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Abstract—We present a methodology based on Dempster-
Shafer theory to represent, combine and propagate statistical and
epistemic uncertainties. This approach is first applied to estimate,
via a semi-empirical model, the future sea level rise induced by
global warming at the end of the century. Projections are affected
by statistical uncertainties originating from model parameter
estimation and epistemic uncertainties due to lack of knowledge
of model inputs. We then study the overtopping response of
a typical defense structure due to (1) uncertain elevation of
the mean water level and (2) uncertain level of storm surges
and waves. Statistical evidence is described by likelihood-based
belief functions while imprecise evidence is modeled by subjective
possibility distributions. Uncertain inputs are propagated by
Monte Carlo simulation and interval analysis and the output
belief function can be summarized by upper and lower cumulative
distribution functions.
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I. INTRODUCTION

Defense structures such as dikes (Figure 1) are designed to
defend from flooding under extreme hydrographic conditions.
Among the functional performance criteria, wave overtopping
discharge is commonly chosen as a design parameter. Wave
overtopping is mainly caused by conjunctions of water levels
and waves whose extreme combinations at the toe of the
structure lead the water to reach and pass over the crest of
the wall. This causes flooding with undesirable economic,
environmental and social consequences. Commonly, the design
critical threshold is the centennial return period discharge,
defined as the overtopping discharge level that occurs on
average once every 100 years.

Flood exposure may significantly increase in the future due
to the mean sea water level (SWL) rise, a direct consequence
of global warming. Indeed, the climate scientific community
expects the global elevation of the seas by the end of the 21st
century to range between 30 cm and 200 cm [21], [26]. Given
that the typical design life of a coastal defense structure is
100 years, the projected elevations could have a critical impact
on the performance of the existing dikes. Long term planning,
mitigation schemes and comprehensive risk analyses thus need
to take the sea level rise (SLR) into account to minimize future
impacts on coastal infrastructures [27].
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The design wave overtopping in a context of changing
climate cannot be deterministically predicted due to many
uncertainties. The inherent variability of some of the hydraulic
parameters (waves, surges) and the imprecision of some others
due to limited knowledge (mean SLR) or to poor samples are
the primary sources of uncertainty. One can further mention
the approximations in modeling the overtopping process. The
aggregation of these uncertainties may lead to severe impreci-
sion in the model output. If not accounted for, such uncertainty
may result in unreliable design and, consequently, unexpected
losses.

Uncertainty analysis is becoming a fundamental part of
flood risk analyses [2], [25], [37]. Aleatory (or objective)
uncertainty arises from the variability of natural phenomena
while epistemic (or subjective) uncertainty results from incom-
plete knowledge about the system; it can then be reduced by
collecting additional data. Whereas probabilistic models can
naturally handle aleatory uncertainty, their use for modeling
epistemic uncertainty is more debatable. In particular, there
exist many situations where the available information is incom-
plete and not rich enough to allow a full probabilistic analysis.
A probabilistic representation is then general unfaithful as it
hides the imprecision pervading the data and the true state
of knowledge by making subjective assumptions (the choice
of a uniform the prior, for instance, in the case of total
ignorance). Lately, alternative uncertainty models have been
advocated in situations of vagueness and imprecision. One can
mention Imprecise Probabilities [38], Possibility theory [12],
[40] and Dempster-Shafer (DS) theory [8], [31]. All these
well-established theories have proved suitable for modeling
uncertainty in diverse types of applications and risk analyses
[33].

In this paper, we address the modeling of uncertainties
on hydrographic inputs and analyze their effect on a typical
structure’s response in a context of changing climate. Un-
certainty mainly arises from partial knowledge of the future
mean SLR induced by the global warming and from statistical
estimation of waves and surges parameters. The DS framework
will be shown to be suitable for representing both kinds of
uncertainties. The rest of the paper is organized as follows. In
the next section, we first lay down the theoretical foundations
of this work by recalling basic definitions of DS theory and
discussing in some details its application to statistical infer-
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Fig. 1. A typical defense structure and the main overtopping inputs.

ence via likelihood-based-belief functions. The semi-empirical
model proposed by Vermeer and Rahmstorf [36] to derive SLR
projections is briefly presented in Section III. In section IV, we
describe in more details the overtopping process, its drivers and
the methodology used to estimate the design parameter given
input uncertainty. Section V concludes the paper.

II. THE DEMPSTER-SHAFER FRAMEWORK

The reader is assumed to be familiar with belief functions
on finite domains [31]. The background on random intervals
and likelihood-based belief functions will be recalled in Sub-
sections II-A and II-B, respectively.

A. Closed random real intervals

Random closed intervals on the real line constitute a simply
yet sufficiently general framework for expressing beliefs on a
real variable. Let (€2, A, P) be a probability space and (U, V) :
) — R a two dimensional random vector such that U < V
almost surely. Let I be the multi-valued mapping that maps
each w € ) to the closed interval [U(w), V(w)]. This setting
defines a random interval, as well as belief and plausibility
functions defined, respectively, by:

Bel(A) = P{w € ;[U(w),V(w)] C A}) (1)
and
Pl(A) = P{w e % [U(w), V(W) NAZ£0}), ()

for all measurable subset A of the real line. The contour
function pl is defined by pl(x) = Pl({z}) for all x € R. The
intervals [U(w), V(w)] are referred to as the focal intervals.

A special case of interest is that of consonant random
closed intervals defined as follows (see Figure 2). Let 2 =
[0,1] and 7 : R — [0,1] be a function, such that, for every
w e

I'w) = {z € Rjn(z) > w} 3)

is a closed interval [U(w), V(w)], called the w-level cut of 7.
Let P denote the Lebesgue measure on 2. Then, [U,V] is
a random closed interval and 7 is its contour function, i.e.,
pl(x) = w(x) for all x € R. Such a random interval is said
to be consonant because its focal intervals are nested. The
intervals I'(1) and {z € R, 7(x) > 0} are called, respectively,
the core and the support of .

T(x)4

T{w)

U(w) V(w)

Fig. 2. Random closed intervals induced by a contour distribution.

B. Likelihood-based belief functions

Assume that we have observed a realization x of random
variable X with probability density function p(x,#), where
6 € O is an unknown parameter. The parameter inference
problem can be addressed using a Bayesian approach, which
assumes the existence of a prior probability distribution on
O, or using a frequentist approach based on the concept
of repeated sampling, which relies on hypothesis tests and
confidence intervals. A third approach based only on the
likelihood function was first suggested by Fisher [17] and later
developed in [6], [35] and [13]. A comprehensive survey of
likelihood-based methods and their applications was provided
by Severini [30].

According to Fisher [17, p. 70], “in the theory of estima-
tion, it has appeared that the whole of the information supplied
by a sample is comprised in the likelihood, as a function known
for all possible values of the parameter”. This view suggests
that the information about the unknown parameter € is entirely
comprised in the likelihood, defined by L(6;z) = p(z;6) for
all  in ©. More precisely, the likelihood principle states that,
within the framework of a statistical model, all the information
provided by the observations concerning the relative merits of
two hypotheses is contained in the likelihood ratio of these
hypotheses on the data. In statistical parlance, the relative
likelihood ratio is often referred to as the relative plausibility
which suggests translating it in the belief function framework

as follows: 16y ) L(:6)
piiv1; T ;U1

= 4

pl(62; ) @

L((E; 92)
for all (61,6,) € ©2 Equivalently, the likelihood principle
implies that:

pl(0;z) = cL(x;0) Q)

for all # € © and some positive c. The least commitment
principle [11] then leads us to giving the highest possible value
to constant c, i.e., defining pl as the relative likelihood:

L(6;2)

sup L(60;x)"
(4C]

pl(0;x) = (6)

The associated plausibility measure is given for every A C O
by:

sup L(0; )
PIl(A;x) = sup pl(6; x ELS — 7
(4; ) eegp( ) ;‘ugw;x) )
€

The corresponding dual measure is referred to the likelihood-
based belief function. Equation (7) was first proposed by



Shafer in [31]. It was later justified by Wasserman [39] and in
a different way by Denceux [11], on an axiomatic basis.

Let us now assume that the parameter vector can be written
as 8 = (601,02) € O1 X Oy, where 02 is considered as a
nuisance parameter. The likelihood-based plausibility of 8 is
in this case equal to the relative profile likelihood obtained by
marginalizing out the nuisance parameter:

pl(01;x) = sup pl(b1,0q; ). (8)
02€0,

ITI. SEA LEVEL RISE ASSESSMENT

A challenging issue when taking into account future SLR
in coastal risk analyses is to address the large uncertainty
on climate projections delivered by the scientific community.
Indeed, the scientific evidence regarding the SLR is very
disparate and highly uncertain, due to the large number and
the complexity of inherent processes (thermal expansion, ice
sheets melting, mountain glaciers and ice caps melting) in-
volved in the elevation of oceans. Projections range from 0.18
m to 2 m based on physical arguments. The last Assessment
Report of the Intergovernmental Panel on Climate Change
(IPCC) [21] produced estimates ranging from 0.18 to 0.59 m
by the end of the century, relative to the two last decades
of the previous century. These projections were based on
Atmosphere-Ocean General Circulation Models (AOGCMs),
which do not include all relevant dynamic ice processes. In
the last decade, the semi-empirical approach, pioneered by
Rahmstorf [28], was proposed as a pragmatic alternative to
physics-based models. Semi-empirical models provide higher
projections than the IPCC: the last dual model proposed by
Vermeer and Rahmstorf [36] linking changes in global average
near surface temperature and mean sea level yields the range
[0.7 m, 1.7 m]. Physics-based studies such as Pfeffer [26] have
proposed 2 m as an upper bound for SLR in 2100.

Two major approaches for integrating climate change in
flood risk analyses are advocated in the literature. The first
one is a typical scenario approach: it consists in estimating
exposure and risk for a defined set of scenarios that cover
the main situations. Commonly, a mean or an extreme (pes-
simistic) scenario [7] is considered. However, this deterministic
approach may not consider the most relevant scenarios and
may lead to erroneous extreme decisions [27]. A more robust
approach tries to identify a plausible probability distribution
describing the range of sea level projections existing in the
literature. By inferring a simple triangular probability distribu-
tion over the IPCC last projections [21], Purvis [27] compared
both approaches and showed that assessing the risk using the
most plausible SLR scenario may significantly underestimate
floods monetary losses as it fails to account for the impact of
low probability, high consequence events. Purvis pointed out
the sensitivity of the risk analysis results to the (subjective)
choice of the probability distribution. We may also mention the
sensitivity of this approach to the chosen piece of evidence. A
more rigorous analysis would have combined different experts’
projections and accounted for more extreme scenarios than the
moderate IPCC ones. Indeed, in the last decade, measurements
have shown that oceans were rising 60 percent faster than the
IPCC’s latest best estimates: while the IPCC projected sea-
level rise to be at a rate of 2 mm per year in the previous
decade, satellite data recorded a rate of 3.2 mm per year

[29]. Recently, an expert elicitation study [3] has confirmed
that the last IPCC projections are underestimated; it provided
projections closer to semi-empirical models responses.

Considering these two remarks, it seems more rigorous
to address the issue of the projections in the SLR in risk
analyses by considering (1) semi-empirical models and (2) a
more flexible uncertainty framework than probabilities. In this
paper, we consider as SLR evidence the semi-empirical model
proposed in [36].

A. Semi-empirical SLR model

The semi-empirical approach is based on linking a driver
that can be predicted with a relative confidence (Temperature,
CO4 projections...) to the response of interest, here the mean
sea level or the rising rate, via a simple model. The relationship
is tested and the model fitted on the observed data. Rahmstorf
[28], [36] proposed a semi-empirical model, denoted RV09 in
the following, that links the mean global temperature (one of
the more accurate and best assessed variables in AOGCMs)
to the mean SLR: it is a dual model with two time scales
describing long and instantaneous responses:

dH dr

- a(T—Tp)+b TR ©)]
where H stands for the global mean sea level, a is a proportion-
ality coefficient, b is the instantaneous response proportionality
coefficient, 7" is the global temperature anomaly with respect
to 1950-1980 and Tj the previous equilibrium temperature.

Rahmstorf derived SLR projections for the coming century
by applying his fitted model to IPCC temperature projections.
His projections range between 70 cm to 170 cm, for different
emission scenarios defined by the IPCC. Two major sources of
uncertainty pervade these sea level projections: the first one is
related to the statistical error of the fit and the second is related
to the model input, i.e., the future temperature projections. We
propose to address both uncertainties in the DS framework.

1) Constructing a belief function on temperatures projec-
tions: The TPCC last Assessment Report used 19 AOGCMs
which differ in their formulations of physical processes in the
atmosphere, ocean, sea ice and land components and three
carbon cycle feedback schemes. Projections are represented
by a global average trajectory computed as the mean of the
AOGCMs’ responses and using the standard carbon cycle
setting, as well an upper and lower bounds of the envelope of
all the circulations models and carbon cycles. Figure 3 shows a
reproduction of the [PCC temperature projections, shifted wrt
to 1950-1980 average, for the specific A1B emission scenario.
This scenario describes a future world of very rapid economic
growth, global population that peaks in the mid-century and
declines thereafter, and the rapid introduction of new and more
efficient technologies, with a balance across all energy sources.

Since no information is available on the likelihood of each
of the AOGCMs, a deterministic or probabilistic combination
of these projections would not be justified. To avoid selection
error, a comprehensive characterization of the projections
should consider the outer envelope of the IPCC published
estimations for every scenario. Hence, for every year ¢ in the
2000-2100 time span, the information available is composed
of mean (1}), lower (I';) and upper (1';) values. The nature
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Fig. 3. Reproduction of IPCC temperature anomalies (wrt 1950-1980)
projections for A1B scenario.

Fig. 4. Membership functions and w-level cuts of the IPCC projected
temperature anomalies (wrt 1950-1980) in 2000 (in dotted line), 2060 ( dashed
line) and 2100 (continuous line).

of the available evidence suggests representing the annual
temperature projections T; by a belief function verifying
Bel([T,,T¢]) = 1 and PI({T:}) = 1 (see previous section).
In the absence of more precise information, consonant random
intervals with core T3 and support [T,,7T:] are a natural
representation. The associated contour function 7 is defined
by:

1 z="1T;
z—T,
w(z) = ‘Zs(Tt—L) I, <z Szt (10)
o(7=r) Ti<w<T,
0 otherwise,

where ¢ is a continuous, non-decreasing function from [0, 1]
into [0, 1] such that ¢(0) = 0 and ¢(1) = 1.

The form of function ¢ is not crucial. In a previous paper
[5], we have addressed the issue of the choice of the contour
function shape in representing different experts’ opinions on
the SLR. Sensitivity analyses have shown that, provided the
core and the support remain the same, the shape of the contour
function has a negligible impact on the response of interest. In
this analysis, we consider a linear function ¢. Figure 4 shows
the contour functions 7 describing the available evidence on
the temperature anomaly in, respectively, 2000, 2060 and 2100,
as well as the w-level cuts, I'(w), for a given w € [0, 1].

2) Constructing a belief function on the model parameters:
The SLR model fitting was processed with an approach similar
to the one used in [36]. Annual means of sea level and
temperature anomaly data (wrt to 1950-1980) over the 1881-
2000 period (i.e. 120 years), were first smoothed with a 15-
years smoothing filter in order to remove the low frequency
variability (interannual to decadal time scale) unrelated to

the climate signal. A statistical regression based on the least
square estimations was then performed to infer the best fitting
model parameters, a, b and Tj. A subtle difference to mention
between our approach and Rahmstorf’s is that we fit the model
at annual temporal resolution (and not 5-years bins as in [36]).
Annual residual errors 7;(i = 1 : 120) between the observed
sea level rates and the estimated ones (via RV09) were
first computed. Residuals were assumed, for computational
convenience, to be independent and normally distributed with
a constant known variance o2. Under this hypothesis, the
likelihood function defined on the joint parameters space of
the model parameters a, b and T is given by:

1 1 120
L(a,b,To;'l"z’) = Wexp <_M T?) . (11)

=1

Our aim is to infer the model parameters from the available
data. We address this inference issue with the likelihood-based
approach described in Subsection II-B. By combining (11) and
(6), the joint contour function on the RV09 joint parameters
space is obtained by the following equation:

L(CL, b7 TO; Ti)

— , 12

pl(aa ba TO) =

where a, E, TO are the maximum likelihood (ML) estimates of
a, b and Ty, respectively.

The joint contour function has an ellipsoidal shape. Figure
5a shows the joint contour function pl(a,b) obtained by
marginalizing (12) over Ty. Each ellipse corresponds to a
plausibility level. The marginal contour function of parameter
b, pl(b), is derived by an additional marginalization of pl(a, b)
over parameter a and is plotted in Figure 5b.

B. Propagating belief functions through the RV09 model

We have constructed two independent random intervals en-
coding evidence on the RV09 model parameters and the model
temperature input, denoted by (21, P;,T'1) and (Qg, P2, T's),
respectively. The combined evidence on the SLR model re-
sponse at the end of the century is denoted by (2, P,T") with
Q = Q; x Qs. The analytical expressions of the plausibility
(Pl) and belief (Bel) functions on €) are difficult to derive,
but they can be approximated using Monte Carlo simula-
tion. The algorithm is as follow. An ii.d. random sample
(w1, 1), ...(wn, an) is generated by sampling a [0, 1] uniform
distribution. Then, for ¢ = 1...N:

1)  Derive the w;-level cuts on each of the consecutive
annual temperature plausibility: T (w;), for every ¢ €
[2000, 2100] (as shown in Figure 4);

2)  Derive the ay-level-cuts on each of the RV09 param-
eters contour function: T'%(a;), [5(c;) and T'5°(cv;);

3)  Propagate the focal elements through (9) and derive,
by interval calculations, the SLR response at the end
of the century [U;, V;].

The Bel and P! functions induced by (€2, P,T") can then be
approximated for every subset I by:

Bel(I) = %card{l <i<N|U,V;JCI}  (13)
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Fig. 5. (a) Joint contour plausibility pl(a, b). (b) Marginal contour function
pl(b) and an a-level cut on b parameter

PI(I) = %card{l <i < N|U,VINT#0}.  (14)

The cumulative belief and plausibility of the SLR at the end
of the century are calculated for intervals I =] — oo, z]. The
upper (plausibility) and lower (belief) cumulative distribution
functions (cdfs) can be seen as upper and lower envelopes of
the set of all cdfs compatible with the available information on
the model parameters and inputs. Figure 6a shows the results
of three cases: dotted curves represent the case where only
the uncertainty in the model parameters is propagated while
the model input is deterministic and corresponds to the mean
temperature estimates (the bold curve in Figure 3). The upper
curve is for plausibility, whereas the lower one is for belief.
Dashed lines represent the results when the projections are
calculated with the best estimates values of RV09 parameters
and random intervals on the temperatures. The bold lines
correspond to the results when both uncertainties are combined
as explained above. The discontinuous vertical line indicates
the deterministic (mean temperature projections, best estimates
parameters) results. We can see from these plots that the
uncertainty on SLR accounts for most of the uncertainty on the
projected temperatures. However, statistical uncertainty related
to model fitting is also important. An alternative description
of the derived evidence on the SLR at the end of the century,
by the means of the contour plausibility, is plotted in Figure
6b. The RV09 deterministic estimation of the future SLR in
2100 is 110 cm. However, by allowing the model inputs and
the parameters to take less plausible (but possible) values than
the best estimates, the model response can reach much higher
values, as shown in Figure 6b.
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Fig. 6. (a) Cumulative Plausibility and Belief, (b) contour plausibility of the
SLR at the end of the century (wrt 1990).

IV.  OVERTOPPING HAZARD UNDER CLIMATE CHANGE
A. Methodology for overtopping discharge estimation

Commonly, structures are designed to withstand centen-
nial overtopping, i.e., overtopping that occurs on average
once every 100 years. This level needs to be determined by
extrapolation, as historical measures of the hazards, when
available, rarely exceed some decades. In reality, measures
exist more often for the sea drivers rather than for the hazard
itself. Different methods are available for the prediction of
overtopping under given sea conditions. A commonly used one
is based on empirical methods that relate the mean overtopping
discharge ¢ (the total volume of overtopped water per unit
of length in a certain duration (m®s~'m~1!)) to the main
sea conditions and structure parameters. The EurOtop Manual
[14], a reference guideline in coastal engineering, proposes the
following expression:

q= 0.21 \/ gHToe3
R, )
;15

e (_ Hroeysy5(0.33 + 0.022)

where Hr,. is the significant wave height at the toe of the
structure, obtained by applying propagation models to the
offshore wave height (H); &y is the breaker parameter, which
characterizes the breaking wave behavior; g is the gravitational
constant; vy, and yy are characteristics the structure and R,
is the crest freeboard (see Figure 1), whose height is defined
relatively to the sea water level (SWL). The SWL is composed
of the mean sea water level, tide and surge (S) components.

Tides are the fall and rise of sea levels induced by the
combined effects of the gravitational forces exerted by the



moon, the sun and the rotation of the Earth. Tidal behavior
is said to be semi-diurnal when there are two almost equal
high tides (HT) per day, or equivalently, 706 high tides
yearly. Surges are induced by the rise of sea level due to
high wind and barometric pressure changes during storms;
they occur often with high waves. Positive surges and waves
when combined with high tides cause extreme sea water levels
that may lead to important overtopping (15). Contrary to the
astronomical component, which is entirely predictable over a
nodal cycle of 18.6 years, the weather components are aleatory.
Typically, there is only a modest correlation between waves
and total water levels, because the predominant astronomical
tidal component of water level is not related to the local
weather conditions. On the contrary, dependence between
surges and waves is expected, since both are related to the same
weather conditions [20]. Dependence is more likely at extreme
levels. It is challenging to account for it when estimating the
overtopping events.

The procedure to estimate the variable of interest, denoted
by ¢'%9, is the following: (1) from the available bivariate obser-
vations of storm surges and waves, characterize the dependence
structure (for this we resort to copulas as a multivariate
statistical model), (2) generate in the joint distribution a richer
set of conjunctions with more extreme events than those in
the original sample, (3) transform the wave-surge conjunctions
into wave-SWL conjunctions by shifting the surge level by
the tide and the mean water levels, (4) evaluate the associated
overtopping for each of the simulated wave-SWL pairs and
finally (5) estimate gipp as the (1 — ﬁ) quantile of the
overtopping distribution. To account for the effect of the
climate change on the design criteria, the mean water level
needs simply to be shifted positively by the SLR in step (3).

B. Application and results

The design overtopping under climate change was esti-
mated considering the uncertainty on the main drivers: the
future SLR (subjective uncertainty) and the storm components
(aleatory uncertainty). Both uncertainties were modeled within
DS theory. The methodology was applied to a typical dike in
Le Havre, France. This site is characterized by a semi-diurnal
tide behavior: hence, overtopping is likely to occur when high
tides and storm waves and surges occur simultaneously. The
dike has the following properties: CR = 14m, o =0 = 1.

First, storm events were selected from the available
datasets. They correspond to wave-surge conjunctions such that
both variables exceed a storm threshold. The Havre hydrologic
dataset covers 21 years of measurements. Storm waves (H)
and surges (S) were sampled from the dataset as the values
exceeding, respectively, 2.25 m and 0.27 m storm thresholds.
A total of 292(n) conjunctions ((H;,S;), i = 1..n) were
picked. Given the sampling method (Peaks Over Threshold),
the Extreme Values theory (EVT) [19] suggests the use of
the Generalized Pareto Distribution (GPD) for modeling both
marginals. Recall that the GP cumulative distribution function
of a random variable X exceeding a threshold u is given by:

Fy(z,8)=1- <1+5(°””0‘”))_5, (16)

where 5 = (£, o) is the vector of shape and scale pa-
rameters.We selected the Gumbel Copula to model the joint

probability of storm wave surge conjunctions, as it is directly
related to multivariate extensions of extreme value theory. It
has the following expression V(u,v) € [0,1]2:

C(u,v) = exp[—(—nw)’ + (= mv)’]s], (A7)

where 6 > 1 is the copula parameter that captures the intrinsic
dependence between the marginal variables.

To infer the distribution parameters, we used the Inference
Function for Margins (IFM, [22]), a parametric inference
technique. The IFM method is a two step method that relies
on the split of the parameters into specific parameters for
marginals and common (or association) parameters for the cop-
ula. It was shown that the IFM performs well when marginal
distributions fit well the data [41]. Statistical goodness of
fit tests have shown that there is no mis-specification of the
marginal distributions (see Figure 7a for the wave parameter).
The use of the IFM as a estimation technique is thus justified.
First, the ML estimates were computed for each margin; then,
the association parameter was estimated given the marginal
best estimates. The likelihood function in the second step of
the IFM is given by:

L(97317327Hi75i):HfH,S(Hi>Si)7 (18)

i=1
with:

fr.s(Hy, Si) = ¢(Fu(H;, B1), Fs(Si, Ba))
< fu(Hi, B1) - fs(Si, B2), (19)

where ¢ is the Gumbel copula density, B1 and B, are the
ML estimates of, respectively, waves and surges GP marginals
parameters.

To model statistical uncertainty on the waves and surges
conjunctions, we applied the likelihood-based inference
method described above to estimate the copula parameter. By
combining (18) and (6), we derived a contour function on 6
(Figure 7). We thus constructed a random interval (Q3, P5, ')
encoding evidence on the copula parameter (or equivalently,
on the joint behavior of waves and surges). Each of the
uncertain inputs of interest was constrained by a random
set: (23, P3,T'3) for the aleatory hydrological variables and
(Q, P,T") for the imprecise SLR (in previous section).

Both random sets were combined and propagated through
(15) using the Monte Carlo technique described in Subsection
III-B. Belief and plausibility measures on ¢'°° were then
approximated by (13)-(14).

Two cases were considered: first, we accounted only for
the statistical uncertainty of the overtopping input variables,
and we forced the model with a constant SLR of 1m. The
cumulative plausibility and belief of the derived centennial
overtopping are plotted in Figure 8 (dotted lines). In bold,
we represent the same measures in the case where the SLR
is uncertain and described by the DS structure constructed in
the previous section. Clearly, most of the imprecision on the
design variable estimate is due to the SLR component rather

than the statistical uncertainty of waves-surges conjunctions.
Let us consider the critical value: ¢* = 0.1m3s~'m~! and
analyze the effect of the representation of the SLR component
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on the probability of exceeding this value. We can see from
Figure 8 that a deterministic approach integrating the SLR
can highly underestimate the likelihood of exceeding a critical
extreme threshold: if the 1m scenario is used, the probability
of non exceeding of ¢* is comprised between 0.99 and 1,
or equivalently, the probability of exceeding this threshold is
below 0.01. Now, if the uncertainty in the SLR projections
is accounted for and is described by a DS structure, the
probability of non exceeding the critical threshold ranges
between 0.22 and 1, i.e., the probability of exceeding this
threshold can be as high as 0.78.

V. CONCLUSIONS

The hydrologic parameters controlling the future response
of a coastal defense structure to climate change are uncertain

and are affected by both randomness (with possible depen-
dence structure) and imprecision. In this paper, we illustrated
a promising methodology based on Dempster-Shafer theory
to quantify and propagate both uncertainties through an over-
topping model. The described tools and the developed method
can easily be extended to consider other sources of uncertainty
such as the observed data or the models, or to update the results
when additional evidence is available. The latter extension, in
particular, is possible for the SLR module. A shortcoming of
our approach is that the SLR projections were derived based
on a unique semi-empirical model. The predictive capability of
such models is viewed with some reluctance within the climate
science community. Projections would be more consistent if
they were combined with experts’ opinions on the validity
of the models or on their estimations of future rise of the
oceans. Recently, a formalized pooling of expert views on
uncertainties in ice sheet contribution, the main uncertain
component in the SLR, has been reported by Bamber [3].
The elicitation of experts judgements and the combination of
the new evidence with the semi-empirical model based results
would allow higher confidence in the SLR projections.
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