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Introduction

Contents of this course

1 This course is about the theory of belief functions, a formal framework for
reasoning and making decisions under uncertainty.

2 This framework originates from Arthur Dempster’s seminal work on
statistical inference with lower and upper probabilities.

3 It was then further developed by Glenn Shafer who showed that belief
functions can be used as a general framework for representing and
reasoning with uncertain information.

4 Also known as Evidence theory or Dempster-Shafer theory.
5 Many applications in several fields such as artificial intelligence,

information fusion, pattern recognition, etc.
6 Recently, there has been a revived interested in its application to

statistical inference.
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Introduction

Uncertainty

“There are some things that you know to be true, and others that you know to
be false; yet, despite this extensive knowledge that you have, there remain
many things whose truth or falsity is not known to you. We say that you are
uncertain about them. You are uncertain, to varying degrees, about
everything in the future; much of the past is hidden from you; and there is a lot
of the present about which you do not have full information. Uncertainty is
everywhere and you cannot escape from it.”

Dennis Lindley, “Understanding uncertainty”.
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Introduction

Uncertainty in statistics

Uncertainty is a fundamental issue in statistics.
Statistical inference:

Which statements can we make about a population, after observing a
random sample?
How to predict the result of a random experiment?

Approaches:
Frequentists confidence and prediction sets
Bayesian inference
Fiducial inference
Likelihood-based inference
...
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Introduction

Formalization

As a first step towards a formalization of uncertainty, one need to make
some assumptions and define some notations.
We suppose that we are concerned with some question Q, for which
there exists one and only one correct answer X , which is assumed to be
an element of some set Ω, called the frame of discernment.
Assumptions:

1 there is one and only one correct answer, and
2 it is contained in Ω.

The second assumption, in particular, is debatable for some problems.
We will leave aside this difficulty for the moment.
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Introduction

Classical models of uncertainty

Two classical models for expressing beliefs, or uncertain information:
1 Sets (e.g. interval analysis), propositions;
2 probabilities.

Each of these models has methods for
1 Updating beliefs based on new evidence;
2 Measuring information/uncertainty;
3 Converting belief representations from a frame to a finer, or a coarser frame.
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Set-based representation

Set-based representation of uncertainty

Perhaps the simplest way of representing partial knowledge about some
question is as a set A ⊆ Ω that certainly contains the true answer ω.
There is a vast literature on set-membership approaches to uncertainty,
with application, e.g., in computer science and automatic control.
An important special case is interval arithmetics, which includes syntactic
rules to compute with intervals, making it possible to produce rigorous
enclosures of solutions to model equations.
In statistics, a confidence set (region) contains the true value of the
parameter of interest, for some fixed proportion of the samples.
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Set-based representation Updating/combining information

Conjunctive combination

Assume that two sources provide two subsets A and B of Ω, assumed to
contain the answer to the question of interest. How to combine these
pieces of information?

If both sources can be trusted, then it is reasonable to consider that the
true answer is in the intersection of A and B, denoted by A ∩ B, which is
the set containing the elements of Ω that belong to both A and B.
This mode of fusing information is called conjunctive; it is relevant when
all information sources are assumed to be reliable.
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Set-based representation Updating/combining information

Disjunctive combination

However, when A and B are disjoint, i.e., A ∩ B = ∅, this rule leads a
contradiction. In that case, the assumption that the two sources can be
trusted can no longer be valid.
How to combine information in this case?

It is then more cautious to conclude that the true answer is in the union of
A and B, denoted by A ∪ B, which is the set containing the elements of Ω
that belong to A or B.
This is the simplest form of disjunctive rule for pooling information, which
is suitable when at least one of the sources is assumed to be reliable.
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Set-based representation Measuring information/uncertainty

Comparing information content

Consider two statements: “X ∈ A” and “X ∈ B”, where A,B ⊆ Ω.
The statement “X ∈ A” is more precise/specific/informative than “X ∈ B” if
A ⊆ B.
We thus have a way to compare the information content of two pieces of
information about the same variable X .
How to measure quantitatively the information content of such
statements?
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Set-based representation Measuring information/uncertainty

Measuring uncertainty

Assume we receive some piece of information of the form X ∈ A for some
non-empty subset A of Ω.
The amount of uncertainty associated with that statement can be
measured by the amount of information needed to remove the
uncertainty.
Such a measure should naturally be a function of the cardinality of A. Let
h : N→ [0,+∞) be such a function.
Requirements:
(H1) Monotonicity h(s) < h(s + 1).
(H2) Normalization h(2) = 1.
(H3) Additivity h(r · s) = h(r) + h(s).
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Set-based representation Measuring information/uncertainty

Measuring uncertainty
Meaning of H3

Consider a partition of Ω into r subsets of s elements.
Characterizing an element of Ω requires the amount h(r · s) of
information.
However, we could also proceed in two steps: first, we could characterize
the subset to which the element belongs (requiring an amount h(r) of
information, and then characterize the element in this subset (with
required information h(s)).
The equivalence of the two methods leads to Axiom H3.
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Set-based representation Measuring information/uncertainty

Hartley function

It can be shown that the only function h verifying these three axioms is
defined by

h(n) = log2 n.

The function H : 2Ω \ ∅ → [0,+∞) defined by

H(A) = log2 |A|

is called the Hartley function.
It is a measure of the uncertainty of the statement “X ∈ A”. Its range is
[0, log2 |Ω|].
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Set-based representation Projection, extension

Cartesian products, relations

Let us now assume that we have two questions of interest, whose true
answers are denoted by X and Y (X and Y may be called variables).
Let ΩX and ΩY be the sets of possible values for X and Y . To represent
information about the values that X and Y may take jointly, we need to
place ourselves in the Cartesian product ΩX × ΩY , denoted more
concisely by ΩXY , and defined as the set of ordered pairs (x , y) of an
element of ΩX and an element of Ωy .
A subset of R of ΩXY is called a relation. It can be used to represent a
constraint on the values that X and Y may take jointly.
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Set-based representation Projection, extension

Projection

Let R be a relation on ΩXY .
The projection of R onto ΩX , denoted by R ↓ ΩX , is the subset of ΩX
containing all x ∈ ΩX such that (x , y) ∈ ΩXY for some y :

R ↓ ΩX = {x ∈ ΩX |∃y ∈ ΩY , (x , y) ∈ R}.

ΩX	

ΩY	

R	A
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Set-based representation Projection, extension

Cylindrical extension

Conversely, let A be a subset of ΩX . There are many subsets of ΩXY
whose projection on ΩX is A. The largest one is

A ↑ ΩXY = A× ΩY = {(x , y) ∈ ΩXY |x ∈ A}.

It is called the cylindrical extension of A in ΩXY .

		

ΩX	

ΩY	

A A	x	ΩY	
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Set-based representation Projection, extension

Reasoning with relations

Assume that we get
Evidence that X belongs to a subset A of ΩX ;
Evidence about the values that X and Y can take jointly, represented by a
relation R ⊆ ΩXY .

What can we deduce about Y?
Let B denote the set of possible values for Y . It is clear that

B = {y ∈ ΩY |∃x ∈ A, (x , y) ∈ R} = (R ∩ (A ↑ ΩXY )) ↓ ΩY

ΩX	

ΩY	

R	A

B
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Probabilistic representation

Basic definition

Let us first assume the frame Ω to be finite. A probability mass function
on Ω is a mapping p : Ω→ [0,1] such that∑

ω∈Ω

p(ω) = 1.

The mass P(A) assigned to A ⊆ Ω is called the probability of A,

P(A) =
∑
ω∈A

p(ω),

and the mapping P : 2Ω → [0,1] is called a probability measure.
It verifies the following properties,

1 P(Ω) = 1;
2 For all elements A and B of 2Ω such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).
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Probabilistic representation

Finitely additive probabilities (general case)

Let Ω be a set and A ⊆ 2Ω an algebra of subsets of Ω, defined as
non-empty collection of subsets of Ω (called events), closed under
complementation and finite union, i.e., for all A and B in A, A ∪ B ∈ A.
We can remark that Ω necessarily belongs to A.
A finitely additive probability measure on (Ω,A) is a function P from A to
[0,1] such that

1 P(Ω) = 1;
2 For all elements A and B of A such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

Stricter notions: σ-algebra, countably additive probability measure.
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Probabilistic representation

Interpretations of probabilities

The mathematical model briefly described above may be used to
represent different aspects of the real world.
In particular, it can be used to represent

objective properties of random experiments (limits of frequences), or
subjective degrees of belief.

Question: why should degrees of belief be additive?
There are some arguments, but not very compelling. Alternative theories
of uncertainty exist, in which the additivity axiom is replaced by some
weaker axiom.
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Probabilistic representation Conditioning

Bayes’ conditioning

Let P be a probability measure on Ω representing your beliefs about
some question. Assume that you learn that the truth lies for sure in some
subset E ⊂ Ω. How should you update your beliefs to account for this
new information?
If P(E) > 0, then you can construct a new probability measure P∗

represent your new belief state after receiving the new information.
Assume that you impose the following requirements on P∗

1 P∗(E) = 1.
2 For all A,B ⊆ Ω, P∗(B) = 0 if P(B) = 0, and

P∗(A)

P∗(B)
=

P(A)

P(B)
if P(B) > 0.

The only probability measure verifying these requirements is

P∗(A) = P(A|E) =
P(A ∩ E)

P(E)
, ∀A ⊆ Ω.
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Probabilistic representation Conditioning

Jeffrey’s conditioning

Jeffrey (1965) proposed to extend Bayes’ rule as follows. Let E1, . . . ,En
be a partition of Ω.
Assume that you receive some new evidence, and the effect of that
evidence does not go beyond changing your degrees of beliefs about
E1, . . . ,En. Let q1, . . . ,qn be these degrees of belief.
We thus want to construct an updated probability measure P∗ such that
P∗(Ei ) = qi , and P∗(A|Ei ) = P(A|Ei ) for all A ⊆ Ω and i = 1, . . . ,n.
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Probabilistic representation Conditioning

Jeffrey’s conditioning (continued)

The unique solution is

P∗(A) =
n∑

i=1

P(A|Ei )qi .

Bayes’ rule is recovered as a special case with (E1,E2) = (E ,E), q1 = 1
and q2 = 0.
This operation is called Jeffrey’s conditioning. It is a mechanism for
updating probabilistic knowledge in light of uncertain evidence.
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Probabilistic representation Measuring uncertainty

Shannon entropy

Let I(p) be a measure of how much information is acquired due to the
observation of an event with probability p. Requirements:

I(p) ≥ 0 – information is a non-negative quantity
I(1) = 0 – sure events do not communicate information
I(p1p2) = I(p1) + I(p2) – information due to independent events is additive

The unique solution is I(p) = log(1/p).
For a mass function p : Ω→ [0,1], the Shannon entropy is the expected
information,

S(p) = −
∑
ω∈Ω

p(ω) log p(ω)

It is a measure of the uncertainty in p.
It ranges from 0 to log(|Ω|) (uniform distribution).
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Probabilistic representation Measuring uncertainty

Maximum entropy principle

The maximum entropy (ME) principle is, when a probability distribution is
partially specified, to choose the one with the largest entropy.
It is a principle of maximum uncertainty
In particular, we we do not know anything, we get the uniform distribution.
This is also known as the Principle of Indifference (PI).
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Probabilistic representation Marginalization
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Probabilistic representation Marginalization

Marginalization

Assume that we have two finite frames of discernment ΩX and ΩY for two
different questions. Let PXY be a probability measure on ΩXY = ΩX × ΩY
with probability mass function pXY .
The marginal probability mass function on ΩX is pXY↓X defined by

pXY↓X (x) = PXY ({x} × ΩY ) =
∑

y∈ΩY

pXY (x , y).

Marginalization plays the same role as projection in the set-membership
setting.
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Probabilistic representation Marginalization

Recovering a joint distribution from marginals

The inverse operation of marginalization is recovering a joint distribution
from a marginal.
Specifically, let pX be a probability mass function on ΩX . Problem: find a
joint distribution pXY on ΩXY such that pX = pXY↓X .
There are infinitely many solutions. The solution given by the ME
principle is obtained by maximizing S(pXY ) under the constraints∑

y∈ΩY

pXY (x , y) = pX (x), ∀x ∈ ΩX .

Solution:
pXY (x , y) =

pX (x)

|ΩY |
.

Thierry Denœux (UTC/HEUDIASYC) Theory of belief functions: Preliminaries BJUT, June 2016 36 / 41



Probabilistic representation Marginalization

Expression of set-valued information using
probabilities

Assume that we receive information in the form X ∈ A.
Can we express this information as a probability mass function pX ?
PI: the best translation is the uniform distribution,

pA(x) =
1A(x)

|A|
∀x ∈ Ω.

For any A ⊆ Ω, the Hartley measure H(A) is equal to the Shannon
entropy of the uniform probability distribution pA on A.
However, we face some paradoxes.
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Probabilistic representation Marginalization

The wine/water paradox

There is a certain quantity of liquids. All that we know about the liquid is that it
is composed entirely of wine and water, and the ratio of wine to water is

between 1/3 and 3.

What is the probability that the ratio of wine to water is less than or equal to 2?
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Probabilistic representation Marginalization

The wine/water paradox (continued)

Let X denote the ratio of wine to water. All we know is that X ∈ [1/3,3].
According to the PI, X ∼ U[1/3,3]. Consequently

P(X ≤ 2) = (2− 1/3)/(3− 1/3) = 5/8

Now, let Y = 1/X denote the ratio of water to wine. All we know is that
Y ∈ [1/3,3]. According to the PI, Y ∼ U[1/3,3]. Consequently

P(Y ≥ 1/2) = (3− 1/2)/(3− 1/3) = 15/16

However, P(X ≤ 2) = P(Y ≥ 1/2)!
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Probabilistic representation Marginalization

Need for a unified framework

The reason for the wine/water paradox is that, if X has a uniform
distribution on some set A, and if f is a nonlinear mapping, f (X ) does not
have, in general, a uniform distribution on f (A).
However, if we only know that X is in A, we only know that f (X ) is in f (A).
This argument shows that set-valued information cannot be adequately
represented by a probability measure.
We thus need a formalism that allows us to represent both set-valued
information and probabilistic information in the same setting.
Two approaches:

1 Define sets of probability measures (Imprecise Probability)
2 Assign probabilities to sets (Belief Functions)
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Probabilistic representation Marginalization

Theory of belief functions
Main idea

The theory of belief functions extends both the set-membership approach
and Probability Theory

A belief function may be viewed both as a generalized set and as a non
additive measure
The theory includes extensions of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection, union, inclusion,
etc.)

Dempter-Shafer reasoning produces the same results as probabilistic
reasoning or interval analysis when provided with the same information
However, the greater expressive power of the theory of belief functions
allows us to represent what we know in a more faithful way.
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