropped the MRI data from 155× 240× 240 to 128× 128× 128.
Third, we used random rotation with a rotation angle of 10. Finally, we
used random mirror flipping for MRI data along each 3D axis with a flip
probability of 50%. The data augmentation operation is applied during
each training epoch. Since the data augmentation operation is randomly
chosen, the input x in each training epoch varies.

For semi-supervised training, we used transformations for each prepro-
cessed input x. We first applied random intensity change on the input with
the shift between [−0.2, 0.2] and scaling between [0.9, 1.1]. Then we added
Gaussian Blur with a standard deviation of 3 to the image. Finally, we
added exponential noise with an exponent of 3 to the input. After transfor-
mation, for each input x, we will generate transformed data xt. Figure 4.4
shows two examples of input images before and after prepossessing. (To
better show the difference between images, here we only show the aligned
images without random cropping). Compared with the original image,
the augmented image is randomly flipped with a small intensity change
and image rotation. Compared with augmented input x, the transformed
input xt is more blurred and noisy.

4.3.1.3 Parameter settings

For the feature extraction module, the spatial dimension and input channel
were set, respectively, as 3 and 4. The channels (number of filters) of the
input layer were set as 16. The channels (number of filters) of MF units
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were set as 32, 64, 64 for three corresponding encoders and each MF unit
has 16 parallel fibers (see Section 1.3.2).

For the mass assignment module, the prototypes p (2.19) were initial-
ized randomly with Xavier uniform [Hanin et al., 2018] distributions to
simplify the model, as well as the parameter of the membership degrees
u (2.20). The impact of prototype numbers will be discussed in Section
4.3.2.1. Then we initialized parameters α (2.19) and γ (2.19) with constants
0.5 and 0.01.

The maximum training epoch was set to 300. The training process was
stopped when the performance did not increase in 20 epochs. The Adam
optimization algorithm with batch size 8 was used to train the model. The
initial learning rate was set to 0.001 at the beginning and decayed with an
adjusted learning rate

lr = lr0 ×
(
1−

e

Ne

)0.9
, (4.4)

where e is an epoch counter, and Ne is a total number of epochs. The
model with the best performance with cross-validation was saved as the
final model for testing. All experiments were implemented in Python
with the PyTorch framework and were trained and tested on a desktop
with a 2.20GHz Intel(R) Xeon(R) CPU E5-2698 v4 and a Tesla V100-SXM2

graphics card with 32 GB GPU memory.

4.3.1.4 Evaluation criteria

We used two evaluation criteria: the Dice score (see (1.1)) and the Haus-
dorff Distance (HD) (see (1.4)), to measure the segmentation performance.
For each patient, we separately computed these two indices for the three
classes and then averaged indices over the patients. Results are reported
in Sections 4.3.2 and 4.3.3.

4.3.2 Sensitivity analysis

4.3.2.1 Evaluating the impact of number of prototypes

The number of prototypes is an important hyper-parameter that may im-
pact segmentation performance. We trained the model with 6, 8, 10, 12,
16, and 20 prototypes. Figure 4.5 shows the corresponding results. We can
see from Figure 4.5 when the number of prototypes is between 6 and 12,
the performance is stable. SEFNet achieves the best performance in terms
of Dice score and Hausdorff Distance with 10 prototypes. With more than
12 prototypes, the performance decreases. Thus, in the following experi-
ments, the number of prototypes in SEFNet is fixed as 10.
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Figure 4.5: Values of the (a) Dice score (the higher the better), (b) Hausdorff
distance (HD) (the lower the better) of ET, TC, WT with the different
number of prototypes.

4.3.2.2 Evaluating the impact of semi-supervised learning

To evaluate the impact of the proportions of the labeled training data, we
trained our model with 100%, 70%, 50%, and 30% labeled data and re-
ported the cross-validation performance in Table 4.1. It shows the cor-
responding segmentation performance of the Dice score and the Haus-
dorff distance (HD), as well as the corresponding standard deviations (SD)
among the evaluated cases. Compared with 100% training data labeled,
the Dice score decreased by 2.1%, 5.6%, and 7%, respectively, when only
70%, 50%, and 30% training data are labeled. With different proportions
of the labeled training data, the model shows comparable performance
on Hausdorff Distance. Compared with WT (ET+NRC/NET+ED) seg-
mentation, the standard deviations (SD) are quite large for ET and TC
(ET+NRC/NET) segmentation. Two main reasons can explain the large
SD: the segmentation between ET and NRC/NET is challenging; some
cases do not contain ET or NRC/NET tumors, while the model segment
DE tumors into ET or NRC/NET class. Figure 4.6 shows plots of the
Dice loss and Dice score under different proportions of training labels dur-
ing training. With the decrease in training labels, the model only slightly
decreases segmentation performance. Table 4.2 shows the segmentation
performance on the online validation dataset with the five corresponding
models obtained by cross-validation. When only 70%, 50%, and 30% train-
ing data are labeled, the Dice score decreased by 2.9%, 4.2%, and 7.5%,
respectively, compared with 100% training data labeled. The above results
demonstrate the effectiveness of semi-supervised learning.

Furthermore, we compared the distribution of the Dice score among
125 validation cases in our model SEFNet and the baseline model MFNet,
under the different proportions of labeled training data in Figure 4.7. To
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Figure 4.6: Plots of Dice loss and Dice score during training. (a) Mean Dice
loss during training, (b) Mean Dice score during training, (c) Mean Dice
loss with cross-validation, (d) Mean Dice score with cross-validation.
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Table 4.1: Performance comparison on the BraTS2019 training set with
cross-validation.

Label Dice Score(±SD) HD(±SD)
proportion ET WT TC ET WT TC
100 % 0.783±0.227 0.906±0.056 0.805±0.220 3.481±4.516 4.618±3.829 6.978±7.595

70 % 0.762±0.215 0.905±0.056 0.814±0.201 5.151±7.254 6.219±11.037 6.507±7.732

50 % 0.727±0.261 0.904±0.066 0.806±0.215 5.115±6.149 4.858±5.399 6.672±7.529

30 % 0.713±0.247 0.897±0.070 0.799±0.215 5.904±7.214 5.554±6.867 6.459±6.489

Table 4.2: Performance comparison on the BraTS2019 online validation set.

Label Dice Score (±SD) HD(±SD)
proportion ET WT TC ET WT TC
100% 0.763±0.254 0.883±0.095 0.808±0.201 4.592±8.401 5.983±6.202 7.671±10.608

70% 0.734±0.286 0.884±0.110 0.767±0.242 5.021±8.929 5.718±7.929 8.427+11.799

50% 0.721±0.294 0.877±0.129 0.777±0.227 7.204±17.002 7.942±15.235 11.830±19.809

30% 0.688±0.289 0.887±0.113 0.744±0.267 8.609±17.533 7.448±12.585 12.236±19.690

simplify the comparison, we only showed the mean value of the Dice score
here. The boxplot displays the data based on a five-number summary: the
minimum (the lowest data point excluding any outliers), the maximum
(the largest data point excluding any outliers), the median, and the 25%
and 75% percentile. As shown in Figure 4.7, SEFNet yields better per-
formance than MFNet with different proportions of labeled training data.
When 100% training data are labeled, SEFNet and MFNet can achieve high
segmentation accuracy. With the decreasing proportion of labeled training
data, the SEFNet shows increasing advantages. Compared with MFNet,
when only 30% training data are labeled, SEFNet yields around 4%, 5%,
and 8% increase, respectively, in ET, WT, and TC.

4.3.3 Comparative analysis

4.3.3.1 Comparison with full-supervised methods

We first compare our results with the state-of-the-art under full-supervised
learning on the BraTs2019 validation set. The comparison is presented in
Table 4.3. We highlight the best-performed results in bold characters and
underline the second-best results. SEFNet achieves a Dice score of 0.793,
0.868, 0.861, and 0.841, respectively, for ET, WT, TC, and the mean over
the three regions. Compared with MFNet, it has an increase of 4%, 6.2%,
and 4.2% of Dice score in ET, TC and the mean, respectively. Also, SEFNet
surpasses most of the reported methods, i.e., UNet, attention UNet, and
MCNet. The performance of SEFNet is not as good as the top one solu-
tion of the BraTs2019 challenge segmentation task, which uses a Two-stage
cascaded U-Net [Jiang et al., 2019] (double model), with marginal perfor-
mance gaps of 0.9%, 4.1%, and 0.3% for ET, WT, and TC in Dice score,
respectively. The two-stage cascaded U-Net framework uses one UNet
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Figure 4.7: Dice score of ET, TC, and WT with different percentages of
labeled training data. From left to right: the results of training with 100%,
70%, 50%, and 30% labels, respectively. The first, second, and third rows
show the Dice score of ET, WT, and TC, respectively. The pink and light-
blue boxplot represents the results of our proposal (SEFNet) and the base-
line model (MFNet), respectively. The orange line and green triangle rep-
resent the median and mean value of the Dice score, respectively.
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Table 4.3: Performance comparison on the BraTs2019 validation set (in case
of full-supervised learning). The best results are in bold, and the second
best results are underlined.

Methods Dice score HD
ET WT TC Mean ET WT TC Mean

SEFNet (ours) 0.793 0.868 0.861 0.841 5.616 8.329 6.618 6.854

MFNet [Chen et al., 2019a] 0.753 0.880 0.765 0.799 4.872 8.022 9.706 7.562

DMFNet [Chen et al., 2019a] 0.756 0.890 0.799 0.815 5.069 6.531 7.454 6.351

3D-UNet [Wang et al., 2019] 0.737 0.894 0.807 0.812 5.994 5.567 7.357 6.342

Dense-UNeT[Agravat et al., 2019] 0.600 0.700 0.630 0.643 11.690 14.330 17.100 14.373

AttentionUNet [Islam et al., 2019] 0.704 0.898 0.792 0.798 7.050 6.290 8.760 7.370

MCNet [Li et al., 2019b] 0.771 0.886 0.813 0.823 6.232 7.409 6.033 6.558

Two-stage cascaded U-Net [Jiang et al., 2019] 0.802 0.909 0.864 0.858 3.145 4.263 5.439 4.282

for coarse segmentation and then another UNet for accurate segmentation,
which could increase the segmentation accuracy to a certain degree. How-
ever, the computation cost is high and the reported memory requirement
is over 12 GB during the experiment with a batch size of 1.

Figure 4.8 presents a visual comparison of the brain tumor segmenta-
tion results obtained from different slices. From left to right, we can see the
ground truth (GT), the segmentation result of the baseline method (MFNet)
and our proposal (SEFNet), and the difference map between MFNet and
GT on the one hand and between SEFNet and GT on the other hand. The
white points in the difference map indicate the position the voxels are
wrong-segmented. We highlight the regions with fewer misclassification
voxels by red circles in Figure 4.8, where there are fewer white points.
Compared with MFNet, SEFNet can generate more precise segmentation
results.

4.3.3.2 Comparison with semi-supervised methods

We also compared the segmentation performance with the state-of-the-art
under semi-supervised learning. Comparing our result with those of other
semi-supervised methods is difficult because BraTs datasets from different
years (2015, 2017, 2018, or 2019) were tested with those methods, leading
to the various training and validation set components. Also, the different
propositions of training labels make the comparison difficult. In this work,
we simplify the comparison by only comparing the results when 50% of the
training data are labeled. As we can see from Table 4.4, SEFNet achieves
the best performance on validation data with the reported 0.792 mean Dice
score on BraTS2019 dataset. Compared with the performance of MASSL
and SAM-GAN on the BraTs2018 dataset, SEFNet yields an increase of 10%
and 4.1% in the Dice score of WT and Mean, respectively. Compared with
the best performance of PGAN on the BraTs2017 dataset, SEFNet has an
increases of 16.6%, 12.8%, and 8.9% in the Dice score of WT, TC, and Mean,
respectively. Compared with the performance of TSMAN on the BraTs2015
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Figure 4.8: Example segmentation results on the BRATS2019 training
dataset. The figures in rows show the results of different axial slices from
left to right: the ground truth (GT), the segmentation results of MFNet and
SEFNet, and the difference map between GT and the corresponding seg-
mentation map. The points in white indicate where the segmented result
is wrong. Labels 1, 2, and 4 are marked in red, green, and yellow, re-
spectively. Moreover, we highlight the regions with fewer misclassification
voxels by red circles in difference map.
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Table 4.4: Performance comparison on the BraTs2019 validation set (in
case of semi-supervised learning). Symbol ∗ indicates the results are not
available from the published paper.

Dataset Method Training Test Proportion of Dice score
Number Number labeled data ET WT TC Mean

BraTs2019 SEFNet (ours) 285 125 50% 0.721 0.877 0.777 0.792

BraTs2018
MASSL [Chen et al., 2019b] 200 50

50% * 0.770 * *
SAM-GAN[Xi, 2019] 285 66 * * * 0.751

BraTs2017
Transfer-UNet[Zeng et al., 2017] 285 46

50% 0.734 0.690 0.631 0.685

PGAN [Sun et al., 2019] 285 46 0.751 0.711 0.649 0.703

BraTs2015

Transfer-UNet [Zeng et al., 2017] 140 80

50%
0.633 0.616 0.642 0.630

PGAN [Sun et al., 2019] 140 80 0.668 0.652 0.667 0.662

TSMAN [Min et al., 2019] 244 30 * * * 0.707

dataset, SEFNet has an increase of 9% in the mean Dice score. The above
comparison demonstrates the effectiveness of SEFNet.

4.4 conclusion

In this chapter, we have presented a semi-supervised multiple evidence
fusion framework (SEFNet) for medical image segmentation. With the
SEFNet framework, we compute two pieces of segmentation evidence:
probability functions generated by a softmax layer, and mass functions
generated by an ENN module. Dempster’s rule is then used to fuse the
two pieces of evidence and to decrease segmentation uncertainty. For im-
ages with labels, we use the supervised class-independent Dice loss to
guide the training process. For images without labels, we use information
constraints through image transformation operations to provide training
guidance. Quantitative and qualitative results on the BraTs2019 dataset
show that using Dempster’s rule with semi-supervised learning makes
it possible to efficiently deal with segmentation uncertainty, resulting in
comparable performance under semi-supervised conditions.

There are some limitations to this work. First, the evidence from the
basic belief assignment module needs to be well studied; in particular,
the study of masses in the frame of discernment could be interesting and
meaningful. Second, one of the potential problems in this work may be
the independence of sources of information. The two pieces of evidence
obtained from the probability assignment module and the basic belief as-
signment module are not independent because they share the same fea-
tures. In the next chapter, we will first study the segmentation uncertainty
and then further evaluate the framework by applying it to other medical
image segmentation problems. Lastly, we will investigate the reliability of
segmentation results with expected calibration error (ECE).
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5.1 introduction

Despite the excellent performance of deep learning methods, the issue of
quantifying prediction uncertainty remains [Hüllermeier et al., 2021]. This
uncertainty can be classified into three types: distribution, model, and
data uncertainty. Distribution uncertainty is caused by training-test distri-
bution mismatch (dataset shift) [Quinonero-Candela et al., 2008]. Model
uncertainty arises from limited training set size and model misspecifica-
tion [Mehta et al., 2019; Maddox et al., 2019; Yu et al., 2019]. Finally,
sources of data uncertainty include class overlap, label noise, and homo or
hetero-scedastic noise. Because of the limitations of medical imaging and
labeling technology, as well as the need to use a large nonlinear parametric
segmentation model, medical image segmentation results are particularly
tainted with uncertainty, which limits the segmentation reliability.

In clinical lymphoma diagnosis and radiotherapy planning, PET-CT
scanning is an effective imaging tool to locate and segment lymphomas.
The standardized uptake value (SUV), defined as the measured activity
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View 1 (0º) View 2 (90º) View 3 (180º) View 4 (270º)

Figure 5.1: Example of a patient with lymphomas in 3D PET-CT views.
The lymphomas are the dark areas circled in red.

normalized for body weight and injected dose to remove variability in
image intensity between patients, is widely used to locate and segment
lymphomas thanks to its high sensitivity and specificity to the metabolic
activity of tumors [Jhanwar et al., 2006]. However, PET images have a low
resolution and suffer from the partial volume effect blurring the contours
of objects [Zaidi et al., 2010]. For that reason, CT images are usually used
jointly with PET images because of their anatomical feature-representation
capability and high resolution. Figure 5.1 shows 3D PET-CT views of a
lymphoma patient in which PET and CT are merged for showing. The
lymphomas are in black, as well as the brain and the bladder. As we can
see from this figure, lymphomas vary in intensity distribution, shape, type,
and number. The attributes of lymphomas make the study of automatic
lymphoma segmentation challenging and unreliable.

In this chapter, we introduce a different uncertainty quantification ap-
proach in medical image segmentation. The main idea is to hybridize a
deep medical image segmentation model with evidential classifiers (one of
the classifiers, ENN, was introduced in Section 2.5.1.2, and the other is the
Radial basis function (RBF) network-based evidential classifier). Two evi-
dential layers are first compared based on different ways of using distances
to prototypes for computing mass functions, to show the effectiveness of
uncertainty quantification. Then the two evidential classifiers are plugged
with deep segmentation models to construct deep evidential segmentation
models to quantify segmentation uncertainty. The whole model is trained
end-to-end by minimizing the Dice loss function. The proposed combina-
tion of deep feature extraction and evidential segmentation is shown to
outperform the baseline model as well as three other state-of-the-art mod-
els on a dataset of 173 patients with lymphomas.

We organize this chapter as follows: Section 5.2 first compares the per-
formance of uncertainty quantification of two evidential classifiers and
then introduces two deep evidential segmentation models with the ap-
plication on lymphoma segmentation. Section 5.3 reports the numerical
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experiments, which demonstrate the advantages of uncertainty quantifica-
tion of the proposed segmentation models. Finally, we conclude this work
in Section 5.4.

5.2 proposed method

5.2.1 Uncertainty quantification with evidential classifiers

In this section, we review two methods for designing classifiers that output
mass functions to quantify uncertainty, referred to as evidential classifiers.
The Evidential neural network (ENN) classifier introduced in [Denœux,
2000] is first recalled in Section 2.5.1.2. A new model based on the inter-
pretation of a radial basis function (RBF) network as combining of simple
mass functions by Dempster’s rule, inspired by [Denœux, 2019b], is then
described in Section 5.2.1.2. The two models are compared experimentally
in Section 5.2.1.3.

5.2.1.1 Evidential neural network (ENN)

In [Denœux, 2000], Denœux proposed the ENN classifier, in which mass
functions are computed based on distances to prototypes. The basic idea
is to consider each prototype as a piece of evidence, which is discounted
based on its distance to the input vector. The evidence from different
prototypes is then pooled by Dempster’s rule.

The ENN classifier is composed of an input layer of H neurons (where
H is the dimension of input space), two hidden layers, and an output layer.
The first input layer is composed of I units, whose weights vectors are
prototypes p1, . . . ,pI in input space. The second hidden layer computes
mass functions mi representing the evidence of each prototype pi. The
third layer combines the I mass functions m1, . . . ,mI using Dempster’s
rule. A short description of the ENN model is given in Section 2.5.1.2
section.

The idea of applying the above model to features extracted by a convo-
lutional neural network (CNN) was first proposed by Tong et al. in [Tong
et al., 2021a]. In this approach, the ENN module becomes an “evidential
layer”, which is plugged into the output of a CNN instead of the usual
softmax layer. The feature extraction and evidential modules are trained
simultaneously. A similar approach was applied in [Tong et al., 2021b]
to semantic segmentation. In the next section, we present an alternative
approach based on a radial basis function (RBF) network and weights of
evidence.



80 5.2.1 uncertainty quantification with evidential classifiers

5.2.1.2 Radial basis function (RBF) network

As shown in [Denœux, 2019b], the calculations performed in the softmax
layer of a feedforward neural network can be interpreted in terms of a
combination of evidence by Dempster’s rule. The output class probabil-
ities can be seen as normalized plausibilities according to an underlying
belief function. Applying these ideas to an RBF network, it is possible to
derive an alternative evidential classifier with properties similar to those
of the ENN model recalled in Section 2.5.1.2. Consider an RBF network
with I prototype (hidden) units. The activation of hidden unit i is

si = exp(−γid2i ), (5.1)

where, as before, di = ‖x−pi‖ is the Euclidean distance between input
vector x and prototype pi, and γi > 0 is a scale parameter. For the
application considered in this chapter, we only need to consider the case
of binary classification with C = 2 and Ω = {ω1,ω2}. (The case where
C > 2 is also analyzed in [Denœux, 2019b]). Let vi be the weight of the
connection between hidden unit i and the output unit, and let wi = sivi be
the product of the output of unit i and weight vi. The quantities wi can be
interpreted as weights of evidence for class ω1 or ω2, depending on the
sign of vi:

• If vi > 0, wi a weight of evidence for class ω1;

• If vi < 0, −wi is a weight of evidence for class ω2.

To each prototype, i can, thus, be associated with the following simple
mass function:

mi = {ω1}
w+

i ⊕ {ω2}
w−

i ,

where w+
i = max(0,wi) and w−

i = −min(0,wi) denote, respectively, the
positive and negative parts of wi. Combining the evidence of all proto-
types in favor of ω1 or ω2 by Dempster’s rule, we get the mass function

m =

I⊕
i=1

mi = {ω1}
w+
⊕ {ω2}

w−
, (5.2)

with w+ =
∑I
i=1w

+
i and w− =

∑I
i=1w

−
i . In [Denœux, 2019b], the normal-

ized plausibility of ω1 corresponding to mass function m was shown to
have the following expression:

p(ω1) =
Pl({ω1})

Pl({ω1}) + Pl({ω2})
=

1

1+ exp(−
∑I
i=1 visi)

, (5.3)

i.e., it is the output of a unit with a logistic activation function. When
training an RBF network with a logistic output unit, we thus actually
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combine evidence from each of the prototypes, but the combined mass
function remains latent. In [Denœux, 2019b], mass function m defined by
(5.2) was shown to have the following expression:

m({ω1}) =
[1− exp(−w+)] exp(−w−)

1− κ
(5.4a)

m({ω2}) =
[1− exp(−w−)] exp(−w+)

1− κ
(5.4b)

m(Ω) =
exp(−w+ −w−)

1− κ
=

exp(−
∑I
i=1 |wi|)

1− κ
, (5.4c)

where
κ = [1− exp(−w+)][1− exp(−w−)] (5.4d)

is the degree of conflict between mass functions {ω1}
w+

and {ω2}
w−

.
In this approach, we thus need to train a standard RBF network with

I prototype units and one output unit with a logistic activation function
by minimizing a loss function. Here we define it as the regularized cross-
entropy loss

LCE(θ) = −

N∑
n=1

(yn logpn + (1− yn) log(1− pn)) + λ
I∑
i=1

w2i , (5.5)

where pn is the normalized plausibility of class ω1 computed from (5.3)
for instance n, yn is class label of instance n (yn = 1 if the true class of
instance n is ω1, and yn = 0 otherwise), and λ is a hyperparameter. We
note that increasing λ has the effect of decreasing the weights of evidence
from prototypes and, thus, obtaining less informative mass functions.

5.2.1.3 Comparison between ENN and RBF network

To compare the uncertainty quantification performance of the two classi-
fiers (ENN and RBF network), we consider the two-class dataset shown
in Figure 5.2 and show the test error rate and the mean uncertainty of
the two classifiers. Furthermore, we also plot the contours of the mass as-
signed to given classes and the uncertainty. The two classes are randomly
distributed around half circles with Gaussian noise and are separated by
a nonlinear boundary. A learning set of size N = 300 and a test set of size
1000 were generated from the same distribution.

An ENN and an RBF network were initialized with I = 6 prototypes
generated by the k-means algorithm and were trained on the learning data.
Figures 5.3a and 5.3b show, respectively, the test error rate and the mean
uncertainty (defined as the average mass assigned to the frame Ω), as
functions of hyperparameter λ in (2.21) and (5.5), for 10 different runs of
both algorithms with different initializations. As expected, uncertainty in-
creases with λ for both models, but the ENN model appears to be less
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Figure 5.2: Simulated data.

sensitive to λ as compared to the RBF model. Both models achieve similar
minimum error rates for λ around 10−3, and have similar mean uncertain-
ties for λ = 10−4.

As shown in [Denœux, 2000], the robustness of the ENN model arises
from the fact that, when the input x is far from all prototypes, the output
mass function m is close to the vacuous mass function. This property, in
particular, makes the network capable of detecting observations generated
from a distribution that is not represented in the learning set. From (5.4c),
we can expect the RBF network model to have a similar property: if x is far
from all prototypes, all weights of evidence wi will be small and the mass
m(Ω) will be close to unity. To compare the mass functions computed by
the two models, not only in regions of high density where training data
are present, but also in regions of low density, we introduced a third class
in the test set, as shown in Figure 5.4. Figure 5.5 shows scatter plots of
masses on each of the focal sets computed for the two models trained with
λ = 10−3 and applied to an extended dataset composed of the learning
data and the third class. We can see that the mass functions are quite
similar. Contour plots shown in Figure 5.4 confirm this similarity.

5.2.2 Uncertainty quantification in evidential segmentation

We propose an evidential segmentation model to delineate lymphomas,
shown in Figure 5.6. It is composed of an encoder-decoder feature ex-
traction module, and an evidential layer based on one of the two mod-
els, ENN and RBF network. The input is the concatenated PET-CT image
volume provided as a tensor of size 2 × 256 × 256 × 128, where 2 corre-
sponds to the number of modality channels, and 256 × 256 × 128 is the
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Figure 5.3: Test error rates (a) and mean uncertainty (b) for the ENN and
RBF models, as functions of regularization parameter λ.

size of each input volume. The PET-CT image volumes are first fed into
the feature extraction module, which outputs high-level features in the
form of a tensor of size 256× 256× 128×H, where H is the number of
features computed at each voxel. This tensor is then fed into the evidential
layer, which outputs mass functions representing evidence about the class
or the ignorance (uncertainty) of each voxel, resulting in a tensor of size
256× 256× 128× (C+ 1), where C+ 1 is the number of masses (one for
each class and one for the frame of discernment Ω). The whole network
is trained end-to-end by minimizing a regularized Dice loss. The different
components of this model are described in greater detail below.

feature extraction module The feature extraction module is
based on a UNet with residual encoder and decoder layers (see Section
1.3.1), as shown in Figure 1.8. Each down-sampling layer (marked in blue)
is composed of convolution, normalization, dropout and activation blocks.
Each up-sampling layer (marked in green) is composed of transpose
convolution, normalization, dropout and activation blocks. The last layer
(marked in yellow) is the bottom connection which does not down or up-
sample the data. In the experiments reported in Section 5.3, the channels
(number of filters) were set as (8, 16, 32, 64, 128) with kernel size equal
to 5 and convolutional strides equal to (2, 2, 2, 2). The spatial dimension,
input channel and output channel of the module were set, respectively,
as 3, 2, and the number H of extracted features. (Experiments with
several values of H are reported in Section 5.3.2). The dropout rate was
set as 0 and no padding operation was applied. Instance normalization
[Ulyanov et al., 2017] was used to perform intensity normalization across
the width, height and depth of a single feature map of a single example.



84 5.2.2 uncertainty quantification in evidential segmentation

m({ω1})

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(a)

m({ω1})

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(b)

m({ω2})

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(c)

m({ω2})

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(d)

m(Ω)

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(e)

m(Ω)

-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
1
0

1
5

(f)

Figure 5.4: Contours of the mass assigned to {ω1}, {ω2} and Ω by the
RBF (left column) and ENN (right column) models. The training data are
displayed in blue and red, and the third class (absent from the training
data) is shown in green. The training was done with λ = 0.001 for the two
models.
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Figure 5.5: Masses computed by the RBF network (horizontal axis) versus
the ENN model (vertical axis) for the extended dataset.
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Figure 5.6: Global lymphoma segmentation model.
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The Parametric Rectified Linear Unit (PReLU) function [He et al., 2015],
which generalizes the traditional rectified unit with a slope for negative
values, was used as the activation function. For each input voxel, the
feature extraction module outputs a 1×H feature vector, which is fed into
the evidential layer.

evidential layer A probabilistic network with a softmax output
layer may assign voxels a high probability of belonging to one class while
the segmentation uncertainty is actually high because, e.g., the feature
vector describing that voxel is far away from feature vectors presented
during training. Here, we propose to plug in one of the evidential
classifiers described in Sections 5.2.1.1 and 5.2.1.2 at the output of the
feature extraction module. The ENN or RBF classifier then takes as inputs
the high-level feature vectors computed by the UNet and computes, for
each voxel n, a mass function mn on the frame Ω = {ω1,ω2}, where ω1
and ω2 denote, respectively, the background and the lymphoma class,
and Ω denotes the uncertainty (see Section 5.3.4 for more details about
uncertainty quantification). We will use the names “ENN-UNet” and
“RBF-UNet” to designate the two variants of the model.

loss function The whole network is trained end-to-end by minimiz-
ing a regularized Dice loss (see Section 1.2.3). We use the Dice loss in-
stead of the original cross-entropy loss in UNet because the quality of the
segmentation is finally assessed by the Dice coefficient. The Dice loss is
defined as

lossD = 1−
2
∑N
n=1 SnGn∑N

n=1 Sn +
∑N
n=1Gn

, (5.6)

where N is the number of voxels in the image volume, Sn is the output
pignistic probability of the tumor class (i.e.,mn({ω2})+mn(Ω)/2) for voxel
n, and Gn is ground truth for voxel n, defined as Gn = 1 if voxel n
corresponds to a tumor, and Gn = 0 otherwise. The regularized loss
function is

loss = lossD + λR, (5.7)

where λ is the regularization coefficient and R is a regularizer defined
either as R =

∑
i αi (2.21) if the ENN classifier is used in the ES module

or as R =
∑
i v
2
i (5.5) if the RBF classifier is used. The regularization term

allows us to decrease the influence of unimportant prototypes and avoid
overfitting.
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5.3 experiments and results

The model introduced in Section 5.2.2 was applied to a set of PET-CT data
recorded on patients with lymphomas1. The experimental settings are first
described in Section 5.3.1. A sensitivity analysis with respect to the main
hyperparameters is first reported in Section 5.3.2. We then compare the
segmentation accuracy and reliability of our models with those of state-of-
the-art methods in Sections 5.3.3 and 5.3.4, respectively.

5.3.1 Experiment settings

dataset The dataset considered in this chapter contains 3D images
from 173 patients who were diagnosed with large B-cell lymphomas and
underwent PET-CT examination. (The study was approved as a retro-
spective study by the Henri Becquerel Center Institutional Review Board,
Rouen, France). The lymphomas in mask images were delineated manu-
ally by experts and considered as ground truth. Figure 5.7 shows exam-
ples of PET and CT image slices for one patient with lymphomas. As
can be seen, lymphomas in PET images usually correspond to the bright-
est pixels, but organs such as the brain and bladder are also located in
bright pixel areas, which may result in segmentation errors. Moreover,
lymphoma boundaries are blurred, which makes it hard to delineate lym-
phomas precisely. All PET/CT data were stored in the DICOM (Digital
Imaging and Communication in Medicine) format. The size and spatial
resolution of PET and CT images and the corresponding mask images
vary due to the use of different imaging machines and operations. For CT
images, the size varies from 267× 512× 512 to 478× 512× 512. For PET
images, the size varies from 276× 144× 144 to 407× 256× 256.

pre-processing Several pre-processing methods were used to process
the PET/CT data. At first, the data in DICOM format were transferred
into the NIFTI (Neuroimaging Informatics Technology Initiative) format
for further processing. Second, the PET, CT and mask images were nor-
malized: (1) for PET images, we applied a random intensity shift and scale
of each channel with the shift value of 0 and scale value of 0.1; (2) for
CT images, the shift and scale values were set to 1000 and 1/2000; (3) for
mask images, the intensity value was normalized into the [0, 1] interval by
replacing the outside value by 1. Third, PET and CT images were resized
to 256× 256× 128 by linear interpolation, and mask images were resized to
256× 256× 128 by nearest neighbor interpolation. Lastly, the registration
of CT and PET images was performed by B-spline interpolation. All the
prepossessing methods can be found in the SimpleITK [Lowekamp et al.,
2013][Yaniv et al., 2018] toolkit. During training, PET and CT images were

1 The code is available at https://github.com/iWeisskohl.

https://github.com/iWeisskohl.
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Figure 5.7: Example of a patient with lymphomas. The first and second
rows show, respectively, CT and PET slices for one patient in axial, sagittal
and coronal views.

concatenated as a two-channel input. We randomly selected 80% of the
data for training, 10% for validation, and 10% for testing. This partition
was fixed and used in all the experiments reported below.

parameter initialization For the evidential layer module, we con-
sidered two variants based on the ENN classifier recalled in Section 5.2.1.1
on the one hand, and an RBF network as described in Section 5.2.1.2 on
the other hand. Both approaches are based on prototypes in the space of
features extracted by the UNet module. Two ways can be used to initialize
the prototypes: k-means initialization and random initialization. When
using ENN or RBF classifiers as stand-alone classifiers, prototypes are usu-
ally initialized by a clustering algorithm such as the k-means. Here, this
approach is not so easy, because the whole network is trained in an end-
to-end way, and the features are constructed during the training process.
However, k-means initialization can still be performed by a four-step pro-
cess:

1. A standard UNet architecture (with a softmax output layer) is trained
end-to-end;

2. The k-means algorithm is run in the space of features extracted by
the trained UNet;

3. The evidential layer is trained alone, starting from the initial proto-
types computed by the k-means;
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4. The whole model (feature extraction module and evidential layer) is
fine-tuned by end-to-end learning with a small learning step.

As an alternative method, we also considered training the feature extrac-
tion module and the evidential layer simultaneously, in which case the
prototypes were initialized randomly from a normal distribution with zero
mean and identity covariance matrix. For the ENN module, the initial val-
ues of parameters αi and γi were set, respectively, at 0.5 and 0.01, and
membership degrees uik were initialized randomly by drawing uniform
random numbers and normalizing. For the RBF module, the initial value
of the scale parameter γi of RBF was set to 0.01, and the weight vi was
drawn randomly from a standard normal distribution.

learning algorithm Each model was trained on the learning set
with 100 epochs using the Adam optimization algorithm. The initial learn-
ing rate was set to 10−3. An adjusted learning rate schedule was applied
by reducing the learning rate when the training loss did not decrease in
10 epochs. The model with the best performance on the validation set was
saved as the final model for testing. All methods were implemented in
Python with the PyTorch-based medical image framework MONAI, and
were trained and tested on a desktop with a 2.20GHz Intel(R) Xeon(R)
CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card with 32 GB GPU
memory.

evaluation criteria Dice score, Sensitivity and Precision were used
to assess the quality of medical image segmentation algorithms. These cri-
teria are defined as follows in (1.1), (1.2) and (1.3), respectively. In addition
to the quality of the segmentation, we also wish to evaluate the reliability
of output probabilities or belief functions. For that purpose, we used an
additional evaluation criterion, the Expected Calibration Error (ECE) [Guo
et al., 2017]. The output pignistic probabilities from the evidential layer
are first discretized into R equally spaced bins Br, r = 1, . . . ,R (we used
R = 10). The accuracy of bin Br is defined as

acc(Br) =
1

| Br |

∑
i∈Br

1(Pi = Gi), (5.8)

where Pi and Gi are, respectively, the predicted and true class labels for
sample i. The average confidence of bin Br is defined as

conf(Br) =
1

| Br |

∑
i∈Br

Si, (5.9)

where Si is the confidence for sample i. The ECE is the weighted average
of the difference in accuracy and confidence of the bins:
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ECE =

R∑
r=1

| Br |

N
| acc(Br) − conf(Br) |, (5.10)

where N is the total number of elements in all bins, and | Br | is the
number of elements in bin Br. A model is perfectly calibrated when
acc(Br) = conf(Br) for all r ∈ {1, . . . ,R}. Through the bin-size weighting
in the ECE metric, the highly confident and accurate background voxels
significantly affect the results. Because our dataset has an imbalanced fore-
ground and background proportions, we only considered voxels belonging
to the tumor to calculate the ECE, similar to [Jungo et al., 2020][Rousseau
et al., 2021]. For each patient in the test set, we defined a bounding box
covering the lymphoma region and calculated the ECE in this bounding
box. We are interested in the patient-level ECE and thus reported the mean
patient ECE instead of the voxel-level ECE (i.e., considering all voxels in
the test set to calculate the ECE).

5.3.2 Sensitivity analysis

We analyzed the sensitivity of the results to the main design hyperparam-
eters, which are: the number H of extracted features, the number I of
prototypes and the regulation coefficient λ (5.7). The influence of the ini-
tialization method was also studied. In all the experiments reported in
this section as well as in Section 5.3.3, learning in each of the configura-
tions was repeated five times with different random initial conditions.

influence of the number of features Table 5.1 shows the means
and standard deviations (over five runs) of the three performance indices
for ENN-UNet and RBF-UNet with different numbers of features (H ∈
{2, 5, 8}). Here the features come from the feature extraction module. The
number of prototypes and the regularization coefficient were set, respec-
tively, to I = 10 and λ = 0. The prototypes were initialized randomly.
ENN-UNet achieves the highest Dice score and sensitivity with H = 2 fea-
tures, but the highest precision with H = 8. However, the differences are
small and concern only the third decimal point. Similarly, RBF-UNet had
the best values of the Dice score and precision for H = 5 features, but
again the differences are small. Overall, it seems that only two features are
sufficient to discriminate between tumor and background voxels.

influence of the regularization coefficient In the previous
experiment, the networks were trained without regularization. Tables 5.2
and 5.3 show the performances of ENN-UNet and RBF-UNet for different
values of λ, with I = 10 randomly initialized prototypes and, respectively,
H = 2 and H = 8 inputs. With both settings, ENN-UNet does not benefit
from regularization (the best results are obtained with λ = 0). In contrast,
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Table 5.1: Means and standard deviations (over five runs) of the perfor-
mance measures for different input dimensions H, with I = 10 randomly
initialized prototypes and λ = 0. The best values are shown in bold.

Model H Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
2 0.833 0.009 0.819 0.019 0.872 0.018

5 0.831 0.012 0.817 0.016 0.870 0.011

8 0.829 0.006 0.816 0.010 0.877 0.019

RBF-UNet
2 0.824 0.009 0.832 0.008 0.845 0.016

5 0.825 0.006 0.817 0.016 0.862 0.010

8 0.821 0.011 0.813 0.010 0.862 0.022

Table 5.2: Means and standard deviations (over five runs) of the perfor-
mance measures for different values of the regularization coefficient λ,
with I = 10 randomly initialized prototypes and H = 2 features. The
best values are shown in bold.

Model λ Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
0 0.833 0.009 0.819 0.019 0.872 0.018

1e-4 0.822 0.007 0.818 0.026 0.839 0.035

1e-2 0.823 0.004 0.817 0.023 0.856 0.023

RBF-UNet
0 0.824 0.009 0.832 0.008 0.845 0.016

1e-4 0.825 0.011 0.811 0.022 0.869 0.020

1e-2 0.829 0.010 0.818 0.022 0.867 0.016

RBF-UNet is more sensitive to regularization and achieves the highest Dice
score with λ = 0.01. This finding confirms the remark already made in
Section 5.2.1.3, where it was observed that an ENN classifier seems to be
less sensitive to regularization than an RBF classifier (see Figure 5.3a).

influence of the number of prototypes The number I of pro-
totypes is another hyperparameter that may impact segmentation perfor-
mance. Table 5.4 shows the performances of ENN-UNet and RBF-UNet
with 10 and 20 randomly initialized prototypes, the other hyperparame-
ters being fixed at H = 2 and λ = 0. Increasing the number of prototypes
beyond 10 does not seem to improve the performance of ENN-UNet, while
it does slightly improve the performance of RBF-UNet in terms of Dice
score and precision, at the expense of an increased computing time.

influence of the prototype initialization method Finally,
we compared the two initialization methods mentioned in Section 5.3.1.
For k-means initialization, in the first step, a UNet model was trained
with the following settings: kernel size=5, channels =(8, 16, 32, 64, 128) and
strides=(2, 2, 2, 2). The spatial dimension, input, and output channel were
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Table 5.3: Means and standard deviations (over five runs) of the perfor-
mance measures for different values of the regularization coefficient λ,
with I = 10 randomly initialized prototypes and H = 8 features. The
best values are shown in bold.

Model λ Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet
0 0.829 0.006 0.811 0.010 0.877 0.019

1e-4 0.827 0.008 0.809 0.019 0.873 0.024

1e-2 0.822 0.009 0.807 0.021 0.867 0.011

RBF-UNet
0 0.821 0.010 0.813 0.010 0.862 0.022

1e-4 0.827 0.004 0.830 0.005 0.852 0.012

1e-2 0.832 0.006 0.825 0.022 0.867 0.020

Table 5.4: Means and standard deviations (over five runs) of the perfor-
mance measures for different numbers I of randomly initialized proto-
types, with H = 2 features and λ = 0. The best values are shown in
bold.

Model I Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet 10 0.833 0.009 0.819 0.019 0.872 0.018

20 0.823 0.007 0.804 0.006 0.864 0.012

RBF-UNet 10 0.824 0.009 0.832 0.008 0.845 0.016

20 0.830 0.007 0.810 0.012 0.867 0.010
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Table 5.5: Means and standard deviations (over five runs) of the perfor-
mance measures for different initialization methods, with I = 10 proto-
types, H = 2 features and λ = 0. The best values are shown in bold.

Model Initialization Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

ENN-UNet Random 0.833 0.009 0.819 0.019 0.872 0.018

k-means 0.846 0.002 0.830 0.004 0.879 0.008

RBF-UNet Random 0.824 0.009 0.832 0.008 0.845 0.016

k-means 0.839 0.003 0.824 0.001 0.879 0.008

set, respectively to, 3, 2, and 2. This pre-trained UNet was used to ex-
tract H = 2 features, and 10 prototypes were obtained by running the
k-means algorithm in the space of extracted features. These prototypes
were fed into ENN or RBF layers, which were trained separately, with
fixed features. For this step, the learning rate was set to 10−2. Finally, the
whole model was fine-tuned end-to-end, with a smaller learning rate equal
to 10−4. Table 5.5 shows the performances of ENN-UNet and RBF-UNet
with random and k-means initialization. Both ENN-UNet and RBF-UNet
achieve a higher Dice score when using the k-means initialization method,
and the variability of the results is also reduced with this method.

Not only does the k-means initialization method slightly improve the
performances of ENN-UNet and RBF-UNet quantitatively, but it also tends
to position the prototypes in regions of high data density. As a result, a
high output mass m(Ω) signals that the input data is atypical. In that
sense, the output mass function is more interpretable. This point is il-
lustrated by Figures 5.8 and 5.9, which show the contours, in the two-
dimensional feature space, of the masses assigned to the background, the
tumor class and the frame of discernment when using k-means initial-
ization (with λ = 10−2 and I = 10) with, respectively, ENN-UNet and
RBF-UNet. For both models, the prototypes are well distributed over the
two classes, and the mass on Ω decreases with the distance to the data,
as expected. In contrast, when using random initialization (as shown in
Figure 5.10 for the ENN-UNet model – results are similar to the RBF-UNet
model), the prototypes are located in the background region, and the mass
m(Ω) does not have a clear meaning (although the decision boundary still
ensures good discrimination between the two classes).

From this sensitivity analysis, we can conclude that the performances
of both ENN-UNet and RBF-UNet are quite robust to the values of the hy-
perparameters and that the two models achieve comparable performances.
The k-means initialization method seems to yield better results, both quan-
titatively and qualitatively. The next section is devoted to a comparison
with alternative models.
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Figure 5.8: Contours in feature space of the masses assigned to the back-
ground (a), the tumor class (b), and the frame of discernment (c) by
the ENN-UNet model initialized by k-means. Training was done with
λ = 10−2, H = 2 and I = 10. Sampled feature vectors from the tumor and
background classes are marked in gray and red, respectively.
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Figure 5.9: Contours in feature space of the masses assigned to the back-
ground (a), the tumor class (b) and the frame of discernment (c) by the
RBF-UNet model initialized by k-means. Training was done with λ = 10−2,
H = 2 and I = 10. Sampled feature vectors from the tumor and back-
ground classes are marked in gray and red, respectively.
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Figure 5.10: Contours in feature space of the masses assigned to the back-
ground (a), the tumor class (b), and the frame of discernment (c) by the
ENN-UNet model initialized randomly. Training was done with λ = 10−2,
H = 2 and I = 10. Sampled feature vectors from the tumor and back-
ground classes are marked in gray and red, respectively.
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5.3.3 Comparative analysis: segmentation accuracy

In this section, we compare the performances of the ENN-UNet and RBF-
UNet models with those of the baseline model, UNet [Ronneberger et al.,
2015], as well as three state-of-the-art models: VNet [Milletari et al., 2016],
SegResNet [Myronenko, 2018] and nnUNet [Isensee et al., 2018]. VNet
is a variant of UNet that introduces short residual connections at each
stage. Compared with UNet, SegResNet contains an additional variational
autoencoder branch. nnUNet ( see Section 1.3.3) is the first segmentation
model designed as a segmentation pipeline for any given dataset. For all
compared methods, the same learning set and pre-processing steps were
used. All the compared methods were trained with the Dice loss function
(5.6). Details about the optimization algorithm were given in Section 5.3.1.
All methods were implemented based on the MONAI framework2 and
can be called directly. For UNet, the kernel size was set as 5 and the
channels were set to (8, 16, 32, 64, 128) with strides=(2, 2, 2, 2). For nnUNet,
the kernel size was set as (3, (1, 1, 3), 3, 3) and the upsample kernel size was
set as (2, 2, 1) with strides ((1, 1, 1), 2, 2, 1). For SegResNet [Myronenko,
2018] and VNet [Milletari et al., 2016], we used the pre-defined model
without changing any parameter. The spatial dimension, input channel
and output channel were set, respectively, 3, 2, and 2 for the four compared
models. As for other hyperparameters not mentioned here, we used the
pre-defined value given in MONAI. As shown by the sensitivity analysis
performed in Section 5.3.2, the best results for ENN-UNet and RBF-UNet
are achieved with λ = 0, I = 10, H = 2 and k-means initialization.

The means and standard deviations of the Dice score, sensitivity, and
precision over five runs with random initialization for the six methods are
shown in Table 5.6, and the raw values are plotted in Figure 5.11. We can
see that ENN-UNet and RBF-UNet achieve, respectively, the highest and
the second-highest mean Dice scores. A Kruskal-Wallis test performed on
the whole data concludes with a significant difference between the distri-
butions of the Dice score for the six methods (p-value = 0.0001743), while
the differences are not significant for sensitivity (p-value = 0.2644) and pre-
cision (p-value = 0.9496). Table 5.7 shows the results of the Conover-Iman
test of multiple comparisons [Conover et al., 1979][Dinno et al., 2017] with
Benjamini-Yekutieli adjustment [Benjamini et al., 2001]. We can see that the
differences between the Dice scores obtained by ENN-UNet and RBF-UNet
on the one hand, and the four other methods on the other hand are highly
significant (p-values < 10−2), while the difference between ENN-UNet and
RBF-UNet is only weakly significant (p-value = 0.0857).

Figure 5.12 shows two examples of segmentation results obtained by
ENN-UNet and UNet, corresponding to large and isolated lymphomas.

2 More details about how to use those models can be found from MONAI core tutorials
https://monai.io/started.html#monaicore.

https://monai.io/started.html##monaicore
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Table 5.6: Means and standard deviations (over five runs) of the perfor-
mance measures for ENN-UNet, RBF-UNet and four reference methods.
The best result is shown in bold, and the second best is underlined.

Model Dice score Sensitivity Precision
Mean SD Mean SD Mean SD

UNet [Kerfoot et al., 2018] 0.753 0.054 0.782 0.048 0.896 0.047

nnUNet [Isensee et al., 2018] 0.817 0.008 0.838 0.028 0.879 0.032

VNet [Milletari et al., 2016] 0.820 0.016 0.831 0.021 0.901 0.056

SegResNet [Myronenko, 2018] 0.825 0.015 0.832 0.042 0.876 0.051

ENN-UNet 0.846 0.002 0.830 0.004 0.879 0.008

RBF-UNet 0.839 0.003 0.824 0.001 0.879 0.008
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Figure 5.11: Values of the Dice score (a), sensitivity (b) and precision (c)
for five runs of the six methods.
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Table 5.7: Conover-Iman test of multiple comparisons between the Dice
scores obtained by the six models: t-test statistics and p-values. P-values
less than 0.01 are printed in bold.

ENN-UNet nnUnet RBF-UNet SegResNet UNet
nnUnet 6.759

0.0000
RBF-UNet 2.156 -4.602

0.0857 0.0004
SegResNet 5.349 -1.410 3.193

0.0001 0.3282 0.0088
UNet 10.283 3.524 8.127 4.934

0.0000 0.0043 0.0000 0.0002
VNet 6.054 -0.705 3.898 0.705 -4.229

0.0000 0.8091 0.0019 0.8669 0.0009

We can see, in these two examples, that UNet is more conservative (it
correctly detects only a subset of the tumor voxels), which may explain
why it has relatively high precision. However, the tumor regions predicted
by ENN-UNet better overlap the ground-truth tumor region, which is also
reflected by the higher Dice score.

5.3.4 Comparative analysis: segmentation uncertainty

Besides segmentation accuracy, another important issue concerns the qual-
ity of uncertainty quantification. Monte-Carlo dropout (MCD) [Gal et al.,
2016] is a state-of-the-art technique for improving the uncertainty quan-
tification capabilities of deep networks. In this section, we compare the
ECE (5.10) achieved by UNet (the baseline), SegResNet (the best alterna-
tive method found in Section 5.3.3), and our proposals: ENN-UNet, and
RBF-UNet, with and without MCD. For the four methods, the dropout
rate was set to 0.5 and the sample number was set to 20; we averaged the
20 output probabilities (the pignistic probabilities for the two evidential
models) at each voxel as the final output of the model.

The results are reported in Table 5.8. We can see that MCD enhances
the segmentation performance (measured by the Dice index) of UNet et
SegResNet, and improves the calibration of all methods, except SegResNet.
Overall, the smallest average ECE is achieved by RBF-UNet and ENN-
UNet with MCD, but the standard deviations are quite large. A Kruskal-
Wallis test concludes with a significant difference between the distributions
of ECE for the eight methods (p-value = 0.01). The p-values of the Conover-
Iman test of multiple comparisons with Benjamini-Yekutieli adjustment
reported in Table 5.9 show significant differences between the ECE of RBF-
UNet with MCD on the one hand, and those of RBF-UNet without MCD,
SegResNet with MCD, and UNet without MCD on the other hand. We
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PET image ENN-UNet UNet

Figure 5.12: Two examples of segmentation results by ENN-UNet and
UNet. The first and the second row are, respectively, representative of
large and isolated small lymphomas. The three columns correspond, from
left to right, to the PET images and the segmentation results obtained by
ENN-UNet and UNet. The white and red regions represent, respectively,
the ground truth and the segmentation result.
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Table 5.8: Means and standard deviations (over five runs) of the Dice
score and ECE for UNet, SegResNet, ENN-UNet, and RBF-UNet, with
and without MCD. The best results are shown in bold, and the second
best is underlined.

Model Dice score ECE(%)
Mean SD Mean SD

UNet 0.754 0.054 2.22 0.205

SegResNet 0.825 0.015 1.97 0.488

ENN-UNet 0.846 0.002 1.99 0.110

RBF-UNet 0.839 0.003 2.12 0.028

UNet with MCD 0.828 0.005 1.93 0.337

SegResNet with MCD 0.844 0.009 2.53 0.973

ENN-UNet with MCD 0.841 0.003 1.53 0.075

RBF-UNet with MCD 0.840 0.003 1.52 0.041

Table 5.9: Conover-Iman test of multiple comparisons between the ECE
obtained by UNet, SegResNet, ENN and RBF, with and without MCD:
t-test statistics and p-values. P-values less than 0.01 are printed in bold.

ENN ENN-MC RBF RBF-MC SegRes SegRes-MC UNet
ENN-MC 0.926

1.0000

RBF -1.191 -2.118

0.7403 0.2892

RBF-MC 2.812 1.886 4.004

0.1145 0.3419 0.0095
SegRes 0.695 -0.232 1.886 -2.117

1.0000 1.0000 0.3761 0.3305

SegRes-MC -0.860 -1.787 0.331 -3.673 -1.555

1.0000 0.3530 1.0000 0.0159 0.4756

UNet -1.357 -2.283 -0.165 -4.169 -2.051 -0.496

0.6337 0.2677 1.0000 0.0119 0.2962 1.0000

UNet-MC 0.430 -0.496 1.621 -2.382 -0.265 1.290 1.787

1.0000 1.0000 0.4507 0.2564 1.0000 0.6667 0.3824

also tested the pairwise differences between the ECE values obtained by
RBF-UNet and ENN-UNet with MCD on the one hand, and UNet with
and without MCD as well as SegResNet with and without MCD, on the
other hand, using the Wilcoxon rank sum test. The corresponding p-values
are shown in Table 5.10. We find significant differences between the ECE
RBF-UNet with MCD and those of the other methods, but only a weakly
significant difference between ENN-UNet with MCD and UNet without
MCD. In summary, there is some evidence that MCD improves calibration,
even for evidential models, and that the best calibration is achieved by
the RBF-UNet model, but this evidence is not fully conclusive due to the
limited size of the dataset; our findings will have to be confirmed by
further experiments with larger datasets.
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Table 5.10: P-values for the Wilcoxon rank sum test applied to the compar-
ison of ECE obtained by ENN-UNet and RBF UNet with MCD on the one
hand and the four other methods on the other hand (UNet and SegResNet
with and without MCD).

UNet UNet-MC SegRes SegRes-MC
ENN-MC 0.095 0.67 0.69 0.31

RBF-MC 0.0079 0.012 0.055 0.0079

5.4 conclusion

An evidential model for segmenting lymphomas from 3D PET-CT images
with uncertainty quantification has been proposed in this chapter. Our
model is based on the concatenation of a UNet, which extracts high-level
features from the input images, and an evidential segmentation module,
which computes output mass functions for each voxel. Two versions of
this evidential module, both involving prototypes, have been studied: one
is based on the ENN classifier initially proposed as a stand-alone classifier
in [Denœux, 2000], while the other one relies on an RBF classifier and the
addition of the weight of evidence. The whole model is trained end-to-end
by minimizing the Dice loss. Our model has been shown to outperform
the baseline UNet model and other state-of-the-art segmentation methods
on a dataset of 173 patients with lymphomas. Preliminary results also
suggest the outputs of the evidential models (in particular, the one with
an RBF layer) are better calibrated and that calibration error can be further
decreased by Monte Carlo dropout. These results, however, will have to
be confirmed by further experiments with larger datasets. One of the
potential problems that may arise is related to the dimensionality of the
feature space. In the application considered in this work, good results were
obtained with only two extracted features. If some other learning tasks
require a much higher feature dimension, we may need a much higher
number of prototypes, and learning may be slow. This issue could be
addressed by adapting the loss function as proposed, e.g., in [Hryniowski
et al., 2019].

Multimodal medical images indicate different information about the
presence of disease, with varying reliability of each modality image. In
this work, we use two modalities: PET providing information on the lym-
phoma and CT providing anatomical information, to better guide radio-
therapy planning. We fuse images from PET and CT modalities by con-
catenating them into a single input and quantifying the segmentation un-
certainty. This work can be extended in many research directions. For
example, we can further evaluate the approach by applying it to other
medical image segmentation problems and study the quantification and
fusion of modality-level uncertainty. In the next chapter, we will intro-
duce our work on quantifying modality-level uncertainty and combining
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unreliable sources of information with an application to a large-scale brain
tumor dataset.
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6.1 introduction

Single-modality medical images often do not contain enough information
to reach an accurate and reliable diagnosis. This is why physicians gen-
erally use multiple sources of information, such as multi-MR images for
brain tumor segmentation, or PET-CT images for lymphoma segmentation.
The effective fusion of multimodal information is of great importance in
the medical domain for better disease diagnosis and radiotherapy. Using
convolutional neural networks (CNNs), researchers have mainly adopted
probabilistic approaches to information fusion, which can be classified
into three strategies: image-level fusion, such as input data concatenation
[Peiris et al., 2021]; feature-level fusion, such as attention mechanism con-
catenation [Zhou et al., 2020]; and decision-level fusion such as weighted
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averaging [Kamnitsas et al., 2017]. However, probabilistic fusion is un-
able to effectively manage conflict that occurs when different labels are
assigned to the same voxel based on different modalities. Also, it is impor-
tant, when combining multimodal information, to take into account the
reliability of the different sources of information.

In this chapter, we introduce a multimodal evidence fusion framework
based on contextual discounting [Pichon et al., 2016; Mercier et al., 2012]
and deep learning. In the BFT framework, the reliability of a source of
information can be taken into account using the discounting operation
[Shafer, 1976], which transforms each piece of evidence provided by a
source into a weaker, less informative one. To our knowledge, this work is
the first attempt to apply evidence theory with contextual discounting to
the fusion of deep neural networks. The idea of considering multimodal
images as independent inputs and quantifying their reliability is simple
and reasonable. However, modeling the reliability of sources is important
and challenging. Our method computes mass functions to assign degrees
of belief to each class and assign an ignorance degree to the whole set
of classes. It thus has one more degree of freedom than a probabilistic
model, which allows us to model source uncertainty directly. The contri-
butions of this work are the following: (1) Four BFT-based evidential seg-
mentation modules are used to compute the belief of each voxel belonging
to the tumor for four modality MR images; (2) An evidence-discounting
mechanism is applied to each of the single-modality MR images to take
into account its reliability; (3) A multimodal evidence fusion strategy is
then applied to combine the discounted evidence with BFT and achieve
more reliable results. End-to-end learning is performed by minimizing a
new loss function based on the discounting mechanism, allowing us to
increase the segmentation performance and reliability. The framework is
evaluated on the BraTs 2021 database of 1251 patients with brain tumors.
Quantitative and qualitative results show that our method outperforms the
state-of-the-art and implements an effective new idea for merging multiple
information within deep neural networks.

We organize this chapter as follows: Section 6.2 introduces the multi-
modal medical image segmentation model. Section 6.3 reports the numer-
ical experiments by evaluating the performance in segmentation accuracy
and reliability. Finally, we conclude this work in Section 6.4.

6.2 proposed approach

Our proposed evidence fusion framework is shown in Figure 6.1. It is
composed of (1) four encoder-decoder feature extraction (FE) modules, (2)
four evidential segmentation (ES) modules, and (3) a multimodal evidence
fusion (MMEF) module. Since this chapter focuses on uncertainty rep-
resentation and multimodal evidence fusion, the FE module here can be
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Figure 6.1: Multimodal evidence fusion framework. It is composed of four
encoder-decoder feature extraction (FE) modules corresponding to T1Gd,
T1, T2 and FLAIR modality inputs; four evidential segmentation (ES) mod-
ules corresponding to each of the inputs; and a multimodal evidence fu-
sion (MMEF) module.

any state-of-the-art medical image segmentation models, such as Residual-
UNet (see Section 1.3.1), nnUNet (see Section 1.3.3). Details about the
evidential segmentation and multimodal evidence fusion modules will be
given in Sections 6.2.1 and 6.2.2, respectively. The loss function used for
optimizing the framework will be described in Section 6.2.3.

6.2.1 Evidential segmentation (ES) module

Based on ENN introduced in 2.5.1.2, we propose a BFT-based evidential
segmentation module to quantify the uncertainty about the class of each
voxel by a mass function. The basic idea of the evidential segmentation
module is to assign a mass to each of the C classes and to the whole set of
classes Ω, based on the distance between the input x of each voxel and I
prototypes. The input x is the high-level semantic feature vector generated
by the feature extraction module. For each prototype pi, the evidential
segmentation module will first calculate mass functions mi representing
the corresponding evidence using the following equations:

mi({ωc}) = uicαi exp(−γi‖x− pi‖2), c = 1, ...,C (6.1a)

mi(Ω) = 1−αi exp(−γi‖x− pi‖2), (6.1b)

where γi > 0 and αi ∈ [0, 1] are two parameters, uic is the membership
degree of prototype i to class ωc, and

∑C
c=1 uic = 1. Then the I pieces of
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evidence are combined by Dempster’s rule (see Section 2.2). As shown in
Fig 6.1, for each input modality, we have an independent evidential seg-
mentation module plugged into the feature extraction module’s output.
For each voxel, the evidential segmentation module generates a mass func-
tion m to each of the C classes and a mass function m(Ω) to the whole set
of classes Ω. Here m(Ω) is regarded as the degree of uncertainty when
assigning a voxel to the given classes.

6.2.2 Multimodal evidence fusion (MMEF) module

In this work, we address the problem of modeling the reliability of single-
modality medical images by the discounting operation under the BFT
framework. The multiple discounted evidence is then combined by Demp-
ster’s rule (see Section 2.2). In this section, we explain the use of contextual
discounting in multimodal MR image fusion.

discounting source evidence with reliability coefficient

We follow Mercier’s idea [Mercier et al., 2008] to extend the discounting
operation into contextual discounting. With contextual discounting, we can
represent richer meta-knowledge regarding the reliability of the single
modality image in different contexts, i.e., different types of MR images are
conditionally reliable regarding different brain tumor segmentation tasks.
We assume that we have evidence regarding the reliability of a source
modality S, conditionally on each hypothesis ωc ∈ Ω, i.e., in a context
where the quantity x of interest is known to be equal to ωc. When it is
known that the actual value of x is ωc, 1− βc is the plausibility that the
source is not reliable in the same context, and thus our knowledge about
x taking value in {ωc} is vacuous, i.e., m?. For each source of information,
we thus have a vector β = [β1, ...,βC] representing its reliability in different
contexts. The contour function of the discounted mass function can be
shown [Mercier et al., 2008] to be

βpl({ωc}) = 1−βc +βc pl({ωc}), c = 1, ...,C, (6.2)

where βpl({ωc}) is the discounted plausibility of class m({ωc}), pl({ωc}) =
m({ωc}) +m(Ω). By representing the evidence with the contour function,
we can decrease the calculation complexity.

fusion with discounted source evidence The four independent
discounted evidence corresponding to four input modalities must be com-
bined to generate final evidence. Equation (2.8) allows us to compute the
contour function in time proportional to the size of Ω, without having to
compute the combined massm1⊕m2 with (2.6). In our case, β

1
plT1, β

2
plT2,
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β3
plT1Gd and β4

plFLAIR represent the contour functions provided, respec-
tively, by modality T1, T2, T1Gd and FLAIR, with discount rate vectors
1− β1, 1− β2, 1− β3 and 1− β4. As a consequence of (2.8), the normal-
ized contour function of multiple sources of information is proportional to
the product of the contour function of each source information and can be
used to simplify the processes of the orthogonal sum of m1 and m2 using
Dempster’s rule. The combined contour function βpl of each singleton is,
thus,

βpl({ωc}) =

∏T
t=1

βt
cplt({ωc})∑C

c=1

∏T
t=1

βt
cplt({ωc})

, c = 1, ...,C, (6.3)

where T is the number of information sources, and C is the number of
classes on Ω.

6.2.3 Learning with contextual discounted Dice loss

To optimize the whole framework, we maximize the overlap region be-
tween the output S and the ground truth G by minimizing the following
loss function lossD , given as follows:

lossD = 1−
2
∑N
n=1

∑C
c=1 Scn ×Gcn∑N

n=1

∑C
c=1 Scn +Gcn

, (6.4)

where C and N are the number of classes and voxels; Gcn = 1 if voxel n
belongs to class c, and Gcn = 0 otherwise, and Scn represents the corre-
sponding predicted mask based on the discounted source evidence after
fusion.

6.3 experiments and results

6.3.1 Experiment settings

dataset We used a multimodal brain tumor dataset from the BraTS
2021 challenge [Baid et al., 2021] to evaluate our framework. The origi-
nal BraTS2021 dataset comprises training, validation and test sets with the
corresponding number of cases as 1251, 219 and 570, respectively. Com-
pared to the BraTS2019 dataset we used in Chapter 4, BraTS2021 is a more
recent version with more brain tumor cases available. For BraTS2021, the
validation and test set and the corresponding ground truth are not avail-
able; thus, in this chapter, we train and evaluate our framework with the
training set. Following [Peiris et al., 2021], we randomly divided the 1251

scans into 834, 208, and 209 for new training, validation, and test set, re-
spectively. Each case has four modalities: T1, T1Gd, T2, and FLAIR with
240× 240× 155 voxels. Figure 6.2 shows four modality MR image slices
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from one patient. The appearance of a brain tumor varies in different
modalities, and the tumor boundaries are blurred, making it hard to de-
lineate different tumors precisely. Annotations of 1251 scans comprise the
GD-enhancing tumor (ET-label 4), the peritumoral edema (ED-label 2), and
the necrotic and non-enhancing tumor core (NRC/NET -label1). Similar
to BraTS2019, the task of BraTS2021 is to segment three overlap regions:
enhancing tumor (ET, label 4), tumor core (TC, the composition of label 1

and 4), and whole tumor (WT, the composition of label 1, 2, and 4).

pre-processing Similar to the pre-processing methods in [Peiris et
al., 2021], we performed a min-max scaling operation followed by clipping
intensity values to standardize all volumes and crop/padding the volumes
to a fixed size of 128× 128× 128 by removing the unnecessary background.
No data augmentation technique was applied and no additional data was
used in this study.

parameter initialization and learning The initial values of
parameters (see (6.1b)) αi and γi were set, respectively, to 0.5 and 0.01, and
membership degrees uic were initialized randomly by drawing uniform
random numbers and normalizing. The prototypes were initialized by
the k-means clustering algorithm. For the multimodal evidence fusion
module, the initial values of parameter βc were set to 0.5. Each model was
trained on the learning set with 100 epochs using the Adam optimization
algorithm. The initial learning rate was set to 10−3. The model with the
best performance on the validation set was saved as the final model for
testing1.

The multimodal evidence fusion framework was implemented in
Python with the PyTorch-based medical image framework MONAI, and
was trained and tested on a desktop with a 2.20GHz Intel(R) Xeon(R)
CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card with 32 GB GPU
memory.

6.3.2 Segmentation accuracy

We used the Dice Score (see (1.1)) and the Hausdorff Distance (HD) (see
(1.4)) as our evaluation metrics to compare the segmentation accuracy with
the baseline methods and state-of-the-art methods. For each patient, we
separately computed these two indices for the three classes and then av-
eraged indices over the patients, following a similar evaluation strategy
as in [Peiris et al., 2021]. We use Residual-UNet (see Section 1.3.1) and
nnUNet (see Section 1.3.3) as feature extraction modules to construct two
models, named MMEF-UNet and MMEF-nnUNet, respectively. We com-
pared our models with two recent transformer-based models (nnFormer

1 The code is available at https://github.com/iWeisskohl.

https://github.com/iWeisskohl
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(c) Intensity distribution of T1 image

tumor

(a) T1 image (b) T1 image with tumor

(e) T2 image with tumor

(h) T1Gd image with tumor

(k) Flair image with tumor

(f) Intensity distribution of T2 image

(i) Intensity distribution of T1Gd image

(o) Intensity distribution of Flair image

(d) T2 image

(g) T1Gd image

(j) Flair image

Figure 6.2: Examples of a patient with the brain tumor in four modalities:
T1, post-contrast T1-weighted (T1Gd), T2, FLAIR. The three tumor classes:
enhancing core (yellow), necrotic/cystic core (red), and edema/invasion
(green). The first, second and third columns show, respectively, the original
image, the image with the tumor mask in three classes, and the intensity
histogram of the image.
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Table 6.1: Segmentation results on the BraTS 2021 test set. The best result
is shown in bold, and the second best is underlined.

Methods Dice score HD
ET TC WT Mean ET TC WT Mean

UNet [Çiçek et al., 2016] 83.39 86.28 89.59 86.42 11.49 6.18 6.15 7.94

VNet [Milletari et al., 2016] 81.04 84.71 90.32 85.36 17.20 7.48 7.53 10.73

nnFormer [Zhou et al., 2021] 82.83 86.48 90.37 86.56 11.66 7.89 8.00 9.18

VT-UNet [Peiris et al., 2021] 85.59 87.41 91.20 88.07 10.03 6.29 6.23 7.52

Residual-UNet [Kerfoot et al., 2018] 85.07 87.61 89.78 87.48 11.76 6.14 6.31 8.07

nnUNet [Isensee et al., 2018] 87.12 90.31 91.47 89.68 12.46 11.04 5.97 9.82

MMEF-UNet (Ours) 86.96 87.46 90.68 88.36 10.20 6.07 5.29 7.18
MMEF-nnUNet (Ours) 87.26 90.05 92.83 90.05 10.09 9.68 5.10 8.29

[Zhou et al., 2021], VT-UNet [Peiris et al., 2021]), two classical CNN-based
methods (UNet [Çiçek et al., 2016], V-Net [Milletari et al., 2016]), and the
two baseline models. The quantitative results are reported in Table 6.1.
Our models outperform the two classical CNN-based models and two re-
cent transformer-based methods in terms of the Dice score; the best re-
sult is obtained by MMEF-nnUNet according to this criterion. In contrast,
MMEF-UNet achieves the lowest HD.

visualized segmentation results Figure 6.3 shows the segmenta-
tion results of Residual-UNet with the inputs of four concatenated modal-
ities and MMEF-UNet with the inputs of four separate modalities. Our
model locates and segments brain tumor subregions precisely, especially
at the tumor boundary where uncertainty is high.

6.3.3 Segmentation reliability

A very important question related to the design of a multimodal medical
image segmentation model is the reliability of its fusion results. Although
all the recent publications report improved segmentation performance as
the result of merging multimodal medical images into deep neural net-
works, the reliability of the results obtained with such fusion processes
has seldom been investigated. There are two approaches to measuring
the segmentation reliability. One is to test the reliability of the model by
calculating the expected calibration error (ECE, see (5.10)). The other is
to calculate the reliability of source information [Kobayashi et al., 1999].
In this chapter, the reliability of source information is represented by the
reliability coefficients β we mentioned in (6.2).

model’s reliability To test the reliability of our models, we com-
puted the ECE for the two baseline models and ours. We obtain ECE
values of 2.35 % and 2.04%, respectively, for Residual-UNet and MMEF-
UNet, against ECE values of 4.46% and 4.05%, respectively, for nnUNet
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FLAIR Residual-UNet MMEF-UnetGround Truth

Figure 6.3: Visualization of the results on BraTs2021 data. The first and the
second row are, respectively, the whole brain region and the tumor subre-
gions (the main differences are marked in blue circles). The three columns
correspond, from left to right, to the FLAIR image, the ground truth, and
the segmentation results obtained by Residual-UNet and MMEF-UNet.
The green, yellow and red represent the ET, ED, and NRC/NET, respec-
tively.

and MMEF-nnUNet. Since the probabilities computed by our models are
better calibrated, the segmentation results of our models are more reliable.

Table 6.2: Dice score and ECE on the BraTs2021 test set.

Methods Dice score ECE (%)
Residual-UNet 86.42 2.35

nnUNet 89.68 4.46

MMEF-UNet 88.36 2.04

MMEF-nnUNet 90.05 4.05

interpretation of reliability coefficients Table 6.3 shows the
learned reliability coefficients β (see (6.2)) for the four modalities with
three different classes. The evidence from the T1Gd modality is reliable
for ET, ED, and NRC classes with the highest reliability value (close to 1).
In contrast, the evidence from the FLAIR modality is only reliable for the
ED class, with a reliability value coefficient to 0.86. The reliability coef-
ficient of the T2 modality is only around 0.4 for the three classes, which
means the T2 modality has a limited contribution to the final decision.
The evidence from the T1 modality is less reliable for the three classes
compared to the evidence of the other three modalities. These reliability
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Table 6.3: Estimated reliability coefficient β (after training) for classes ET,
ED and NRC/NET and the four modalities. Higher values correspond to
greater contribution to the segmentation.

β ET ED NRC/NET
T1Gd 0.9996 0.9726 0.9998

T1 0.4900 0.0401 0.2655

T2 0.4814 0.3881 0.4563

FLAIR 0.0748 0.86207 0.07512

results are consistent with domain knowledge about these modalities re-
ported in [Baid et al., 2021], i.e., ET is described by areas with both visually
avid, as well as faint, enhancement on T1Gd, the appearance of NRC/NET
is hypointense on T1Gd. That is why its reliability coefficient is high for
these areas. ED is defined by the abnormal hyperintense signal envelope
on the FLAIR volumes. This interpretation of the reliability coefficients
offers an effective way to explain the segmentation results to physicians
and patients.

6.3.4 Ablation analysis

We also investigated the contribution of each module component to the
performance of the framework. Table 6.4 highlights the importance of
introducing the evidential segmentation and multimodal evidence fusion
modules. Residual-UNet is the baseline model that uses the softmax trans-
formation to map feature vectors into probabilities. Compared to Residual-
UNet, Residual-UNet-ES uses the ES module instead of softmax that map
feature vectors into mass functions. MMEF-UNet, our final proposal, fuses
the four single-modality outputs from Residual-UNet-ES with the MMEF
module.

illustrative results with single-modality inputs (residu-
al-unet vs . residual-unet-es) Table 6.4 shows the performance
of segmentation results with and without the evidential segmentation
module when only single-modality MR images are used. Compared to the
baseline method Residual-UNet, our proposal, which plugs the evidential
segmentation module after Residual-UNet, improves the segmentation
performance based on single inputs. For example, compared with
Residual-UNet, Residual-UNet-ES has an increase in 1.38% and 0.62%
of Dice score on T1Gd and FLAIR modality, respectively. Furthermore,
the introduction of evidential segmentation decreases the ECE on four
modalities, which means the segmentation results with the evidential
segmentation module are more reliable.
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Table 6.4: Segmentation results on BraTS 2021 validation set(↑ means
higher is better).

Methods Input Dice score in single class Mean Dice ECE(%)
Modality ET ED NRC/NET

Residual-UNet T1Gd 79.55 61.16 71.26 71.30 3.67

Residual-UNet-ES T1Gd 80.50 ↑ 62.95↑ 73.39↑ 72.68↑ 3.24↑
Residual-UNet T1 44.32↑ 50.58↑ 44.85↑ 48.97↑ 4.27

Residual-UNet-ES T1 44.41 56.08 44.06 48.55 3.33↑
Residual-UNet T2 45.56 65.38 46.06 53.29 3.69

Residual-UNet-ES T2 46.37↑ 66.36↑ 46.98↑ 54.06↑ 3.18 ↑
Residual-UNet FLAIR 43.83 70.85 39.99 52.54 3.45

Residual-UNet-ES FLAIR 45.45↑ 71.58↑ 40.12↑ 53.16 ↑ 3.43↑

Residual-UNet T1Gd,T1 86.06 81.68 77.07 81.60 2.35

T2, FLAIR

MMEF-UNet T1Gd,T1 86.46↑ 83.79↑ 77.50↑ 82.57↑ 2.04 ↑
T2, FLAIR

illustrative results with different fusion methods (con-
catenating fusion vs . multimodal evidence fusion) We also
compared the performance of fusion methods with image concatenation
and multimodal evidence fusion. As we can see from Table 6.4, compared
to any single-modality input, the fusion of multimodal medical images in-
creases the Dice score by a significant amount. Furthermore, the use of the
multimodal evidence fusion module improves the performance in terms
of segmentation accuracy (Dice score) and reliability (ECE) in the subre-
gions of ET, ED and NRC/NET compared to the input-level fusion that
concatenates T1, T1Gd, T2, and FLAIR images as one single input. The
above results demonstrate the effectiveness of our evidence fusion models.

6.4 conclusion

Based on BFT, a multimodal evidence fusion framework considering seg-
mentation uncertainty and source reliability has been proposed for multi-
MRI brain tumor segmentation. The originality of our method is that the
evidential segmentation module performs both tumor segmentation and
uncertainty quantification, and the multimodal evidence fusion module
carries out multimodal evidence fusion with contextual discounting and
Dempster’s rule.

This work is the first to implement contextual discounting for multi-
modal information fusion with BFT and deep neural networks. The contex-
tual discounting operation allows us to take into account the uncertainty
of the different sources of information directly, and it reveals the reliabil-
ity of different modalities in different contexts as well. Our method can
be considered as decision-level fusion and can be used together with any
state-of-the-art feature extraction module to achieve better performance.
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Some limitations of this work remain in the computation cost. We treat
single modality images as independent inputs using independent feature
extraction and evidential segmentation modules, which introduces addi-
tional computation costs compared to image concatenation methods (e.g.,
the FLOPs and parameter numbers are equal to 280.07G and 76.85M for
UNet-MMEF, against 73.32G, and 19.21M for Residual-UNet). In future
research, the refinement of the framework to improve segmentation per-
formance and reduce its complexity will be considered.
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Conclusion and perspective

7.1 conclusion

The issue of uncertainty and reliability of machine learning methods has
recently come to the forefront. It has incited researchers in the medical
image segmentation domain to study both accurate and reliable segmenta-
tion methods [Kwon et al., 2020; Mehrtash et al., 2020; Ghoshal et al., 2021;
Zou et al., 2022]. In this thesis, we studied on medical image segmentation
with a specific focus on segmentation uncertainty and reliability under
the framework of BFT and deep neural networks. In particular, we first
briefly introduced medical image segmentation in Chapter 1 by describ-
ing the context of medical image segmentation, the deep learning medical
segmentation methods and three baseline deep segmentation models. In
Chapter 2, we then summarized the main concepts of BFT, i.e., represen-
tation of evidence, Dempster’s combination rule, discounting, decision-
making and the methods to generate mass functions. In Chapter 3, we
introduced the BFT-based medical image segmentation methods in detail
by grouping them according to the number of input modalities and classi-
fiers used to generate mass functions, and we showed how unreliable or
conflicting sources of information can be combined to reach reliable fusion
results.

Our three main technique contributions have been presented in Chap-
ters 4, 5 and 6. In Chapter 4, we have described a semi-supervised medical
image segmentation model. The main idea is to introduce constraints for
unlabelled data by generating pseudo labels and decrease the uncertainty
caused by the lack of labels by fusing evidence from the probability dis-
tribution and evidence distribution. In Chapter 5, we introduced two evi-
dential classifiers for uncertainty quantification and showed how they can
be used with deep segmentation models to improve segmentation accu-
racy and reliability. In Chapter 6, we presented a multimodal medical im-
age segmentation model that learns the reliability of each modality image
when segmenting different types of tumors. We showed that using contex-
tual discounting when fusing evidence from different modalities allows us
to reach more reliable and explainable results. Our experimental results
show that in many applications, BFT-based methods have the potential
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to outperform probability-based methods by modeling information more
effectively and combining multiple piece of evidence at different stages.

7.2 future work

Despite the advantages of BFT for medical image segmentation, existing
methods still have limitations that need to be addressed. Some directions
for further research are discussed below.

First, acquiring large amounts of labeled training data is particularly
challenging for medical image segmentation tasks and has become the bot-
tleneck of learning-based segmentation performance. The successful appli-
cation of unsupervised basic belief assignment methods to medical image
segmentation points to a new direction to address the problem of lack of
annotated training data. In this thesis, we have applied semi-supervised
learning with BFT to improve the segmentation accuracy when only par-
tial training data are labeled (see Chapter 4). To our best knowledge, there
is no published paper dealing with the combination of unsupervised basic
belief assignment methods with deep learning. The neural-network-based
evidential clustering method described in [Denœux, 2021] and the EKNN
rule with partially supervised learning introduced in [Denœux et al., 2019]
are two steps in these directions. These works provide insights into us-
ing unsupervised or semi-supervised learning to quantify segmentation
uncertainty with unannotated or partially annotated data sets. Future re-
search could study the combination of unsupervised basic belief assign-
ment methods with deep learning to overcome the annotation limitation.

Second, most of the existing BFT-based medical image segmentation
methods still use low-level features and do not fully exploit the advan-
tages of deep learning. Combining BFT with deep segmentation networks
should allow us to develop accurate and reliable segmentation models, par-
ticularly in medical image segmentation tasks for which medical knowl-
edge is available and can be modeled by mass functions. In this thesis,
we have revealed the similarity of ENN and RBF network when acting as
an evidential classifier and integrated both classifiers within a deep seg-
mentation network to improve the segmentation accuracy and reliability
(see Chapter 5). We believe that more promising results will be obtained
by blending BFT with the existing powerful deep medical image segmenta-
tion models, e.g., transformer [Shamshad et al., 2022] and diffusion models
[Kazerouni et al., 2022].

Third, even though the BFT-based fusion methods have considered the
conflict of multiple sources of evidence, a problem remains that multi-
modal medical images may have different degrees of reliability when seg-
menting different type of tumors or organs. Multimodal medical image
fusion may fail if some sources of information are unreliable or partially
reliable for performing various segmentation tasks. In this thesis, we have
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proposed a method to learn reliability coefficients conditionally on differ-
ent segmentation tasks in a deep neural network (see Chapter 6). Another
interesting research direction, accordingly, is to estimate task-specific reli-
ability and enhance the explainability of deep evidential neural networks
using contextual discounting for multimodal or cross-modal medical im-
age segmentation tasks.

We hope our work will increase awareness of the challenges of existing
BFT-based medical image segmentation methods, call for future contribu-
tions to bridge the gap between experimental performance and clinical
application, and develop accurate, reliable, and explainable deep segmen-
tation models.
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(2013). “The design of SimpleITK”. In: Frontiers in neuroinformatics 7,
p. 45 (cited on p. 87).

Ma, Jun (2020). “Segmentation loss odyssey”. In: arXiv preprint
arXiv:2005.13449 (cited on p. 16).

MacKay, David JC (1992). “A practical Bayesian framework for backpropa-
gation networks”. In: Neural computation 4.3, pp. 448–472 (cited on p. 2).

Maddox, Wesley J, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and
Andrew Gordon Wilson (2019). “A simple baseline for bayesian uncer-
tainty in deep learning”. In: Advances in Neural Information Processing
Systems 32 (cited on p. 77).

Makni, N., N. Betrouni, and O. Colot (2014). “Introducing spatial neigh-
bourhood in Evidential C-Means for segmentation of multi-source im-
ages: Application to prostate multi-parametric MRI”. In: Information Fu-
sion 19, pp. 61–72 (cited on pp. 45, 46, 48).

Masson, M.-H. and T. Denœux (2008). “ECM: An evidential version of the
fuzzy c-means algorithm”. In: Pattern Recognition 41.4, pp. 1384–1397

(cited on pp. 31, 34).
— (2009). “RECM: Relational evidential c-means algorithm”. In: Pattern

Recognition Letters 30.11, pp. 1015–1026 (cited on p. 23).
Mehrtash, Alireza, William M Wells, Clare M Tempany, Purang Abolmae-

sumi, and Tina Kapur (2020). “Confidence calibration and predictive
uncertainty estimation for deep medical image segmentation”. In: IEEE
transactions on medical imaging 39.12, pp. 3868–3878 (cited on p. 117).

Mehta, Raghav, Thomas Christinck, Tanya Nair, Paul Lemaitre, Douglas
Arnold, and Tal Arbel (2019). “Propagating uncertainty across cascaded
medical imaging tasks for improved deep learning inference”. In: Un-
certainty for Safe Utilization of Machine Learning in Medical Imaging and
Clinical Image-Based Procedures. Springer, pp. 23–32 (cited on p. 77).

Menze, Bjoern H, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer,
Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes
Slotboom, Roland Wiest, et al. (2014). “The multimodal brain tumor
image segmentation benchmark (BRATS)”. In: IEEE transactions on med-
ical imaging 34.10, pp. 1993–2024 (cited on p. 65).

Mercier, D., B. Quost, and T. Denœux (2008). “Refined modeling of sensor
reliability in the belief function framework using contextual discount-
ing”. In: Information fusion 9.2, pp. 246–258 (cited on pp. 27, 108).



132 bibliography
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